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Abstract: Descriptor dynamic control system application plays an important role in modern science and 

mathematics. This paper focuses on an approximate solution to some kind of descriptor dynamic control system 

with constant coefficient . The non-classical variational approach is developed for this purpose to  obtain a very 

suitable approximate solution with a high degree of accuracy, and freedom. Some illustrations have been 

provided to show the effectiveness of this approach. 
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I.       Introduction 
Differential- algebraic equations arise naturally in many application such a mechanical multibody 

system [19],[20], electrical circuit simulation [6],[20], chemical engineering, control theory [6],[7],[19], and 

other areas. Their analysis and numerical methods, therefore, plays an important role in modern mathematics. 

Since the differential- algebraic equations can be difficult to solve when they have index greater than one [1], 

the numerical solution of these types of systems has been the subject of intense activity of a lot of researchers 

such as [9],[10],[13],[18],[21]. The necessary requirement to find out a given problem has a variational 

formulation is the symmetry of its operator, if the operator is linear, or the symmetry of its gateaux derivative. 

This symmetry may be obtained by different approach for some problems [ 16 ],[ 17 ]. 

A constructive method to give a variational formulation to every linear equation or a system of linear 

equations by changing the associated bilinear forms was given in [15], this method has a more freedom of 
choice a bilinear form that makes a suitable problem has a variational formulation.  The solution then may be 

obtained by using the inverse problem of calculus of variation .To study this problem and its freedom of 

choosing such a bilinear form and make  it easy to be solved  numerically or approximately, we have mixed this 

approach with some kinds of basis, for example Ritz basis of completely continuous functions in a suitable 

spaces, so that the solution is transform from non direct  approach to direct one. The since the linear operator is 

then not necessary to be symmetric, this approach is named as a non-classical variational approach .This 

approach have been developed for a lot of applications  such as integral, integro differential equations, partial  

differential equations, oxygen diffusion in biological tissues, moving boundary value problems with non 

uniform initial-boundary condition, and for solving some optimal control problems, see [ 12],[16],[17],[22]. 

 We are interesting in find the solution up to some accuracy of linear descriptor dynamic control system 

with (without) using canonical form for open (close) loop control system and some of illustrations. 

 
II.       Description of the Problem 

 Consider the following general singular 

                                                                   𝐸𝑋′(𝑡) = 𝐴𝑋 𝑡 + 𝐵𝑢(𝑡)                                                           …   (1) 
 

Here,  𝑋(𝑡) ∈ ℝ𝑛 ,   𝑢(𝑡) ∈ ℝ𝑚 ,   𝐸, 𝐴 ∈ ℝ𝑛×𝑛  ,  𝐵 ∈ ℝ𝑛×𝑚 ,  are constant matrices   

, when 𝐸 is non singular the system become 

                                               𝑋′(𝑡) = 𝐸−1𝐴𝑋 𝑡 + 𝐸−1𝐵𝑢(𝑡). 

When we mention singular systems we always mean the singular 𝐸, with 𝑖𝑛𝑑𝑒𝑥 𝐸 = 𝑘,  𝑟𝑎𝑛𝑘 𝐸𝑘 = 𝑝. 
Singular systems can be named by descriptor variable systems, generalized state space systems, semi state 

systems, differential-algebraic systems. 

 

III.       Some Basic Concept 
Definition (3.1):[2] The System (1)  is called  regular if there exist a constant scalar 𝑠 𝜖 ℂ  such that 

𝑑𝑒𝑡(𝑠𝐸 –  𝐴)  ≠   0. 

Remark (3.1) : 

1. The regularity is very important property for descriptor linear system. It's guarantees the existence and 

uniqness of solutions to descriptor linear system. see  [5]. 
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2. If the descriptor linear system is irregular system , i.e. 𝑑𝑒𝑡 ( 𝑠𝐸 –  𝐴)  = 0, this leads to no solution or 

non-unique solution (finite or infinite number of solutions), [ 7]. 

3. In [ 3] [4] if the singular system is irregular. It can transfer our system to regular one as following 
algorithm :  

 

Computational Algorithm  to Make the System Regular (3.1) 

Step (1): For system (1) find the finite spectrum eigenvalue  𝜎𝑓  ( 𝐸 , 𝐴) . 

Step (2): Chose 𝑠 ∉  𝜎𝑓  ( 𝐸 , 𝐴). 

Step (3) : Define Ȇ =  ( 𝑠𝐸 –  𝐴 )−1 𝐸  

            Ȃ = ( 𝑠𝐸 –  𝐴 )−1  𝐸  

            𝐵  =  ( 𝑠𝐸 –  𝐴 )−1  𝐵 . 

Step (4): The new system Ȇ 𝑋′(𝑡) =  Ȃ 𝑋(𝑡)  +  𝐵  𝑢(𝑡) is regular . 

4. Based on previously one have ȆȂ = ȂȆ and 𝒩 Ȇ ∩𝒩 Ȃ = 0  (where 𝒩 .   is null space of the 

matrix) even when the original matrcies are not and this condition is necessary and sufficient for 

existence and uniqunce of solution based on [4]. 

Definition (3.2) :[3] For 𝐸 is 𝑛 ×  𝑛 matrix the index of 𝐸 denoted by 𝑖𝑛𝑑 (𝐸), is the smallest non-negative 

integer k such that , 𝑟𝑎𝑛𝑘 (𝐸𝑘)  =  𝑟𝑎𝑛𝑘  (𝐸𝑘+1) . 

Definition (3.3):[4] If 𝐴 𝜖ℝ𝑛×𝑛  with 𝑖𝑛𝑑(𝐴) =  𝑘 , and if 𝐴𝐷𝜖ℝ𝑛×𝑛   such that : 

1. 𝐴𝐴𝐷  =  𝐴𝐷𝐴 
2. 𝐴𝐷𝐴𝐴𝐷  =  𝐴𝐷  
3. 𝐴𝐷𝐴𝑘+1  =  𝐴𝑘  for 𝑘 ≥ 𝑖𝑛𝑑(𝐴). 

Then, 𝐴𝐷 is called Drazin inverse of  . 
Theorem (3.1) : [4] If  𝐴 ∈ ℝ𝑛×𝑛   , with 𝑖𝑛𝑑(𝐴) = 𝑘, then there exist a non-singular matrix T, such that : 

 𝐴 = 𝑇  
𝐶 0
0 𝑁

  𝑇-1, where, 𝐶 is non singular and 𝑁 is nilpotent of index  . 

Furthermore, if 𝑇, 𝐶,𝑁 be any matrices satisfying the above conditions, then 

 𝐴𝐷  =  𝑇  𝐶
−1 0
0 0

  𝑇-1 

Remark (3.2): Many methods have been presented in [4], [8] to find  Drazin inverse for a singular  matrix . 

