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Abstract:  In the Present paper effect of angle of incidence on Damping derivative of a delta wing with Curved 

leading edges for attached shock case in Supersonic Flow has been studied. A Strip theory is used in which 

strips at different span wise location are independent of each other. This combines with similitude to give a 

piston theory which gives closed form solutions for damping derivatives at low to high supersonic Mach 

numbers. From the results it is seen that with the increase in the Mach number, there is a progressive decrease 

in the magnitude of damping derivatives for all the Mach numbers of the present studies; however, the decrease 

in the  magnitude is variable at different inertia level. It is seen that with the increase in the angle of attack the 

damping derivative increases linearly, nevertheless, this linear behavior limit themselves for different Mach 

numbers. For Mach number M = 2, this limiting value of validity is fifteen degrees, for Mach 2.5 & 3, it is 
twenty five degrees, whereas, for Mach 3.5 & 4 it becomes thirty five degrees, when these stability derivatives 

were considered at various pivot positions; namely at h = 0.0,  0.4, 0.6, and 1.0. After scanning the results it is 

observed that with the shift of the pivot position from the leading edge to the trailing edge, the magnitude of  the 

damping derivatives continue to decrease throughout. Results have been obtained for supersonic flow of perfect 

gases over a wide range of angle of attack and Mach number. The effect of real gas, leading edge bluntness of 

the wing, shock motion, and secondary wave reflections are neglected. 
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I. Introduction 
The analysis of hypersonic and supersonic flow over flat deltas (with straight leading edge and curved 

leading edge) over a wide incidence range is of current interest since the desire for high speed, maneuverability 

and efficiency has been dominating the evolution of high performance military aircrafts. The knowledge of 

aerodynamic load and stability for such types is a need for calculating simple but reasonably accurate methods 

for parametric calculations facilitating the design process. The computation of dynamic stability for these shapes 

at high incidence which is likely to occur during the course of reentry or maneuver is of current interest. Usually 

the shock waves are very strong when descending and they can either be detached or attached. 

The theories for steady delta wings in supersonic/hypersonic flow with shock wave attached were given by Pike 

[1] and Hui [2]. Carrier [3] and Hui [4] gave exact solutions for 2-D flow in the case of an oscillating wedge and 

for an oscillating flat plate were given by Hui [5], which is valid uniformly for all supersonic Mach numbers and 

wedge angles or angles of attack with attached shock wave.  Hui [5] also calculated pressure on the compression 

side of a flat delta. The importance of dynamic stability at large incidence during re-entry or maneuver has been 
pointed out by Orlik-Ruckemann [6]. The shock attached relatively high aspect ratio delta is often preferred for 

its high lift to drag ratio. Hui and Hemdan [7] have studied the unsteady shock detached case in the context of 

thin shock layer theory. Liu and Hui [8] have extended Hui‟s [5] theory to a shock attached delta wing in pitch. 

Light hill [9] has developed a “Piston Theory” for oscillating airfoils at high Mach numbers. A parameter δ is 

introduced, which is a measure of maximum inclination angle of Mach wave in the flow field. It is assumed that 

M∞ δ is less than or equal to unity (i.e. M∞ δ ≤ 1) and is of the order of maximum deflection of a streamline. 

Light hill [9] likened the 2-D unsteady problem to that of a gas flow in a tube driven by a piston and termed it 

“Piston Analogy”.  Ghosh [10] has developed a large incidence 2-D hypersonic similitude and piston theory. It 

includes Light hill‟s [9] and Mile‟s [11] piston theories. Ghosh and Mistry [12] have applied this theory of order 

of ¢2 where ¢ is the angle between the attached shock and the plane approximating the windward surface. For a 

plane surface, ¢ is the angle between the shock and the body. The only additional restriction compared to small 
disturbance theory is that the Mach number downstream of the bow shock is not less than 2.5.  Ghosh [13] has 

obtained a similitude and two similarity parameters for shock attached oscillating delta wings at large incidence. 

