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Abstract: In order to look into the transient behavior of vibrating systems, the Krylov-Bogoliubov-Mitropolskii
(KBM) method is extensively used. The method was initially devised to obtain the periodic solutions of second
order nonlinear differential systems with small nonlinearities. In this article, the method has been modified to
investigate the solutions of fifth order more critically damped nonlinear systems. A fifth order more critically
damped nonlinear differential system is considered and asymptotic solutions are studied when the triply
eigenvalues are small and the other two equal eigenvalues are large. The results obtained by the presented
modified KBM method agree with those obtained by the fourth order Runge-Kuttamethod satisfactorily.
Keywords: KBM, nonlinearity, more critically damped system, asymptotic solution, eigenvalues

I.  Introduction
The Krylov-Bogoliubov-Mitropolskii (KBM) ([1],[2]) method is devised to obtain the approximate
solutions of weakly nonlinear systems. Popov [3] extended the method to damped oscillatory nonlinear systems
despite the fact that it was initially designed for approximating periodic solutions of second order nonlinear
differential systems with small nonlinearities. Murty and Deekshatulu [4] examined over-damped nonlinear
systems using Bogoliubov’s method. Sattar [5] found an asymptotic solution of a second order critically damped
nonlinear system. Shamsul [6] suggested a technique for obtaining approximate solutions of second order over-
damped and critically damped nonlinear systems. Osiniskii [7] studied solution of third order nonlinear systems
by bogoliubov’s method imposing some restrictions on the parameters. As a result, the solution was over-
simplified and presented incorrect results. Mulholland [8] removed these restrictions imposed by Osiniskii and
obtained desired solutions. Bojadziv [9] considered solutions of nonlinear systems by transforming it to a three
dimensional differential system. Shamsul and Sattar [10] presented a unified KBM method for solving third
order nonlinear system. Sattar [11] investigated solutions of third order over-damped nonlinear systems.
Shamsul [12] proposed solutions of third order over-damped systems whose unequal eigenvalues are integral
multiple. Shamsul and Sattar [13] presented a unified KBM method for obtaining approximate solutions of third
order damped and over-damped nonlinear systems. Kawser and Ali Akbar [14] explored an asymptotic solution
for the third order critically damped nonlinear system in the case for equal eigenvalues. Kawser and Sattar [15]
propounded an asymptotic solution of a fourth order critically damped nonlinear system with pair wise equal
eigenvalues. Akbar and Tanzer [16] extended the KBM method for solving the fifth order over-damped
nonlinear systems with cubic nonlinearity.
In this study, we have investigated the solution of fifth order more critically damped systems in the
case of smaller triply repeated roots. For different sets of initial conditions as well as for different sets of
eigenvalues the solutions show excellent coincident with the numerical solutions.

Il.  The Method
Consider a fifth order weakly nonlinear ordinary differential system

X+ KXY + KX + KK+ KX+ KX = —¢ F (X, %, %, %, x") @)

Where X" denotes the fifth derivative, X" denotes the fourth derivative of x and over dots are used to denote the
first, second and third derivatives of x with respect to t; ki, ky, ks, K4, Ks are characteristic parameters, ¢ is a small
parameter and f (x) is the given nonlinear function. As the equation is fifth order, so there are five real negative
Eigen values, and three of the Eigen values are equal (for more critically damped). Suppose the Eigen values are
A, A, A, -1, - n. Whene =0, the equation (1) becomes linear and the solution of the corresponding linear
equation is

X(t,0) = (a, + byt +c,t?)e ™™ +(d, +h,t)e ™ @)

Whered,, by, C,, d,, h, are constants of integration.

Where ¢ #0 following Shamsul [17] an asymptotic solution of the equation (1) is sought in the form
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X(t, &) = (@a+bt+ct?)e™ +(d +ht)e ™ +&u,(a,b,c,d,h,t) +... (3)

Where a, b, ¢, d, h are the functions of t and satisfy the first order differential equations
a=¢eA(a,b,c,d,ht)+..

b=¢B,(a,b,c,d,ht)+...
¢=¢C(a,b,c,d,ht)+... (4)
d=¢D,(a,b,c,d,h,t)+...
h=gH,(a,b,c,d,h,t)+...