 

IV.     core – nilpotent Decomposition 
Remark (4.1) : 

1- For 𝐸 ∈  ℝ𝑛𝑥𝑛  with 𝑖𝑛𝑑 (𝐸)  =  𝑘, then there exist unique matrices 𝐶 and 𝑁  such that 𝐸 =  𝐶 +  𝑁  

𝐶𝑁 =  𝑁𝐶 =  0 , 𝑁  is nilpotent of index 𝑘  and index of 𝐶  is 0  or 1 . This decomposition is 

Wedderburn or core – nilpotent decomposition, for example  𝑁 =  𝐸 ( 𝐼 –  𝐸 𝐸𝐷)  and 𝐶 = 𝐸2  𝐸𝐷.[3] 

2- Consider the non homogeneous equation 

                                                            𝐸 𝑋′(𝑡) +  𝐴 𝑋(𝑡)  =  𝑓                                                                 ….(2) 

And assume  𝐸 𝐴 =  𝐴 𝐸  . Let  𝑋 =  𝑋 1 +  𝑋 2  where  

                                                  𝑋 1  =  𝐸𝐷  𝐸𝑋 and 𝑋 2  =  ( 𝐼 –  𝐸 𝐸𝐷) 𝑋 

Then the equation (2) becomes  

(𝐶 +  𝑁) (𝑋1
′ − 𝑋2

′ )  +  𝐴 ( 𝑋 1  + 𝑋 2)  =  𝑓 

      Multiplying first by 𝐶𝐷𝐶 and then by ( 𝐼 – 𝐶𝐷𝐶) , we get  

𝐶 𝑋1
′ +  𝐴 𝑋 1  =  𝑓1  

                                                            𝑁 𝑋2
′  +  𝐴𝑋 2  =  𝑓2                                                               .…(3) 

     Where 𝑓 1 =  𝐶𝐷𝐶 𝑓   and 𝑓 2 =  (𝐼 − 𝐶𝐷𝐶) 𝑓 

   The equation 𝐶 𝑋1 ′ +  𝐴 𝑋1  =  𝑓 1 can be written as  𝑋1
′ + 𝐶𝐷𝐴 𝑋1  =  𝐶𝐷  𝑓 1 which has a unique solution for 

all initial condition in 𝑅 (𝐸 𝐷𝐸). 
    But 𝑁𝑋2

′ +  𝐴 𝑋2  =  𝑓 2 may or may not have nontrivial solution and the solution if they exist need not be 

determined uniquely by initial conditions.              
 

V.       Consistent Initial Condition 
    Return to system (1) for a given initial condition 𝑥0 the system (1) may or may not be consistent for a 

particular control u.   

   Having in mind the possible implicit character of equation (1) with respect 𝑋′(𝑡), it is obvious, that 

not all initial conditions are permissible. 
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   The problem of consistent initial conditions is not characteristic for the systems in the normal form, but it 

basic one for the singular systems , we will say that an initial condition 𝑥0 ∈ ℝ𝑛  is consistent if there exist  a 
differentiable continuous solution of (1) . 

   The following corollary gives a characterization of consistent initial condition when 𝐸 𝐴 =  𝐴 𝐸  and 

𝒩 (𝐸)  𝒩 (𝐴)  =  { 0 }  

Corollary (5.1) : [4] Suppose that 𝐸 𝐴 =  𝐴 𝐸 and  𝒩 (𝐸)  𝒩 (𝐴)  =  { 0 } 

Then there exist a solution to  𝐸 𝑋′ +  𝐴 𝑋 =  𝑓 , 𝑋(0)  =  𝑥0, if and only if 𝑥0 is of the form  

𝑥0 =𝐸𝐷𝐸𝑞 + (𝐼 + 𝐸 𝐸𝐷)  (−1)𝑛𝑘−1
𝑛=0 (𝐸𝐴𝐷)𝑛  AD f(n)

(0). For Some q . 

    Furthermore , the solution is unique. 

Remark (5.1): [3] For a given 𝑥0 and class of controls let the set of admissible controls Ω(𝑋0 , 𝐽),   𝐽 = [0,∞) , 

be those u such that (1) with 𝑥 0 = 𝑥0 is consistent.  

If the controls are from the set of k-times  continuously differentiable function on [0,∞) i.e. 𝐶𝑘 [0,∞), 

𝐴Ω 𝑋0 , 𝐽 = 𝐶𝑘 𝐽 ∩ {𝑢:  𝐼 − 𝐸𝐸𝐷 𝑥0 = (𝐼 − 𝐸𝐸𝐷) (−1)𝑛 (𝐸𝐴𝐷)𝑘−1
𝑛=0 𝐴𝐷𝐵(𝑢)(𝑛)}, 

 

And  𝐼 − 𝐸𝐸𝐷 𝑥0 =  𝐼 − 𝐸𝐸𝐷  (−1)𝑛 (𝐸𝐴𝐷)𝑘−1
𝑛=0 𝐴𝐷𝐵(𝑢)(𝑛)(0). 

Computational Algorithm  to Find Consist initial Space (5.1) 

Step (1): Consider the descriptor system 𝐸𝑋 ′(𝑡) =  𝐴𝑋(𝑡) +  𝐵𝑢(𝑡)  where 𝐸 , 𝐴 are 𝑛𝑥𝑛 matrix and 𝑓is  𝑘- 

time continuously differentiable in ℝ𝑛 . 

Step (2):  Find 𝑖𝑛𝑑  𝐸 =  𝑘. 
Step (5):   Using algorithm (3.1) find 𝐸  , 𝐴  and𝐵  . The new system  𝐸  𝑋′(𝑡)   =   𝐴  𝑋 (𝑡)  +  𝐵 𝑢(𝑡) is regular . 

Step (6): Find the Drazin inverse of  𝐸  and 𝐴   see remark (3.2). 

Step (7): We find the class of consistent initial conditions by solve  

 (I - 𝐸 𝐸 D ) (𝑥(0)  − 𝐴  𝐷𝐵𝑢) = 0 or   (I - 𝐸 𝐸 D ) 𝑥(0) = 0. 

 This means 

 𝑊𝑘  = 𝒩 (I - 𝐸 𝐸 D ) 

i. e.   (I - 𝐸 𝐸 D ) 𝑥0 = (I - 𝐸 𝐸 D ) (−1)𝑛𝑘−1
𝑛=0 (𝐸 𝐴 𝐷)𝑛𝐴 D 𝐵 𝑢 𝑛 (0) 

 

 

VI.    Non Classical Variational for Normal System 
Theorem(6.1):[16],[17] For the system   𝑋′ 𝑡 =  𝐴 𝑋 𝑡 +  𝑓 𝑡  consider the linear equation 𝐿𝑋 = 𝑓,  

𝐿 = (
𝑑 .

𝑑𝑡
−𝐴. ) and 𝑋 =  (𝑥1 , 𝑥2 , … , 𝑥𝑛 )𝑇vector in ℝn  and 𝐿 denoted to be linear operator with domain 𝐷(𝐿) in 

linear space 𝑋 and Range 𝑅(𝐿) in second linear space 𝑌. 

If 𝐿 is symmetric with respect to the bilinear from < 𝑥, 𝑦 > then the solutions of 𝐿𝑋 = 𝑓 are critical points of 

functional   

𝐽 𝑋 = 0.5 < 𝐿𝑋, 𝑋 > −< 𝑓,𝑋 > , 

Moreover, if the chosen bilinear satisfies: 

a. If for every 𝑥 ∈ 𝑋, (𝑥, 𝑦 ) = 0 then 𝑦 = 0. 

b. If for every 𝑦 ∈ 𝑌, (𝑥 , 𝑦) = 0 then 𝑥 = 0. 

On 𝐷(𝐿) and 𝑅(𝐿) then the critical points of the functional 𝐽 are solutions to the given equations 𝐿𝑋 = 𝑓. 
Remark (6.1): Due to this restriction of symmetry of the linear operator there still a large number of problems 

have no variational formulation,   in [15] and [16] shows that it is always possible to find a bilinear form that 

makes a given linear operator symmetric by using the following steps: 

1-chose an arbitrary bilinear form (𝑥, 𝑦) which  satisfies  

a. If for every 𝑥 ∈ 𝑋, (𝑥, 𝑦 ) = 0 then 𝑦 = 0. 

b. If for every 𝑦 ∈ 𝑌, (𝑥 , 𝑦) = 0 then 𝑥 = 0. 

