Existence of Semi Primitive Root Mod P^a

Dr. K.Vijayalakshmi, Loyola Academy Degree & P.G.College, Old Alwal, Secunderabad, Telengana, India.

I. Introduction

We know that the smallest positive integer f such that $a^f \equiv 1 \mod m$ is called the exponent of 'a' modulo m and is denoted by $\exp_m a$. We say that 'a' is a semi-primitive root mod m if $\exp_m a = \frac{\phi(m)}{2}$. We proved that

there exists a semi-primitive root for mod m when $m = p^{\alpha}$, $2 p^{\alpha}(for\alpha > 2)$, $2^2 p^{\alpha}$ and $2^{\alpha}if \alpha > 3$. Also it was established that there exists a semi-primitive root for mod m when $m = p_1p_2$ where p_1 and p_2 are distinct odd primes and at least one prime is of the form 4n+3. In this paper we discuss the existence of semi primitive root mod p^{α} whenever it exists for mod p. we have If 'a' is a semi primitive root mod p^2 then

$$\frac{\phi(p^2)}{2} = \frac{p(p-1)}{2} \ge \frac{p-1}{2} \Rightarrow a^{\frac{p-1}{2}} \ne 1 \text{ modp}^2.$$
 Hence the relation $a^{\frac{p-1}{2}} \ne 1 \text{ modp}^2$ is a necessary condition

for a semi primitive root a mod p to be a semi primitive root mod p^2 . Conversely we prove that when 'a' is a

semi primitive root mod p then a is also a semi primitive root mod p^{α} for $\alpha \ge 2$ if $a^{\frac{p-1}{2}} \ne 1$ mod p^2 . To prove the main result we prove the following lemma.

Lemma: Let 'a' be a semi primitive root mod p such that

$$a^{\frac{p-1}{2}} \neq 1 \mod p^2. \text{ Then } a^{\frac{\phi(p^{\alpha-1})}{2}} \neq 1 \mod p^{\alpha} \text{ for } \alpha \geq 2.$$

Proof: We prove the lemma by induction on α .

If $\alpha=2$ then $a^{\frac{p-1}{2}}\neq 1$ modp².i.e the result is true for $\alpha=2$ Suppose that the result is true for α then

By Euler's theorem we have

$$a^{\phi(p^{\alpha-1})} \equiv 1 \pmod{p^{\alpha-1}} \Rightarrow \left(a^{\frac{\phi(p^{\alpha-1})}{2}}\right)^{2} \equiv 1 \pmod{p^{\alpha-1}}$$

$$\Rightarrow (a^{\frac{\phi(p^{\alpha-1})}{2}} + 1)(a^{\frac{\phi(p^{\alpha-1})}{2}} - 1) \equiv 0 \pmod{p^{\alpha-1}}$$

$$\Rightarrow a^{\frac{\phi(p^{\alpha-1})}{2}} \equiv -1 \pmod{p^{\alpha-1}} \text{ since } a^{\frac{\phi(p^{\alpha-1})}{2}} \neq 1 \pmod{p^{\alpha-1}}$$

$$\Rightarrow p^{\alpha-1} \mid (a^{\frac{\phi(p^{\alpha-1})}{2}} + 1)$$

$$\Rightarrow a^{\frac{\phi(p^{\alpha-1})}{2}} = -1 + kp^{\alpha-1}$$

Rising to the powers of p on both sides we get

$$a^{\frac{p.\phi(p^{\alpha-1})}{2}} = (-1 + kp^{\alpha-1})^p$$

$$\Rightarrow a^{\frac{\phi(p^{\alpha})}{2}} = (-1)^{p} + kp^{\alpha} + k^{2} \frac{p(p-1)}{2} p^{2(\alpha-1)} + \dots$$

$$\Rightarrow a^{\frac{\phi(p^{\alpha})}{2}} \equiv (-1 + kp^{\alpha}) \pmod{p^{\alpha+1}}$$

$$\frac{\phi(p^{\alpha})}{}$$

If possible suppose that $a^{\frac{\phi(p^{\alpha})}{2}} \equiv 1 \pmod{p^{\alpha+1}}$

Then
$$-1+kp^{\alpha}\equiv 1 \pmod{p^{\alpha+1}} \Rightarrow p^{\alpha+1}$$
 divides $kp^{\alpha}-2 \Rightarrow p$ divides $kp^{\alpha}-2 \Rightarrow p$

 \Rightarrow p divides k.p^{\alpha} and p divides $kp^{\alpha} - 2 \Rightarrow$ p divides 2 which is a contradiction.

$$\phi(p^{\alpha})$$

Therefore $a^{-2} \neq 1 \pmod{p^{\alpha+1}}$. Hence the result is true for $\alpha+1$.

Thus by induction the result is true for all $\alpha \ge 2$.

Theorem: Let p be an odd prime, then we have

- (i)If a is a semi primitive root mod p, then a is also a primitive root mod p^{α} for every $\alpha \ge 2if$ and only if $a^{\frac{p-1}{2}} \neq 1 \mod p^2$.
- There is at least one semi primitive root mod p such that $a^{\frac{p-1}{2}} \neq 1 \mod p^2$. (ii)

Proof: Suppose a is a semi primitive root mod p.