Crasta and Khan have extended the Ghosh similitude to Hypersonic/supersonic flows past a planar wedge [14] 

and [18] and Non planar wedge [20], [21], and [22]. Crasta and Khan have obtained stability derivatives in pitch 

and roll of a delta wing with straight leading edge [23] and [24] and curved leading edges for supersonic flows 

[15] and Hypersonic flows [16]. Crasta and Khan have studied the effect of angle of incidence on pitching 

derivatives and roll of a damping derivative of a delta wing with curved leading edges for an attached shock 
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case [17] and [27]. Further in all cases stability derivatives in Newtonian limit have been calculated by Crasta 

and Khan [19], [25], and [26]. In the present analysis the effect of angle of attack on the stiffness derivative for 

supersonic flows with curved leading edge has been studied and results are obtained are shown in the section to 
follow.   

II. Analysis 
In the present analysis Ghosh‟s (1981) unified supersonic/hypersonic similitude has been used in 

combination with a strip theory for a supersonic delta wing whose leading edge is curved. A thin strip of the 

wing, parallel to the centerline, can be considered independent of the Z dimension when the velocity component 

along the Z direction is small. This has been discussed by Ghosh‟s(1984). The strip theory combined with 

Ghosh‟s large incidence similitude leads to the piston analogy and pressure P on the surface can be directly 

related to equivalent piston mach no. MP. In this case both MP and flow deflections are permitted to be large. 

Hence light hill piston theory cannot be used but Ghosh‟s piston theory will be applicable. 
𝑃

𝑃∞
= 1+ 𝐴𝑀𝑃

2 +𝐴 MP (B + 𝑀𝑃
2)1/2, where p  is free steam pressure…………………………                   (1) 

 

Since strips at different span wise location are assumed independent of each other, the strip can be considered as 

a flat plate at an angle of attack. The angle of incidence is same as that of the wing. Angle ф  is the angle 

between the shock and the strip. A piston theory which has been used in eqn.(1) has been extended to supersonic 

flow. The Expression is given below 
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Pitching moment derivatives 

 Let the mean incidence be 0 for the wing oscillating in pitch with small frequency and amplitude about an 

axis 0x .  The piston velocity and hence pressure on the windward surface remains constant on a span wise strip 

of length 2z at x.  The pressure on the lee surface is assumed Zero. Therefore the nose up moment is  
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Damping Derivative 

The damping derivative is non-dimensionalised by dividing with the product of dynamic pressure, wing area, 

chord length and characteristic time factor 
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Since m is given by an integration (3) to find 
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By using above expression, stiffness derivative calculations have been carried out and some of the results have 
been shown. 

 

III. Results And Discussions 

 
Fig. 1: Variation of damping derivative with angle of attack 

 

Figure 1 represents the results for Damping derivatives for full sine wave with amplitude being   -0.1 

and for half sine wave with amplitude 0.1 with pivot position h = 0. From the results it is seen that there is a 

continuous increase of Damping derivative linearly with angle of attack, nevertheless , this linear behavior limit 

themselves for different Mach number. For Mach number M = 2,this limiting value of validity is fifteen 

degrees,for Mach 2.5 and 3 it is twenty five degrees and for Mach 3.5 to 4 it is thirty five degrees. From the 
figure it is also seen that there is a continuous decrease in the magnitude of the Damping derivatives in the range 

of twenty four percent, fifteen percent, twelve percent and eight percent for the Mach numbers in the range 2 to 

2.5, 2.5 to 3, 3 to 3.5 and 3.5 to 4. The change in the values Damping derivatives are attributed due to combined 

effect of variation in the wing plan form area due to change  in the amplitude of sine waves and the location the 

pivot position which is exactly at the leading edge; which is far away from the center of pressure. 

 

 
Fig. 2. Variation of damping derivative with angle of attack. 