2- construct a bilinear  form < 𝑥, 𝑦 > defined for every pair of elements 𝑥 ∈ 𝐷 𝐿 , 𝑦 ∈ 𝑌   
    Such that <x, y> = (x, Ly) and hence < 𝐿𝑥, 𝑦 >=< 𝑥, 𝐿𝑦 > , by theorem (6.1) 𝐽[𝑥] is defined by  

𝐽 𝑥 = 0.5(𝐿𝑥, 𝐿𝑥) − (𝑓, 𝐿𝑥) 

Examples for non-degenerate bilinear form 

 1 −     𝑢 , 𝑣 =  𝑢 𝑡 𝑣 𝑡 𝑑𝑡, 𝑢 , 𝑣 ∶  𝐶 0, 𝑇 →
𝑇

0
ℝ  

2 −    𝑢 , 𝑣 =    𝑢𝑖 𝑡 𝑣𝑖(𝑡)𝑑𝑡

𝑛

𝑖=0

𝑇

0

, 𝑢, 𝑣 ∶ 𝐶  0 , 𝑇 → ℝ𝑛  

3 −  𝑢, 𝑣 =   𝑢 𝑡 𝑣 𝑇 − 𝑡 𝑑𝑡,
𝑇

0
  “ convolution bilinear from " where  

                       u , v : [0, T]→ ℝ 
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VII.     Generalized Ritz Method 
To make this approach is a suitable for some type of application , we have mixed this approach with 

Ritz method , so that the solution to the inverse problem of calculus of variation is of direct approach. Ritz 

method is very important procedure of the so called direct method, the essence of the method is to express the 

unknown variables of the given initial boundary value problem as a linear combination of the elements of 

functions which are completely relative to the class of the feasible functions, towards this level, let{𝐺𝑖(𝑡)} be a 

sequences of functions relative to the class of admissible function i.e. {linearly independent and continuous 

function}. 

Let 𝑥 𝑡 = 𝑥 0 +  𝑎𝑖𝐺𝑖(𝑡)
𝑛
𝑖=1 , 𝑖 = 1,2,… , 𝑛 ,where 𝐺𝑖(𝑡)is a suitable base function satisfied the given non 

homogeneous boundary and initial condition. 

 

VIII.     Solvability of Open-Loop Singular System Using non-Classical Variational Method 
The difficulties for solving descriptor system with (without) control involving derivatives in equations 

have lead to search for variational problems equivalent to the given system in the sense that the solution of the 

given descriptor system is a critical point of the variational formulation. 

Theorem(8.1): Consider the descriptor system 𝐸𝑋′(𝑡) = 𝐴𝑋 𝑡 + 𝐵𝑢(𝑡) with 𝑥 0 = 𝑥0, 𝑢(𝑡) ∈ 𝐴Ω 𝑋0 , 𝐽  and 

𝑖𝑛𝑑(𝐸) = 𝑘. Define a linear operator 𝐿 with domain 𝐷(𝐿) and range 𝑅(𝐿) such that   

 

                                                                   𝐿𝑥 = 𝐵𝑢(𝑡)                                                                                 ….(4) 

If the conditions with 𝐸𝐴 = 𝐴𝐸 and 𝒩 𝐸 ∩𝒩 𝐴 = {0} satisfied  and L is symmetric with respect to a certain 

bilinear then the solution of equation (4) are critical points of  functional   

𝐽 𝑥 = 0.5 < 𝐿𝑥, 𝑥 > −< 𝐵𝑢 , 𝑥 > 

Moreover, if the chosen bilinear form < 𝑥, 𝑦 > is non-degenerate on 𝐷(𝐿) and 𝑅(𝐿) it is also true that the crtical 

points of the functional 𝐽 𝑥  are solution to the given equation . 

Proof: for the system 𝑋′(𝑡) = 𝐴𝑋 𝑡 + 𝐵𝑢(𝑡)  , 𝑖𝑛𝑑(𝐸) =  𝑘  , the community of 𝐸, 𝐴  make the system is 

possible to perform a similarity so that by linear transformation  vector state 𝑤 𝑡 = 𝑇−1𝑥(𝑡), then one get 

 𝐶 0
0 𝑁

 .  
𝑤 1
𝑤 2
 =  

𝐴1 0
0 𝐴2

 .  
𝑤1

𝑤2
 +  

𝐵1

𝐵2
 𝑢(𝑡), w1 ∈ ℝp , w2 ∈ ℝ

n−p , 𝐶 invertable , 𝑁 nilpotent matrix , 

𝑝 = 𝑟𝑎𝑛𝑘(𝐸). The equvelant system became as  

                                                                  𝐶𝑤1  𝑡 = 𝐴1𝑤1 𝑡 + 𝐵1𝑢 𝑡                                                ...(5) 

                                                                   𝑁𝑤2  𝑡 = 𝐴2𝑤2 𝑡 + 𝐵2𝑢(𝑡)                                            …(6) 

Define the linear operator for decomposite system  

𝐿 =  
𝐿𝑐
𝐿𝑁
 =  

𝑐
𝑑

𝑑𝑡
. −𝐴1 .

𝑁
𝑑

𝑑𝑡
. −𝐴2 .

  

Where 𝐿𝑐  linear operator with domain ℝp and range ℝn  and 𝐿𝑁  linear operator with domain ℝn−p and range 

ℝn , and  the linear equation be as 

                                                                 𝐿𝑥 = 𝐿𝑐𝑤1 + 𝐿𝑁𝑤2 = (𝐵1 + 𝐵2)𝑢(𝑡)                                 …(7) 

1-The conditions 𝐸𝐴 = 𝐴𝐸 and 𝒩 𝐸 ∩𝒩 𝐴 = {0} guarantee existence the solution . 

2- Its clear that 𝐿𝑐  and 𝐿𝑁  are not symmetric, using remark (6.1) the new bilinear form define 

     by < 𝑥 , 𝑦 > = (𝑥 , 𝐿𝑦) 

Since  < 𝐿𝑥 , 𝑦 >= (𝐿𝑥 , 𝐿𝑦) 

                           = (𝐿𝑐𝑤1 + 𝐿𝑁𝑤2  , 𝐿𝑐𝑣1 + 𝐿𝑁𝑣2)  

                            =  𝐿𝑐𝑤1  , 𝐿𝑐𝑣1 +  𝐿𝑐𝑤1  , 𝐿𝑁𝑣2 +  𝐿𝑁𝑤2  , 𝐿𝑐𝑣1 + (𝐿𝑁𝑤2  , 𝐿𝑁𝑣2)  

                                        =  𝐿𝑐𝑣1  , 𝐿𝑐𝑤1 +  𝐿𝑁𝑣2  , 𝐿𝐶𝑤1 +  𝐿𝑐𝑣1, 𝐿𝑁𝑤2   + ( 𝐿𝑁𝑣2, 𝐿𝑁𝑤2) 

                                        =  𝐿𝑐𝑣1 + 𝐿𝑁𝑣2, 𝐿𝑐𝑤1 + 𝐿𝑁𝑤2  
                                        = ( 𝐿𝑦, 𝐿𝑥 )  