Now differentiating (3) five times with respect to t, substituting the value of x and the derivatives X" , Xi", X,

X, X in the original equation (1) utilizing the relations presented in (4) and finally extracting the coefficients of
€, we obtain

—M

2 2
(& Ai 0 ? +3%+a—(§1 8Clt+GCl)+
Gt o ot ot
e "(D+A-p)’ ( +2H, + oH 1t)+(D+/1)3(D+,u)2ul: 5)

- f°(a,b,c,d,h,t)

where f©(a,b,c,d,h,t) = f(x, % X X,x") and x(t,0) = (a, + byt +c,t*)e ™ +(d, + hit)e ™

We have expanded the function f @ in the Taylor’s series (Sattar [5], Shamsul [18], Shamsul and Sattar [13])
about the origin in power of t. Therefore, we obtain:

fO :Z{ t* > F,(abc,d, h)e‘('““‘)‘} (6)
q=0 i,j,k=0
Thus, using (6), the equation (5) becomes

Following the KBM method, Murty and Deekshatulu [4], Sattar [5], Shamsul and Sattar ([10], [13]) imposed the
condition that U; does not contain the fundamental terms of f (0). Therefore, equation (7) can be separated for
unknown functions Ay, By, Cy, Dy, H; and u; in the following way:

aA& LB o8 C o, OC

e " (D+u—-A t+3—L+—2t°+6—Lt+6C,)+
(D+u—A2)° ( e pra p 1)
e"‘t(D+}u—,u)3(6—t1+2H1 agllt)+(D+/l) (D + p)°u, )
—Z{ t* > F,(ab,cd,hye <”~+w>t}
= i,j,k=0
62A1 o°B 0B, 6 C oC
e"(D+u—-A2 Lt+3—2+ L2 +6—Lt+6C)+
( H= ) ( atz ot 8t ot 2
e"‘t(D+/1—y)‘°’(—1+2H1 6H1t)_ (8)
ot ot
1 e
_Z{ te Z (a b,c,d,h)e” (M+Jﬂ)t}
= i,j,k=0
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And

0

(D+/1)3(D+ﬂ)zul=‘z{tq i Fq,k(a,b,c,d,h)e(WW} ©)
i,jk=0

q=2

Now equating the coefficients of t°,t*,t? from equation (8), we obtain

2
em(D+/1—/1)2(a 'g‘l+3aBl-+6C1)+e*”‘(D+,1_ﬂ)3(5D1 +2H)
ot ot -
> (10)
- z F,«(a,b,c,d, hye (41
k=0
2
e’ﬂt(D'f'ﬂ_ﬂ,)z(a_El_FG%)_{_e*;tt(D_‘r/l_lu)?)%
ot ot po
> (1)
- Z FlK(a,b,C,d,h)e*(i/“iﬂ)t
ijk=0
—at 5 aZCl © o
e (D+u-A1) ?:— z F.«(ab,c,d, h)e 12)
i,j,k=0

Here, we have only three equations (10), (11) and (12) for determining the unknown functions A, By, C; , D;
and H; Thus, to obtain the unknown functions A;, B;, C;, D; and H; we need to impose some conditions
(Shamsul[19], [20], [21]) between the eigenvalues. Different authors imposed different conditions according to
the behavior of the systems; such as Shamsul [12] imposed the condition

LA+, A+ i A S+ 4+ 1) (A + A, +..+ 4) - In this study, we have investigated solutions for

the case p >> . Therefore, we shall be able to separate the equation (12) for unknown functions C; and solving
them for B; and H; substituting the values of C, into the equation (11) and applying the condition p >> A: we
can separate the equation (11) for two unknown functions B; and Hj; and solving them for A; and D;. Since

a,b,c,d,ﬁare proportional to small parameter, they are slowly varying functions of time t and for first

approximate solution, we may consider them as constants in the right hand side. This assumption was first made
by Murty and Deekshatulu [22]. Thus the solutions of the equation (4) become
t

