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Abstract: In this short article alpha-skew-generalized logistic distribution of type III has been introduced as an 

extension of the alpha-skew-logistic distribution [Hazarika and Chakraborty (2014). Alpha Skew Logistic 

Distribution, IOSR Journal of Mathematics 10 (4) Ver. VI: 36-46] by considering the generalized logistic 

distribution of type III as the base distribution. Cumulative distribution function, moment generating function 

and a few moments have been derived. 
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I. Introduction 
Skew distribution is natural extension of the underlying symmetric distribution derived by adding one 

or more additional asymmetry parameter(s). Azzalini [1] first introduced the path breaking skew-normal 

distribution whose probability density function (pdf) is given by 

RRzzzzfZ   ,);()(2);(                      (1) 

where (.)  and (.)  are the pdf and cumulative distribution function (cdf) of standard normal distribution 

respectively. Here,   is the asymmetry parameter. The general formula for the construction of skew-symmetric 

distributions was given by Huang and Chen [2] by introducing the concept of skew function (.)G .  According to 

Huang and Chen [2] a random variable Z is said to be skew symmetric if its pdf is given by  

)()(2)( zGzhzfZ  ; Rz                  (2) 

where, (.)G (skew function) is the Lebesgue measurable function such that, 1)(0  zG  and 1)()(  zGzG ; 

RZ , almost everywhere and h(.) is any symmetric (about 0) pdf. One can construct many skew distributions 

showing both unimodal and multimodal behavior by choosing an appropriate skew function )(zG in the 

equation (2) (for more about skew distributions see [3]). 

 Alpha–skew–normal (ASN) distribution was introduced by Elal-Olivero [4] as a new class of skew 

normal distribution that includes unimodal as well as bimodal normal distributions. A random variable Z is said 

to be alpha–skew–normal distribution if its pdf is given by 
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where, )(z  is the pdf of standard normal distribution. The generalized version of the ASN distribution has 

been introduced by Handam [5]. Using exactly the similar approach Harandi and Alamatsaz [6] investigated a 

class of alpha–skew–Laplace (ASL) distribution. Recently Hazarika and Chakraborty [7] introduced and studied 

many properties along with estimation of parameters and data fitting application of the alpha–skew–Logistic 

distribution (ASLG) having pdf 
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where, 
3

2
22

C . Symbolically if Z is an alpha-skew-logistic random variable with parameter   it is 

denoted in this article by )(ASLG~ Z . 

In this note, alpha-skew-generalized logistic (ASGL) distribution has been introduced by considering the 

generalized logistic distribution of type III as the base distribution following the methodology of Elal-Olivero 

[4] and some of its properties have been studied. 

 

II. Alpha-Skew-Generalized Logistic Distribution 
Definition 2.1 A random variable Z is said to follow generalized logistic distribution type III (Balkrishnan, [8]; 

Jhonson et al., [9]) if its pdf is given by  
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Definition 2.2 A random variable Z is said to be alpha-skew-generalized logistic ),(ASGLG   if its pdf is 

given by  
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where, )](1[2 )1(2 D  and  
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, for any positive integer n is the poly gamma function (Gradshteyn 

and Ryzhik, [10]).  

Particular cases: 

I. )1,(ASGLG  )ASLG(  (Hazarika and Chakraborty [7]) 

II. ),0(ASGLG   )(GL  . 

III. )1,0(ASGLG )0ASLG( = )1,0(L , where,
 

)1,0(L
 
is the standard logistic distribution and its pdf is given   

by 
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IV.  If ),(ASGLG~ Z  then ),(ASGLG~ Z . 

Remark 2.1: The Cumulative distribution function (cdf) of ),(ASGLG  is given by 
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where, );;( xbaFqp  is the generalized Hypergeometric function (Gradshteyn and Ryzhik, [10]) and given by 

!)...()()(

)...()()(
);;(

0 21

21

k

x

bbb

aaa
xbaF

k

k kpkk

kpkk

qp 




 and )1()1()(  kgggg k 
 

Proposition 2.1. (Pogány and Nadarajah [11]) If ),(ASGLG~Z   then  
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  is the Goyal–Laddha generalized Hurwitz–Lerch Zeta function  

(see Goyal and Laddha [12])  

Result 2.1 If ),(ASGLG~Z  then  
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Now using Proposition 2.1 we get for the case of when n is odd 
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and for the case when n is even is obtained as 
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In particular: 
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Remark 2.2: The parameter   can be expressed in terms of mean (  ) as  
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Result 2.2. If ),(ASGLG~ Z , then the moment generating function (mgf) is given by 
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Where, )1;1,1,1;,,,2()( 341   ttttttFtI ,  

             )1;1,1;,,2()( 232   ttttFtI ,   

             )1;1;,2()( 123   ttFtI   

Remark 2.3. An alternative expression for the mgf of ),(ASGLG   can be obtained in terms of gamma 

function and its derivatives as  
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