                                        = < 𝐿𝑦, 𝑥 >  

3- Lets perform the first variation of 𝐽 𝑋  
 𝛿𝐽 𝑤1 + 𝑤2 = 𝐽 𝑤1 + 𝑤2 + 𝛿𝑤1 + 𝛿𝑤2 − 𝐽[𝑤1 + 𝑤2 ] 
                         = 0.5 < 𝐿𝑐𝛿𝑤1 + 𝐿𝑁𝛿𝑤2 , 𝑤1 + 𝑤2 > +0.5 < 𝐿𝑐𝑤1 + 𝐿𝑁𝑤2 , 𝛿𝑤1 + 𝛿𝑤2 > 
                                −< 𝐵1𝑢 + 𝐵2𝑢, 𝛿𝑤1 + 𝛿𝑤2 >  
                         = 0.5 < 𝐿𝑐𝛿𝑤1 , 𝑤1 > +0.5 < 𝐿𝑐𝛿𝑤1 , 𝑤2 > +0.5 < 𝐿𝑁𝛿𝑤2 , 𝑤1 > +0.5 < 𝐿𝑁𝛿𝑤2 , 𝑤2 > 
                              +0.5 < 𝐿𝑐𝑤1 , 𝛿𝑤1 > +0.5 < 𝐿𝑐𝑤1 , 𝛿𝑤2 > +0.5 < 𝐿𝑁𝑤2 , 𝛿𝑤1 > +0.5 < 𝐿𝑁𝑤2 , 𝛿𝑤2 >  

 −< 𝐵1𝑢, 𝛿𝑤1 > −< 𝐵1𝑢, 𝛿𝑤2 > −< 𝐵2𝑢, 𝛿𝑤1 > −< 𝐵2𝑢, 𝛿𝑤2 > 
                          = 0.5 𝐿𝑐𝛿𝑤1 , 𝐿𝑐𝑤1 + 0.5 𝐿𝑐𝛿𝑤1 , 𝐿𝑁𝑤2 + 0.5 𝐿𝑁𝛿𝑤2 , 𝐿𝑐𝑤1 + 0.5 𝐿𝑁𝛿𝑤2 , 𝐿𝑁𝑤2  

+ 0.5 𝐿𝑐𝑤1 , 𝐿𝑐𝛿𝑤1   + 0.5 𝐿𝑐𝑤1 , 𝐿𝑁𝛿𝑤2 + 0.5 𝐿𝑁𝑤2 , 𝐿𝑐𝛿𝑤1 + 0.5 𝐿𝑁𝑤2 , 𝐿𝑁𝛿𝑤2  
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                              −  𝐵1𝑢, 𝐿𝑐𝛿𝑤1 −  𝐵1𝑢, 𝐿𝑁𝛿𝑤2  − (𝐵2𝑢, 𝐿𝑐𝛿𝑤1 ) − (𝐵2𝑢, 𝐿𝑁𝛿𝑤2 )  
               = 0.5 𝐿𝑐𝑤1 , 𝐿𝑐𝛿𝑤1 + 0.5 𝐿𝑁𝑤2 , 𝐿𝑐𝛿𝑤1 + 0.5 𝐿𝑐𝑤1 , 𝐿𝑁𝛿𝑤2 + 0.5 𝐿𝑁𝑤2 , 𝐿𝑁𝛿𝑤2 

+  0.5 𝐿𝑐𝑤1 , 𝐿𝑐𝛿𝑤1  
               +0.5 𝐿𝑐𝑤1 , 𝐿𝑁𝛿𝑤2 + 0.5 𝐿𝑁𝑤2 , 𝐿𝑐𝛿𝑤1 + 0.5 𝐿𝑁𝑤2 , 𝐿𝑁𝛿𝑤2  −  𝐵1𝑢, 𝐿𝑐𝛿𝑤1 −  𝐵1𝑢, 𝐿𝑁𝛿𝑤2  

                                        −(𝐵2𝑢, 𝐿𝑐𝛿𝑤1 ) − (𝐵2𝑢, 𝐿𝑁𝛿𝑤2)  
                          = 0.5 < 𝐿𝑐𝑤1 , 𝛿𝑤1 > +0.5 < 𝐿𝑁𝑤2 , 𝛿𝑤1 > +0.5 < 𝐿𝑐𝑤1 , 𝛿𝑤2 > +0.5 < 𝐿𝑁𝑤2 , 𝛿𝑤2 > 
                             +  0.5 < 𝐿𝑐𝑤1 , 𝛿𝑤1 > +0.5 < 𝐿𝑐𝑤1 , 𝛿𝑤2 > +0.5 < 𝐿𝑁𝑤2 , 𝛿𝑤1 > +0.5 < 𝐿𝑁𝑤2 , 𝛿𝑤2 > 

−< 𝐵1𝑢, 𝛿𝑤1 > −< 𝐵1𝑢, 𝛿𝑤2 > −< 𝐵2𝑢, 𝛿𝑤1 > −< 𝐵2𝑢, 𝛿𝑤2 > 
                          = 0.5 < 𝐿𝑐𝑤1 + 𝐿𝑁𝑤2 , 𝛿𝑤1 + 𝛿𝑤2 > +0.5 < 𝐿𝑐𝑤1 + 𝐿𝑁𝑤2 , 𝛿𝑤1 + 𝛿𝑤2 >  
                                −< 𝐵1𝑢 + 𝐵2𝑢, 𝛿𝑤1 + 𝛿𝑤2 >  
                            =< 𝐿𝑐𝑤1 + 𝐿𝑁𝑤2 −𝐵1𝑢 − 𝐵2𝑢, 𝛿𝑤1 + 𝛿𝑤2 >  

Where the symbol 𝛿is the customary symbol of variation of a function used in calculus of  

 variation .if the 𝑥∗ = 𝑤1
∗ + 𝑤2

∗ is a solution of (7) 

𝐿𝑐𝑤1 + 𝐿𝑁𝑤2 = (𝐵1 + 𝐵2)𝑢(𝑡)  =  0 

And then 𝛿𝐽 𝑥∗ =0 . 

4-  If the chosen bilinear form < 𝑥 , 𝑦 > is non – degenerate on 𝐷(𝐿) and 𝑅(𝐿) let    

        𝑥 = 𝑤 1 + 𝑤 2 is critical  point of 𝐽 𝑋  for every 𝛿𝑤1 ∈ ℝ
𝑃𝑎𝑛𝑑  𝛿𝑤2 ∈ ℝ𝑛−𝑃 

𝛿𝐽 𝑥   =< 𝐿𝑐𝑤 1 −𝐵1𝑢, 𝛿𝑤1 > +< 𝐿𝑁𝑤 2 −𝐵2𝑢, 𝛿𝑤2 >= 0 
And then from the non- degeneracy condition we have 

      𝐿𝑐𝑤 1 − 𝐵1𝑢 + 𝐿𝑁𝑤 2 − 𝐵2𝑢 = 0  

⇒  𝐿𝑐𝑤 1 + 𝐿𝑁𝑤 2 − (𝐵1 + 𝐵2 )𝑢 = 0  

 ⇒ 𝐿𝑥 − 𝐵𝑢 = 0 

Hence if a given linear operator 𝐿 is symmetric with respect to a non- degenerate bilinear form < 𝑥 , 𝑦 > 

there is a variational formulation of the given linear equation (7). 