a=a0+gj/s&(a,b,c,d,h,t)dt

0

t
b=b,+&[B,(ab,c,d,ht)t
0

t
c=c0+gjcl(a,b,c,d,h,t)dt
0 (13)

t

d =d,+&[Dy(a,b,c,d,ht)dt
0
t

h=h, +gj H,(a,b,c,d,h,t)dt
0

Equation (9) is a non-homogeneous linear ordinary differential equation; therefore, it can be solved by
the well-known operator method. Substituting the values of a, b, ¢,d,h and U, in the equation (3), we shall get
the complete solution of (1). Therefore, the determination of the first approximate solution is complete.

I11.  Example
As an example of the above method, we have considered the Duffing type equation of fifth order
weakly-nonlinear oscillatory system:
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X'+ KX+ K, X + KX+ K, X+ Ko x = —ex (14)
Comparing (13) and (1), we obtain f (X, X, X, X, x") = x®
f @ ={(a® +3a’bt + 3ab’t* + b’ + 3a’ct? + 6abct® + 3b%ct* + 3ac’t” +3bc’t® +
ct®)e** +3(a’d + 2abdt +b*dt® + 2acdt® + 2bcdt® + ¢*dt* + a’ht + 2abht? + )
b?ht® + 2acht® + 2bcht* + ¢c?ht®)e @+ 4 3(ad? + bd?t + cd *t? + 2adht + 2bdht?
+2cdht® +ah’t? +bh?t® + ch?t*)e 24" 4 (d® + 3d *ht + 3dh’t? + h%%)e**}

For example equation (14), the equations (9)-(12) respectively become

e (D+u—-2)%(

2
a@t?i +3%31+6C1) +e"‘(D+/1—y)3(%+2Hl): —a’e

_ 3a2de—(2/1+y)t _ 3ad 2e—(/1+2/1)t _ d Se—3,ut

(16)

3 0H

e (D+u—A)%( ?1 = —3a’be*" —3(2abd + a*h)

0B, .oC,.

+6—Y)+e " (D+A-
ot ot : ( )
ef(21+,u)t _ 3(bd 2 + 2adh)ef(/1+2/l)t —3d 2he—3,ut

(17)

2
_5&(231 =-3(ab’ +a’c)e** —3(b°d + 2acd + 2abh)e "

—3(cd? + 2bdh + ah?)e **24" _3dh%e 34

—-At 2
e (D+u—-A4) 18)

And
(D +2)*(D + w)*u, ={(0° + 6abct® +3b*ct* + 3ac’t” + 3bc’t® +c’t®)e*
H) Y

+3(2bcdt® + c’dt* + bht® + 2acht® + 2bcht* + c*ht®)e @*) 1 3(2cdht?® + (19)
bh?t® +ch’t*)e 29" L Wit3%e 3}
Solution of equation (18) is

C, =1, (ab® +a’c)e™™ +1,(b°d +2acd + 2abh)e " +1,(cd? + 2bdh + ah*)e >

2 —(3u-A)t
+1,dh%

3 3 3 3
Wherel =——— > p o3 o __ S o __ 3
O T T 2 (u=3A) 2 a2 (u+ A 0 A (ut A 4EBu-A)

(20)

oC
Now differentiating equation (20) with respect to t and putting the value of a_tl in equation (17) and solving

B, and H; imposing the condition p >> A, we get
B, =ra’be** +r,(ab’ +a’c)e** (21)
3 9

Where [ =—————> = >
T T A (=3 T A% (u-3A)

And
H, = p,(2abd +a’h)e ™" + p,(bd* +2adh)e **" + p,d*he** + p,(b*d +

22
2acd + 2abh)e 2 + p, (cd? + 2bdh + ah?)e **t 1 p dh?e 2 (22)
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3 3 3 9
Wh - _p=-"" p=——""" _9g=-—"7
Y T I S VTS W S I Y0 W) AL TP e

9 9
T8 G T uGu- )

oB
Again, putting the value 8_'[1 , C1and H; in Eqg. (10) and solving A; and D; and imposing the condition p >> A