 

Figure 2 represents the results for Damping derivatives for full sine wave with amplitude being   -0.1 

and for half sine wave with amplitude 0.1 with pivot position h = 0. From the results it is seen that they 

represent similar results as figure 1 and there is a continuous increase of Damping derivative linearly with angle 

of attack, nevertheless , this linear behavior limit themselves for different Mach number. For Mach number M = 
2,this limiting value of validity is fifteen degrees,for Mach 2.5 and 3 it is twenty five degrees and for Mach 3.5 

to 4 it is thirty five degrees. From the figure it is also seen that there is a continuous decrease in the magnitude 

of the Damping derivatives in the range of twenty two percent, sixteen percent, twelve percent and eleven  

percent for the Mach numbers in the range 2 to 2.5, 2.5 to 3, 3 to 3.5 and 3.5 to 4. The change in the values 

Damping derivatives are attributed due to combined effect of variation in the wing plan form area due to change  

in the amplitude of sine waves and the location the pivot position which is forty percent  aft the leading edge; 
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which is in close proximity of  the center of pressure. Figure 3 represents the results for Damping derivatives for 

full sine wave with amplitude being -0.1 and for half sine wave with amplitude 0.1 with pivot position h = 0.6. 

From the results it is seen that there is a continuous increase of Damping derivative linearly with angle of attack, 
nevertheless , this linear behavior limit themselves for different Mach number as discussed earlier. From the 

figure it is also seen that there is a continuous decrease in the magnitude of the Damping derivatives in the range 

of twenty one percent, thirteen percent, eleven percent and nine percent for the Mach numbers in the range 2 to 

2.5, 2.5 to 3, 3 to 3.5 and 3.5 to 4. The extremely low  values of the Damping derivatives are attributed due to 

combined effect of variation in the wing plan form area due to the change in the amplitude of sine waves,and the 

location of the  pivot position which is in the vicinity of the center of pressure leading to low values because of 

small moment arm of the wing mean aerodynamic chord is available. 

 

 
Fig. 3: variation of Damping derivative with angle of attack. 

 

 
Fig. 4: Variation of Damping derivative with angle of attack. 

 

Figure 4 shows the variation of damping derivative with angle of attack  for the amplitude of half sine 
wave as 0.1 and amplitude of full sine wave being -0.1for pivot position h = 1. The trend is similar as above and 

the trend is attributed due to the combined effect of variation in the wing plan form area due to change in the 

amplitude of sine waves and the location of the pivot position which is exactly at the trailing edge which is 

behind the center of pressure 

 

 
Fig. 5: Variation of damping derivative with angle of incidence. 
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Figure 5 presents the results for stiffness derivatives for full sine and half sine wave  with the amplitude 

being  0.1  and -0.1 with the pivot position h = 0.  From the results it is seen that the amplitude of full sine wave 

has been kept at a value of 0.1 and half sine wave has been kept to a fixed value of -0.1, it also observed that 
there is a continuous decrease in the magnitude of the Damping derivatives in the range of twenty two percent, 

eighteen percent, thirteen percent and eight percent for the Mach numbers in the range 2 to 2.5, 2.5 to 3, 3 to 3.5 

and 3.5 to 4.  It is seen that with the increase in the angle of attack the Damping derivative increases linearly, 

nevertheless, this linear behavior limit themselves for different Mach numbers. For Mach number M = 2, and 

this limiting value of validity is fifteen degrees, for Mach 2.5 & 3, it is twenty five degrees, whereas, for Mach 

3.5 & 4 it becomes thirty five degrees. This trend may be due to the combined effect of variation in the wing 

plan form area due to the sign change in the amplitude of half sine wave is -0.1 and the amplitude of full sine 

wave being 0.1 and due to this change in the shape of the wing as the amplitude of the full sine wave is kept 

constant at 0.1; whereas,  the location of the center of pressure will also change due to the change in the pressure 

distribution on the surface of the wing; and also, the pivot position which is exactly at the leading edge; which is 

far away from the center of pressure. 
 

 
Fig. 6. : Variation of Damping derivative with angle of attack. 