If a is a semi primitive root mod p^{α} for every $\alpha \ge 2$ then in particular it is semi primitive root mod p^2 . And hence

$$a^{\frac{p-1}{2}} \neq 1 \text{ modp}^2.$$

Conversely suppose $a^{\frac{p-1}{2}} \neq 1 \mod p^2$.

Now we show that 'a' is a semi primitive root for mod p^{α} .

Suppose
$$\exp_{p^{\alpha}} a = t$$

We prove that
$$t = \frac{\phi(p^{\alpha})}{2} = \frac{p^{\alpha - 1}(p - 1)}{2}$$

Since $a^t \equiv 1 \pmod{p^{\alpha}}$ we have $a^t \equiv 1 \pmod{p}$

Therefore
$$\frac{\phi(p)}{2}$$
 divides t. \Rightarrow t = q. $\frac{\phi(p)}{2}$

Now t divides
$$\frac{\phi(p^{\alpha})}{2} \Rightarrow q$$
. $\frac{\phi(p)}{2}$ divides $\frac{\phi(p^{\alpha})}{2}$

$$\Rightarrow$$
 q. $\frac{p-1}{2}$ divides $\frac{p^{\alpha-1}(p-1)}{2}$ \Rightarrow q divides $p^{\alpha-1}$ \Rightarrow q= $p^{\beta-1}$ where $\beta \le \alpha-1$.

Now it is sufficient to prove $\beta = \alpha - 1$.

Suppose $\beta < \alpha - 1$. Then $\beta \le \alpha - 2$.

Now
$$t = \frac{p^{\beta}(p-1)}{2} | \frac{p^{\alpha-2}(p-1)}{2} \Rightarrow t = \frac{p^{\beta}(p-1)}{2} | \frac{\phi(p^{\alpha-1})}{2}$$

$$\phi(p^{\alpha-1})$$

 $a^{\frac{1}{2}} \equiv 1 \mod p^{\alpha}$ which is a contradiction by above lemma.

Therefore p =
$$\alpha$$
-1. Hence $t = \frac{\phi(p^{\alpha})}{2} = \frac{p^{\alpha-1}(p-1)}{2}$

Thus a is a semi primitive root mod p^{α} .

Proof of (ii): If $a^{\frac{p-1}{2}} \neq 1 \mod p^2$ then by (i) a is a semi primitive root mod p^{α} .

Suppose
$$a^{\frac{p-1}{2}} \equiv 1 \mod p^2$$

$$p-1$$

Let x be any other semi primitive root satisfying $x^{\frac{p-1}{2}} \neq 1 \mod^2$

And
$$x = a + p$$

$$x^{\frac{p-1}{2}} = (a+p)^{\frac{p-1}{2}} = a^{\frac{p-1}{2}} + \frac{p-1}{2} \cdot a^{\frac{p-3}{2}} \cdot p + \frac{p-1}{2} \cdot \frac{p-3}{2} a^{\frac{p-5}{2}} \cdot p^2 + \dots$$

Therefore
$$x \equiv a^{\frac{p-1}{2}} - \frac{p}{2} \cdot a^{\frac{p-3}{2}} \mod p^2$$
.

If $\frac{p}{2} \cdot a^{\frac{p-3}{2}} \equiv 0 \mod p^2$ then $a^{\frac{p-3}{2}} \equiv 0 \mod p^2$ which is a contradiction since 'a' is a semi primitive root mod p.

Therefore
$$x^{\frac{p-1}{2}} \neq 1 \mod p^2$$

Hence there exists at least one semi primitive root mod p^{α} for $\alpha \ge 2$.

Theorem: If 'a' is a primitive root mod p ad p = 4n + 3 then -a is a semi primitive root mod p.

Proof: a is a primitive root mod $p \Rightarrow a^{p-1} \equiv 1 \mod p$

$$\Rightarrow (-a)^{p-1} \equiv 1 \mod p$$

$$a^{p-1} \equiv 1 \mod p \Rightarrow (a^{\frac{p-1}{2}} - 1)(a^{\frac{p-1}{2}} + 1) \equiv 0 \mod p$$

$$p-1$$

 $\Rightarrow a^{\frac{P-1}{2}} \equiv -1 \mod p$ Since a is a primitive root mod p.

$$\Rightarrow (-a)^{\frac{p-1}{2}} \equiv 1 \mod p \text{ since } \frac{p-1}{2} = 2n+1 \text{ is odd.}$$

Let
$$\exp_p(-a) = f$$
 Then $f \mid \frac{p-1}{2}$.

If
$$f < \frac{p-1}{2}$$
 then $2f < p-1$

Since $\exp_p(-a) = f$ we have $(-a)^{2f} \equiv 1 \mod p$. $\Rightarrow a^{2f} \equiv 1 \mod p$. This is a contradiction since a is a primitive root mod p.

Therefore
$$f = \frac{p-1}{2}$$
.

Hence -a is a semi primitive root mod p.

Also it is clear that if 'a' is a semi primitive root mod p then $\exp_p(-a) = \frac{p-1}{4}$ where p is a prime of the form 4n + 1 and n is odd.

References

- [1]. [2]. [3].
- Introduction to Analytic Number Theory, Springer International Student Edition.

 An Introduction to Theory of Numbers by Ivan Niven, Herbert S. Zuckerman Wiley Eastern Limited. Elementary Number theory by David M .Burton.