 

Corollary(8.1): for the descriptor system 𝐸𝑋′(𝑡) = 𝐴𝑋 𝑡 + 𝐵𝑢(𝑡)  with 𝑥 0 = 𝑥0 , 𝑢(𝑡) ∈ 𝐴Ω 𝑋0 , 𝐽  and 

𝑖𝑛𝑑𝑒𝑥(𝐸) = 𝑘. Define a linear operator 𝐿 ,𝐿 =  𝐸
𝑑

𝑑𝑡
−𝐴 with domain 𝐷(𝐿) and range 𝑅(𝐿) .                                                     

If the conditions with 𝐸𝐴 = 𝐴𝐸 and 𝒩 𝐸 ∩𝒩 𝐴 = {0} satisfied , then the solution of linear equation  for the 

descriptor system  are critical points of  functional  𝐽 𝑥 = 0.5 < 𝐿𝑥, 𝑥 > −< 𝐵𝑢 , 𝑥 >. Moreover, if the chosen 

bilinear form < 𝑥, 𝑦 > is non-degenerate on 𝐷(𝐿) and 𝑅(𝐿) it is also true that the crtical points of the functional 

𝐽 𝑥  are solution to the given equation . 

Proof: since L is not symmetric remark (6.1) define  < 𝑥 , 𝑦 > = (𝑥 , 𝐿𝑦)  ,one can define the linear equation  

                                                                               𝐿𝑥 = 𝐵𝑢(𝑡)                                                                      ….(8) 

Then from theorem (8.1) for singular system and theorem (6.1) for normal system  in a direct way one can prove 

the solution for (8) is critical point for 𝐽 𝑥  and for the non-degenerate   < 𝑥, 𝑦 > the crtical points for 𝐽 𝑥   are 

solutions to (8). 

remark(8.1): If the descriptor system (1) is irregular  then one can use remark (3.1) to construct regular system 

and one can be continue in the proof of theorem (8.1) for the new  regular system Ȇ 𝑋′(𝑡) =  Ȃ 𝑋(𝑡)  +  𝐵  𝑢(𝑡). 

Theorem(8.2): for the descriptor system 𝐸𝑋′(𝑡) = 𝐴𝑋 𝑡 + 𝐵𝑢(𝑡)  with 𝑥 0 = 𝑥0 ,  𝑥0 ∈ 𝑊𝑘 (the class of 

consistent initial condition) , 𝑢(𝑡) ∈ 𝐴Ω 𝑋0, 𝐽  and 𝑖𝑛𝑑(𝐸) = 𝑘.  

If the solution 𝑥(𝑡) has been approximated by a linear combination of a suitable basis 

i.e. 𝑥 𝑡 = 𝑥 0 +  𝑎𝑖𝐺𝑖
𝑛
𝑖=1  satisfies  

1- 𝑥0 ∈ 𝑊𝑘 . 

2- 𝐺𝑖 𝑥0 = 0. 

3- 𝐺𝑖  are continuous as required by the variational statement being. 

4- {𝐺𝑖}i Must be linearly independent . 

5- Satisfies the homogeneous from of the specified condition. 

    Then the solution for the system  
𝑑𝐽

𝑑𝑎𝑗
= 0 , ∀𝑗 = 1,2,… , 𝑛 is the approximate solution for the descriptor 

system. 

proof:   

   From theorem (8.1) define the functional 𝐽[𝑥] as   𝐽 𝑥 = 0.5 < 𝐿𝑥, 𝐿𝑥 > −< 𝑓, 𝐿𝑥 > 

where the classical bilinear form < 𝐿𝑥, 𝐿𝑥 > =   𝐿𝑥 𝑡 . 𝐿𝑥 𝑡 𝑑𝑡
𝜏

0
, 0 ≤ 𝑡 ≤ 𝜏 ,  

and the linear operator 

𝐿 =  
𝐿𝑐
𝐿𝑁
 =  

𝑐
𝑑

𝑑𝑡
.−𝐴1 .

𝑁
𝑑

𝑑𝑡
.−𝐴2 .
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Where 𝐿𝑐  linear operator with domain ℝp and range ℝn  and 𝐿𝑁  linear operator with domain ℝn−p and range 

ℝn , and  the linear equation be as 

                                                  𝐿𝑥 = 𝐿𝑐𝑤1 + 𝐿𝑁𝑤2 = (𝐵1 + 𝐵2)𝑢(𝑡) 

Then the functional 𝐽 became: 

𝐽 𝑤 = 0.5  𝐿𝐶 . 𝑤1 , 𝐿𝐶 . 𝑤1 −  𝐵1𝑢(𝑡), 𝐿𝐶 . 𝑤1 𝑑𝑡 + 0.5  𝐿𝑁 . 𝑤2 , 𝐿𝑁 . 𝑤2 −  𝐵2𝑢(𝑡), 𝐿𝑁 . 𝑤2 𝑑𝑡

𝜏

0

𝜏

0

 

  

 Select suitable base satisfies Ritz method as follows  

                          𝑤1 𝑡 = 𝐸𝐸𝐷𝑥 𝑡 =  𝑎𝑖𝐺𝑖(𝑡) + 𝑤1(0)𝑛
𝑖=1 , 

                          𝑤2 𝑡 = (𝐼 − 𝐸𝐸𝐷)𝑥 𝑡 =  𝑎𝑖𝐺𝑖(𝑡) + 𝑤2(0)𝑛
𝑖=1 ,                                                             …(9) 

Where 𝑤𝑖 0 ∈ 𝑊𝑘 .  
Then  

𝐽 𝑤; 𝑎 = 0.5   𝐶 𝑖𝑎𝑖𝐺𝑖−1(𝑡)

𝑛

𝑖=1

−𝑤10𝐴1 − 𝐴1  𝑎𝑖𝐺𝑖(𝑡)

𝑛

𝑖=1

 

𝑇

.  𝐶 𝑖𝑎𝑖𝐺𝑖−1(𝑡)

𝑛

𝑖=1

−𝑤10𝐴1 −𝐴1  𝑎𝑖𝐺𝑖(𝑡)

𝑛

𝑖=1

  𝑑𝑡  

𝜏

0

+ 0.5   𝑁 𝑖𝑎𝑖𝐺𝑖−1(𝑡)

𝑛

𝑖=1

−𝑤20𝐴2 −𝐴2  𝑎𝑖𝐺𝑖(𝑡)

𝑛

𝑖=1

 

𝑇

.  𝑁 𝑖𝑎𝑖𝐺𝑖−1(𝑡)

𝑛

𝑖=1

− 𝑤20𝐴2

𝜏

0

−𝐴2  𝑎𝑖𝐺𝑖(𝑡)

𝑛

𝑖=1

  𝑑𝑡

− 𝐵1𝑢  𝐶 𝑖𝑎𝑖𝐺𝑖−1 𝑡 

𝑛

𝑖=1

−𝑤10𝐴1 −𝐴1  𝑎𝑖𝐺𝑖 𝑡 

𝑛

𝑖=1

 𝑑𝑡 

𝜏

0

− 𝐵2𝑢  𝑁 𝑖𝑎𝑖𝐺𝑖−1(𝑡)

𝑛

𝑖=1

−𝑤20𝐴2 −𝐴2  𝑎𝑖𝐺𝑖(𝑡)

𝑛

𝑖=1

 𝑑𝑡

𝜏

0

 

 

In order to find the critical points of the last functional we derivative 𝐽 to aj, ∀𝑗 = 1,… , 𝑛 and equate the result 

to zero, i.e. 
𝑑𝐽

𝑑𝑎𝑗
= 0 , ∀𝑗 = 1,2,… , 𝑛 ,to get a system of algebraic equations as follows: 

 
 
 
 
 
 
 
  𝐶𝐺0 𝑡 − 𝐴1𝑤10 − 𝐴1𝐺1 𝑡  

𝑇 .