 

Figure 6 presents the results for Damping derivatives for full sine and half sine wave  with the 

amplitude being  0.1  and -0.1 with the pivot position h = 0. 4. From the results it is seen that they represent 

similar results and there is a continuous decrease in the magnitude of the Damping derivatives in the range of 

twenty three percent, fourteen percent, twelve percent and ten percent for the Mach numbers in the range 2 to 

2.5, 2.5 to 3, 3 to 3.5 and 3.5 to 4.  It is seen that with the increase in the angle of attack the Damping derivative 

increases linearly, nevertheless, this linear behavior limit themselves for different Mach numbers.  For Mach 

number M = 2, this limiting value of validity is fifteen degrees, for Mach 2.5 & 3, it is twenty five degrees, 

whereas, for Mach 3.5 & 4 it becomes thirty five degrees. These low values of the Damping derivatives are 

attributed due to the combined effect of variation in the wing plan form area due to the sign change in the 

amplitude of half sine wave and the amplitude of full sine wave kept constant at 0.1; whereas, the location of the 
pivot position which is forty percent aft of the leading edge; also happen to be in the close proximity of  the 

center of pressure. Figure 7 presents the results for Damping derivatives for full sine and half sine wave with the 

amplitude being  -0.1  and 0.1 with the pivot position h = 0. 6. From the results it is seen that they show the 

similar results as discussed earlier and there is a continuous decrease in the magnitude of the Damping 

derivatives in the range of nineteen percent, seventeen percent, twelve percent and ten percent for the Mach 

numbers in the range 2 to 2.5, 2.5 to 3, 3 to 3.5 and 3.5 to 4.  It is seen that with the increase in the angle of 

attack the stiffness derivative increases linearly, nevertheless, this linear behavior limit themselves for different 

Mach numbers. The extremely low values of the Damping derivatives are attributed due to the combined effect 

of variation in the wing plan form area due to the change in the amplitude of sine waves and the location of the 

pivot position which is in the vicinity of the center of pressure leading to the low values because of small 

moment arm available. 

 
Fig. 7. Variation of Damping derivative with angle of attack. 
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Fig. 8. Variation of Damping derivative with angle of incidence. 

 

Fig. 8 presents the results for Damping derivatives for full sine and half sine wave  with the amplitude 

being  0.1  and -0.1 with the pivot position h = 1.0.  From the results it is seen that they depict similar results and 

there is a continuous decrease in the magnitude of the stiffness derivatives in the range of twenty two percent, 

fifteen percent, thirteen percent and ten percent for the Mach numbers in the range 2 to 2.5, 2.5 to 3, 3 to 3.5 and 

3.5 to 4.  It is seen that with the increase in the angle of attack the damping derivative increases linearly, 

nevertheless, this linear behavior limit themselves for different Mach numbers. The extremely low values of the 

Damping derivatives are attributed due to the combined effect of variation in the wing plan form area due to the 
change in the amplitude of sine waves and the location of the pivot position which is exactly at the trailing edge; 

which is behind the center of pressure. 

 

 
Fig. 9. : Variation of Damping derivative with angle of attack. 

 

Figure 9 presents the results for damping derivatives for full sine and half sine wave  with the 

amplitude being  -0.1  and 0.1 with the pivot position h = 0.  From the results it is seen that they represent 

similar results and there is a continuous decrease in the magnitude of the damping derivatives in the range of 

twenty four percent, fifteen percent, twelve percent and eight percent for the Mach numbers in the range 2 to 

2.5, 2.5 to 3, 3 to 3.5 and 3.5 to 4.  It is seen that with the increase in the angle of attack the damping derivative 

increases linearly, but, this linear behavior limit themselves for different values at different Mach numbers. For 

Mach number M = 2, this limiting value of validity is fifteen degrees, for Mach 2.5 & 3, it is twenty five 

degrees, whereas, for Mach 3.5 & 4 it becomes thirty five degrees. The trend in the damping derivatives are 
attributed due to the combined effect of variation in the wing plan form area due to the change in the amplitude 

of sine waves and the location of the pivot position which is exactly at the leading edge; which is being far away 

from the center of pressure. 