𝜏

0

[𝐶𝐺0 𝑡 − 𝐴1𝐺1 𝑡 ] ⋯   𝐶𝑛𝐺𝑛−1 𝑡 − 𝐴1𝑤10 − 𝐴1𝐺𝑛 𝑡  
𝑇 .

𝜏

0

[𝐶𝐺0 𝑡 − 𝐴1𝐺1 𝑡 ]

⋮ ⋱ ⋮

  𝐶𝐺0 𝑡 − 𝐴1𝑤10 − 𝐴1𝐺1 𝑡  
𝑇 . [𝐶𝑛𝐺𝑛−1 𝑡 − 𝐴1𝐺𝑛 𝑡 ]

𝜏

0

⋯   𝐶𝑛𝐺𝑛−1 𝑡 − 𝐴1𝑤10 − 𝐴1𝐺𝑛 𝑡  
𝑇 .

𝜏

0

[𝐶𝑛𝐺𝑛−1 𝑡 − 𝐴1𝐺𝑛 𝑡 ]
 
 
 
 
 
 
 

+

 
 
 
 
 
 
 
  𝑁𝐺0 𝑡 − 𝐴2𝑤20 − 𝐴2𝐺1 𝑡  

𝑇 .

𝜏

0

[𝑁𝐺0 𝑡 − 𝐴2𝐺1 𝑡 ] ⋯   𝑁𝑛𝐺𝑛−1 𝑡 − 𝐴2𝑤20 − 𝐴𝐺𝑛 𝑡  
𝑇 .

𝜏

0

[𝑁𝐺0 𝑡 − 𝐴2𝐺1 𝑡 ]

⋮ ⋱ ⋮

  𝑁𝐺0 𝑡 − 𝐴2𝑤20 − 𝐴2𝐺1 𝑡  
𝑇 . [𝑁𝑛𝐺𝑛−1 𝑡 − 𝐴2𝐺𝑛 𝑡 ]

𝜏

0

⋯   𝑁𝑛𝐺𝑛−1 𝑡 − 𝐴2𝑤20 − 𝐴𝐺𝑛 𝑡  
𝑇 .

𝜏

0

[𝑁𝑛𝐺𝑛−1 𝑡 − 𝐴2𝐺𝑛 𝑡 ]
 
 
 
 
 
 
 

 .

 
 
 
 
 
𝑎1

𝑎2

.

.
𝑎𝑛  
 
 
 
 

=                       

 
 
 
 
 
 
 
 
 
 
 
 𝐵1𝑢 𝑡  𝐶𝐺0 𝑡 − 𝐴1𝐺1 𝑡  

𝜏

0

 𝐵1𝑢 𝑡  𝐶𝐺1 𝑡 − 𝐴1𝐺2 𝑡  

𝜏

0 .
.

 𝐵1𝑢 𝑡 (𝐶𝐺𝑛−1 𝑡 − 𝐴1𝐺𝑛(𝑡))

𝜏

0  
 
 
 
 
 
 
 
 
 
 

+

 
 
 
 
 
 
 
 
 
 
 
 𝐵2𝑢 𝑡  𝑁𝐺0 𝑡 − 𝐴2𝐺1 𝑡  

𝜏

0

 𝐵2𝑢 𝑡  𝑁𝐺1 𝑡 − 𝐴2𝐺2 𝑡  

𝜏

0 .
.

 𝐵2𝑢 𝑡 (𝑁𝐺𝑛−1 𝑡 − 𝐴2𝐺𝑛(𝑡))

𝜏

0  
 
 
 
 
 
 
 
 
 
 

 

 

Which is written as a system 

 𝐴 𝑖, 𝑗 𝑎𝑖 = 𝑏𝑗

𝑛

𝑖=1

,   ∀𝑗 = 1, … , 𝑛, 

Since 𝑤𝑖 0 ∈ 𝑊𝑘  then  𝐴 𝑖, 𝑗  non singular matrix and   𝑎𝑖 = 𝐴−1(𝑖, 𝑗)𝑏𝑗
𝑛
𝑖=1 , ∀𝑗 = 1,… , 𝑛,   (for the 

case 𝑤𝑖 0 is arbitrary selected then 𝐴 𝑖, 𝑗  singular matrix and   𝑎𝑖 = 𝐴𝐷(𝑖, 𝑗)𝑏𝑗
𝑛
𝑖=1 +  𝐼 − 𝐴(𝑖, 𝑗)𝐴𝐷(𝑖, 𝑗) 𝑦, 
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∀𝑗 = 1, … , 𝑛, y is arbitrary in ℝ𝑛 ). Satisfying 𝑎𝑖  in (9) to find the solution for decomposite system and then 

solution for  

𝐸𝑋′(𝑡) = 𝐴𝑋 𝑡 + 𝐵𝑢(𝑡). 

Example (8.1):   Consider the model of a chemical reactor in which a first order isomerization reaction takes 

place and which is externally cooled. 

Denoting by c0 the given feed reactant concentration, by T0 the initial temperature, by c(t), T(t) 

The concentration  and temperature at time t, and by R(t) the reaction rate per unite volume, the model takes the 

form 

                                  
1 0 0
0 0 1
0 0 0

  

𝐶(𝑡) 

𝑇 (𝑡)

𝑅 (𝑡)

 =  
𝑐0 0 0
0 𝑇0 0
0 0 1

  

𝐶(𝑡)
𝑇(𝑡)
𝑅(𝑡)

 +  
1 0
0 1
1 1

  
𝑠𝑖𝑛𝑡
𝑐𝑜𝑠𝑡

 , 

Where  
𝑠𝑖𝑛𝑡
𝑐𝑜𝑠𝑡

𝑠𝑖𝑛𝑡 + 𝑐𝑜𝑠𝑡
  refers to Tc  is cooling temperature . 

Take 𝑐0 = 2 and T0 = 1 we get 

 
1 0 0
0 0 1
0 0 0

  

𝐶(𝑡) 

𝑇 (𝑡)

𝑅 (𝑡)

 =  
2 0 0
0 1 0
0 0 1

  

𝐶(𝑡)
𝑇(𝑡)
𝑅(𝑡)

 +  
1 0
0 1
1 1

  
𝑠𝑖𝑛𝑡
𝑐𝑜𝑠𝑡

 ,  0≤ 𝑡 ≤ 1. 

Solution: let X= 

𝐶(𝑡)
𝑇(𝑡)
𝑅(𝑡)

  , Since the eigenvalue of 𝐸 are 1,0 ,0 and the eigenvector of 𝐸 (1,0,0), (0,1,0), (0,0,1) 

then 𝑃 = 𝐼, this system is regular system and it is already in standard canonical form. 

 So we have 𝑁 =  0 1
0 0

 , 𝐶 = 1, 𝐵1 =  1 0 , 𝐵2 =  0 1
1 1

 , 𝐴1 = 2, 𝐴2 = 𝐼2 ,  

 let 𝑊 = 𝑃−1𝑋, 𝑃  non singular matrix the transform system become  

 

𝐶𝑊1
  𝑡 − 𝐴1𝑊1 𝑡 = 𝐵1𝑢 𝑡  

𝑁𝑊2
  𝑡 − 𝐴2𝑊2 𝑡 = 𝐵2𝑢(𝑡) 

Where 𝑊1 𝑡 = 𝐶(𝑡) and 𝑊2 𝑡 =  
𝑇(𝑡)
𝑅(𝑡)

   the linear operator is given by LE =  
LC

LN
   

Where  

𝐿𝐶 = (𝐶
𝑑

𝑑𝑡
− 𝐴1) 

𝐿𝑁 = (𝑁
𝑑

𝑑𝑡
− 𝐴2) 

And the 𝐽 become as  

𝐽 𝑤 = 0.5  𝑤1 − 2𝑤1 .  𝑤1 − 2𝑤1 𝑑𝑡 − 𝑠𝑖𝑛𝑡  𝑤1 − 2𝑤1 𝑑𝑡

1

0

1

0

+ 0.5   
0 1
0 0

 .  
𝑤2 
𝑤3 
 −  

𝑤2

𝑤3
  

𝑇

.

1

0

  
0 1
0 0

 .  
𝑤2 
𝑤3 
 −  

𝑤2

𝑤3
  𝑑𝑡

−  𝑐𝑜𝑠𝑡 𝑠𝑖𝑛𝑡 + 𝑐𝑜𝑠𝑡   
0 1
0 0

 .  
𝑤2 
𝑤3 
 −  

𝑤2

𝑤3
  𝑑𝑡.

1

0

 

    = 0.5    𝑤1 − 2𝑤1 
2 +  

𝑤3 − 𝑤2

𝑤3
 
𝑇

.  
𝑤3 − 𝑤2

𝑤3
  𝑑𝑡

1

0
  

                                − (𝑠𝑖𝑛𝑡  𝑤1 − 2𝑤1 −  𝑐𝑜𝑠𝑡 𝑠𝑖𝑛𝑡 + 𝑐𝑜𝑠𝑡 .  
𝑤3 − 𝑤2

𝑤3
 )

1

0
𝑑𝑡  

in the following we investigate the classical solution of this system since  

− 𝑁𝑖1
𝑖=0 𝐵2𝑢(0)𝑖 =  

−2
−1

 , 𝑢 =  
𝑠𝑖𝑛𝑡
𝑐𝑜𝑠𝑡

   . 

Using the algorithm in section (5)  one  can easily get the set of consist initial conditions as 

 𝑤𝑘 = {𝛾| 0 𝐼2 𝛾 =  −2 −1 𝑇} 
Thus, all the admissible initial value for the system takes the form  

  𝛾 =  𝛼 −2 −1 𝑇   , 𝛼 ∈ 𝑅 arbitrary, particularly choosing 

𝑤0 =  1 −2 −1 𝑇 ∈ 𝑊𝑘  
Now approximate the solution by: 
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w1 t = 1 +  aiGi

5

i=1

 t   ,     Gi(t) = ti 

w2 t = −2 +  biHi

5

i=1

 t   ,     Hi(t) = ti 

w3 t = −1 +  ciLi

5

i=1

 t   ,     Li(t) = ti 

Substitute 𝑊𝑖  in our functional 𝐽 to get 

𝐽 𝑤 =

           0.5     𝑖𝑎𝑖𝑡
𝑖−1 − 25

𝑖=1 − 2 𝑎𝑖𝑡
𝑖5

𝑖=1  
𝑇

.   𝑖𝑎𝑖𝑡
𝑖−1 − 25

𝑖=1 − 2 𝑎𝑖𝑡
𝑖5

𝑖=1  +
1

0

                            (𝑖=15𝑖𝑐𝑖𝑡𝑖−1+2−𝑖=15𝑏𝑖𝑡𝑖)−𝑖=15𝑐𝑖𝑡𝑖𝑇.(𝑖=15𝑖𝑐𝑖𝑡𝑖−1+2−𝑖=15𝑏𝑖𝑡𝑖)−𝑖=15𝑐𝑖𝑡𝑖𝑇𝑑𝑡  

           −  𝑠𝑖𝑛𝑡   𝑖𝑎𝑖𝑡
𝑖−1 − 25

𝑖=1 − 2 𝑎𝑖𝑡
𝑖5

𝑖=1  +
1

0

  𝑐𝑜𝑠𝑡𝑠𝑖𝑛𝑡+𝑐𝑜𝑠𝑡.(𝑖=15𝑖𝑐𝑖𝑡𝑖−1+2−𝑖=15𝑏𝑖𝑡𝑖)(−𝑖=15𝑐𝑖𝑡𝑖)𝑑𝑡  

Now  
𝑑𝐽

𝑑𝑎𝑗
=

𝑑𝐽

𝑑𝑏𝑗
=

𝑑𝐽

𝑑𝑐𝑗
= 0 , ∀𝑗 = 1,2,… ,5 , leads to system of algebraic equation    𝐴 𝑖, 𝑗 𝑍𝑖 = 𝐷𝑗

𝑛
𝑖=1 ,   ∀𝑗 =

1, … , 𝑛, Zi =  

ai

bi

ci

  

Compute ai, bi, ci , ∀𝑖 = 1,2,… ,5 , having a1 = 2.0066, a2 = 2.4042, a3 = 2.0906, 

 a4 = 0.0128 , a5 = 0.9080 , b1 = 0.9995 , b2 = 1.0049 , b3 = −0.1822,  b4 = −0.0655,  b5 = 0.0040 , 

c1 = −1, c2 = 0.4997, c3 = 0.1685, c4 = −0.0461, c5 = −0.0039. 
Then find the approximate solution  

w1 t = 1 +  ait
i

5

i=1

 

w2 t = −2 +  bit
i

5

i=1

 

w3 t = −1 +  cit
i

5

i=1

 

Now take 𝑊 = 𝑃−1𝑋,  then the solution by non classical variational (N.C.V.) and exist solutions are calculated 

along with absolute errors (Abs. Error) and present in the following tables:                                                            
                                                                                                                

Time N.C.V. 

𝐱𝟏 𝐭  
Exact 

𝐱𝟏 𝐭  
Abs. 

Error 

N.C.V. 

𝐱𝟐 𝐭  
Exact 

𝐱𝟐 𝐭  
Abs. 

Error 

N.C.V. 

𝐱𝟑 𝐭  
Exact 

𝐱𝟑 𝐭  
Abs. 

Error 

0 1 1 0 -2 -2 0 -1 -1 0 

0.1 1.2268 1.2267 0.0001 -1.8902 -1.8902 0 -1.0948 -1.0948 0 

0.2 1.5146 1.5147 0.0001 -1.7615 -1.7615 0 -1.1787 -1.1787 0 

0.3 1.8772 1.8773 0.0001 -1.6152 -1.6152 0 -1.2509 -1.2509 0 

0.4 2.3307 2.3307 0 -1.4529 -1.4528 0.0001 -1.3105 -1.3105 0 

0.5 2.8948 2.8947 0.0001 -1.2760 -1.2757 0.0002 -1.3570 -1.3570 0 

0.6 3.5933 3.5932 0.0001 -1.0864 -1.0860 0.0003 -1.3900 -1.3900 0 

0.7 4.4554 4.4556 0.0002 -1.8859 -1.8855 0.0004 -1.4091 -1.4091 0 

0.8 5.5171 5.5174 0.0003 -0.6766 -0.6766 0 -1.4141 -1.4141 0 

0.9 6.8220 6.8219 0.0001 -0.4606 -0.4599 0.0007 -1.4049 -1.4049 0 

1 8.4222 8.4222 0 -0.2402 -0.2401 0.0001 -1.3818 -1.3818 0 

Table (8.1) show the numerical results which are compared with given analytical solution 