 
Fig. 10. Variation of damping derivative with angle of attack. 
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Figure 10 presents the results for damping derivatives for full sine and half sine wave  with the 

amplitude being  -0.1  and 0.1 with the pivot position h = 0. 4. From the results it is seen that they represent 

similar results and there is a continuous decrement in the magnitude of the stiffness derivatives in the range of 
twenty two percent, sixteen percent, eleven percent and eight percent for the Mach numbers in the range 2 to 

2.5, 2.5 to 3, 3 to 3.5 and 3.5 to 4.  It is seen that with the increase in the angle of attack the stiffness derivative 

is linear, nevertheless, this linear behavior limit themselves for different Mach numbers as in case of the above 

figure.The change in the  values of the damping derivatives are attributed due to the combined effect of variation 

in the wing plan form area due to the change in the amplitude of sine waves and the location of the pivot 

position which forty percent aft of the leading edge; which is in the close proximity of  the center of pressure. 

 

 
Fig. 11. Variation of Damping derivative with angle of attack. 

 

Figure 11 presents the results for stiffness derivatives for full sine and half sine wave  with the 

amplitude being  -0.1  and 0.1 with the pivot position h = 0. 6. Here once again the results are on the similar 

lines as discussed earlier and there is a continuous decrease in the magnitude of the damping derivatives in the 

range of twenty one percent, thirteen percent, eleven percent and nine percent for the Mach numbers in the 

range 2 to 2.5, 2.5 to 3, 3 to 3.5 and 3.5 to 4.  It is seen that with the increase in the angle of attack the damping 
derivative increases linearly, nevertheless, this linear behavior is restricted for different Mach numbers. For 

Mach number M = 2, this limiting value of validity is fifteen degrees, for Mach 2.5 & 3, it is twenty five 

degrees, whereas, for Mach 3.5 & 4 it becomes thirty five degrees. The extremely low values of the damping 

derivatives are attributed due to the combined effect of variation in the wing plan form area due to the change in 

the amplitude of sine waves and the location of the pivot position which is in the vicinity of the center of 

pressure leading to the low values as a small moment arm is available. 

 

 
Fig. 12. Variation of Damping derivative with angle of attack 

 

Figure 12 presents the results for damping derivatives for full sine and half sine wave  with the 

amplitude being  -0.1  and 0.1 with the pivot position h = 1.0.  From the results it is seen that they show similar 

results and there is a continuous decrease in the magnitude of the damping derivatives in the range of twenty one 

percent, seventeen percent, fourteen percent and seven percent for the Mach numbers in the range 2 to 2.5, 2.5 

to 3, 3 to 3.5 and 3.5 to 4.  It is seen that with the increase in the angle of attack the damping derivative increases 

linearly, nevertheless, this linear behavior limit themselves for different Mach numbers.  For Mach number M = 

2, this limiting value of validity is fifteen degrees, for Mach 2.5 & 3, it is twenty five degrees, whereas, for 

Mach 3.5 & 4 it becomes thirty five degrees. The trend in the damping derivatives are attributed due to the 
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combined effect of variation in the wing plan form area due to the change in the amplitude of sine waves and the 

location of the pivot position which is exactly at the trailing edge; which is behind the center of pressure. 

 

IV.  Conclusions 
From above discussions we can draw the following conclusions; 

 It is observed that the magnitude of the damping derivative is continuously decreasing with the increase in 

the Mach number for all the Mach number in the range from M = 2 to 4. 

 It is also observed that when we change the pivot position from h = 0, 0.4, 0.6, and 1, the damping 

derivative decreases throughout for the present range of Mach numbers, wing plan form area and the pivot 

position. 

 It is seen that with the increase in the angle of attack the damping derivative increases linearly, nevertheless, 

this linear behavior limit themselves for different Mach numbers. For Mach number M = 2, this limiting 
value of validity is fifteen degrees, for Mach 2.5 & 3, it is twenty five degrees, whereas, for Mach 3.5 & 4 it 

becomes thirty five degrees. 

 Whenever, the amplitude of the full and half sine wave was varied from ± 1 and ± 2; which results in 

change in the shape of the wing. The convexity in the shape of the wing results in increase of the damping 

derivative  

 Results have been obtained for supersonic flow of perfect gases over a wide range of angle of attack, 

various plan form geometry of the wing and the Mach numbers in the range from 2 to 4. The effect of real 

gas, leading edge bluntness of the wing, shock motion, and secondary wave reflections are neglected. 
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