 

Where 0 ≤ 𝑡 ≤ 1 and the basis are polynomial of degree 5 and exact solution  

C t =
−2

5
 sint −

1

5
 cost +

6

5
 e2t , 

T t = sint − 2cost, 
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𝑅 𝑡 = −𝑠𝑖𝑛𝑡 − 𝑐𝑜𝑠𝑡    

 
Example (8.2):  

                                                    
                                                         Figure (8.1): Electronic circuit 

The electric circuit in figure (8.1) contain some typical components in electrical systems, the behavior of the 

capacitor and inductor described by the differential equations 

       𝐶𝑉 𝐶 𝑡 = 𝑖𝑐 𝑡  
       𝐿. 𝑖𝐿  𝑡 = 𝑉𝐿 𝑡  

Where 𝑉 𝐶 𝑡  and 𝑉𝐿 𝑡  are voltages over the capacitor and distance respectively and 𝑖𝑐 𝑡 , 𝑖𝐿  𝑡  are 

corresponding currents. The resistances R1and R2 are described by  

                                                                       Ri,j t = Rj . iR,j t  ,   j = 1,2 

The current source is assumed to be ideal ,that it can provide an arbitrary current 𝑖(𝑡) independent of the voltage 

over it. 

By choosing the state vector 𝑋 as: 

                                                                                   𝑋= 
𝑖 𝑡 

𝑉𝑅,2(𝑡)

𝑉𝑠(𝑡)

 , 

Where 𝑉𝑠  is the voltage over the current source. 

The matrix from of the complete circuit become  

 
0 𝐿 0
0 0 0
0 0 0

 𝑋 =  

𝑅1 0 0

0
1

𝑅2
0

0 0 1

 𝑋 +  
0
−𝑡3

−𝑡
 , 

Taking 𝐿 = 1𝐻, 𝑅1 = 1𝐹, 𝑅2 = 1Ω , then our system become as  
 

 
0 1 0
0 0 0
0 0 0

 𝑋 =  
1 0 0
0 1 0
0 0 1

 𝑋 +  
0
−𝑡3

−𝑡
  

 

Solution: since 𝐸𝐴 = 𝐴𝐸,  𝒩 𝐸 ∩𝒩 𝐴 = {0} 

Then their exist solution for our system and  

𝐽 𝑥 = 0.5 < 𝐿𝑥, 𝐿𝑥 > −< 𝑓, 𝐿𝑥 > 

Where 𝐿 = (𝐸
𝑑

𝑑𝑡
− 𝐴)  then 

𝐽 𝑥 = 0.5  
𝑥2 − 𝑥1

−𝑥2

−𝑥3

 

𝑇

.  
𝑥2 − 𝑥1

−𝑥2

−𝑥3

 𝑑𝑡 −  0 −𝑡3 −𝑡 .  
𝑥2 − 𝑥1

−𝑥2

−𝑥3

 𝑑𝑡

1

0

1

0

 

Approximate the solution X by a linear combination of functions where  

x1 t = x10 +  aiGi

5

i=1

 t   ,     Gi(t) = ti 

x2 t = x20 +  biHi

5

i=1

 t   ,     Hi(t) = ti 

x3 t = x30 +  ciLi

5

i=1

 t   ,     Li(t) = ti 

Where  𝑥10 , 𝑥20 , 𝑥30 ∈ 𝑊𝑘 = { 𝑥10 , 𝑥20 , 𝑥30 :  𝑥10 , 𝑥20 , 𝑥30 = (0,0,0)}  by using an algorithm (5.1) and  

satisfies  the condition of theorem (8.2), our functional become as follows 

    𝐽 𝑥 = 0.5   

( ibit
i−15

i=1 − ait
i)5

i=1

 − bit
i5

i=1  

 − cit
i5

i=1  

 

𝑇

.  

( ibit
i−15

i=1 − ait
i)5

i=1

 − bit
i5

i=1  

 − cit
i5

i=1  

 
1

0
𝑑𝑡  
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                  −  0 −𝑡3 −𝑡 .  

( ibit
i−15

i=1 −  ait
i)5

i=1

(− bit
i5

i=1 )

(− cit
i5

i=1 )

 
1

0
𝑑𝑡  

 

 

Now  
𝑑𝐽

𝑑𝑎𝑗
=

𝑑𝐽

𝑑𝑏𝑗
=

𝑑𝐽

𝑑𝑐𝑗
= 0 , ∀𝑗 = 1,2,… ,5 , leads to system of algebraic equation  

 𝐴 𝑖, 𝑗 𝑍𝑖 = 𝐷𝑗
𝑛
𝑖=1 ,   ∀𝑗 = 1, … , 𝑛, Zi =  

ai

bi

ci

  

We compute ai, bi , ci , ∀𝑖 = 1,2,… ,5, having a1 = 0, a2 = 3, a3 = 0, a4 = 0, a5 = 0, b1 = 0, b2 = 0, b3 = 1, 
b4 = 0, b5 = 0, c1 = 1, c2 = 0, c3 = 0, c4 = 0, c5 = 0. 

 Then we find the approximate solution  

x1 t =  ait
i

5

i=1

 

x2 t =  bit
i

5

i=1

 

x3 t =  cit
i

5

i=1

 

The solution by non classical variational (N.C.V.) and exist solutions are calculated along with absolute errors 
(Abs. Error) and present in the following tables:                   
                                          

Time N.C.V. 

𝐱𝟏 𝐭  
Exact 

𝐱𝟏 𝐭  
Abs. 

Error 

N.C.V. 

𝐱𝟐 𝐭  
Exact 

𝐱𝟐 𝐭  
Abs. 

Error 

N.C.V. 

𝐱𝟑 𝐭  
Exact 

𝐱𝟑 𝐭  
Abs. 

Error 

0 0 0 0 0 0 0 0 0 0 

0.1 0.03 0.03 0 0.001 0.001 0 0.1 0.1 0 

0.2 0.12 0.12 0 0.008 0.008 0 0.2 0.2 0 

0.3 0.27 0.27 0 0.027 0.027 0 0.3 0.3 0 

0.4 0.48 0.48 0 0.064 0.064 0 0.4 0.4 0 

0.5 0.75 0.75 0 0.125 0.125 0 0.5 0.5 0 

0.6 1.08 1.08 0 0.216 0.216 0 0.6 0.6 0 

0.7 1.47 1.47 0 0.343 0.343 0 0.7 0.7 0 

0.8 1.92 1.92 0 0.512 0.512 0 0.8 0.8 0 

0.9 2.43 2.43 0 0.729 0.729 0 0.9 0.9 0 

1 3 3 0 1 1 0 1 1 0 

Table (8.2) show the numerical results which are compared with given analytical solution 

Where 0 ≤ 𝑡 ≤ 1 and the basis are polynomial of degree 5 and exact solution  

x1 t = 3t2 , 
x2 t = t3 , 
x3 t = t . 

 
Conclusion: In this paper a survey was presented of non classical variational method using bilinear forms and 

Ritz basis. 

   In this environment the non-classical method is the optimal bridge between exact solution and 

approximate one. 

The above summarized  identification  algorithm have been tested with success on a lot of an examples  
with basis as polynomial of degree 5 as a Ritz basis and we notes that  when n=5 gives very powerful technique 

to solve our system and gives nearly exact solutions. 

    As to the computational requirements several examples were presented then we compare our solution 

with the exact one. 
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