Ps =

we get

A =qga’e " +q,a’be ™ +(q, +q,)(@°c +ab*)e " (23)

Where G =——— g Z—%' O :_%, G Z%
42°(1u—34) 847 (1 —34) 81 (u—-31) 81 (u—31)

And

D, = na’de”* +n,ad’e " +n.d% " +n,(b*d + 2acd + 2abh)e** +n,(cd’ + 2bdh
+ah®)e” "+ n.dh?e** +n, (2abd +a*h)e** +n, (bd* + 2adh)e ") + n,d *he > (24)
+n,(b°d + 2acd +2abh)e ™ +n,,(cd? + 2bdh +ah?)e ") 4+ n ,dh’e >

3 3 1 9

Wheren =———— N=——————— Ny=————— N, =————,
22(A+ 1) 8 (A+ 1) 2uBu—A) A(A+ 1)
. 9 oo 9 i.__ 8 n__ 3
T 16 (A+u) 0 u@u-AY T 284+ Y 8t (A+p)
3 9 9 9

nn=-——————  _n=-—-—_n-=--——_n =—-
TGy T G T A Gy T (-3
The solution of the equation (19) for u; is
u, = e {(b* + 6abc)(mt® + m,t* + mit + m,) + (b’c +ac’)(myt* + mt> + m,t* +
Mgt +my) +bc? (met® +myt* +mt* +mt? +m,t+mg)+c’(myt® +mt° +

mygt* +mt® + myt? +my,t +my, ) +e @' (2bch + 2ach +bh) (m,t* +m,,t°

(25)
+ Myt +m,) +(cd + 2bch)(m,t* +myt® +mygt* + myt +m,, ) +c*h(mg,t® + myt*
+ My t? + mt? + myt + my, )3+ e (2cdh + bh?) (Mgt + mygt? + m,t+m,, ) +
ch?(m,t* + mt° +m,t? +m,t +m, ) }+eh’(m,t° +m,gt? +m,t+m,,)
Where
67311 3e73/1t 3 2
=, m=———— («—+ ,
s 8°(BA—u)?' ? 8A%(3A—u)? (2/1 3/1—;1)
3e 3 3 3
My =—"—"3 (57t 2t ).
A3 (BA—u)? 227 (BA—p)?  AGBA—u)
3 5 4 9 3 3
m, =—-; 75+ 3t 2t 2 ) Mg = ——,
AP (BA—u)? 4% (BA—pu)  2A(BA-pu)?  A2(3A—p) 8% (u—32)
3 3 2 9e M 3 3 3
Mg =gz (5, 7t ) my =3 7 (G5t 7+ ).
223 (u—34)7% 22 34—u 223 (u—32) 227 (3A—u)?  ABL-p)
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mg; =

m, =

My

M,

My

My,

My

My

Mg

My

m20

m21

m22

+ +
222(3A—- )" 42°(3A—-p)°

m,=————,m, = —+
B (u+ AT A (u+ A A A+u

25

26

m,=——— m,= ~ 4
A (w+ AR 2w+ A) A A+

9e % 5 4 9 3
A° —3&2(4/13+ 34— 3+2/13ﬂ,— 2+/12 31— ),
(1=34) G2y (32— ) Sy
9e 15 5 9 6 20
2/3( _3& 2 ( 4 + _ 4 + 2 _ 2 + _ 3 + 3 _ )'
Y7, )" 1647 (BA-wu)" 22°(BA-wu) AGBA-wu) A°GBA-u)
3 1564 3 2
8P =31y M T e (u—s 22 B
p1—34) (u=31)" 24 3A-u
B 15¢4 ( 3 N 3 N 3 )
2°(u—32)* 247 (BA-u)® ABA-p)"
45¢%* 5 4 9 3
=2&3( _3/12( 3+ _ 3+ _ 2+ 2 _ )’
pu=32)" 84" (BA-p) 24BA-p)° A°(BA-u)
45¢%* 15 5 5) 6 9
:/13( _3/12( 2t T ooz, et 3t o a, 7):
7, )" 164" (BA—-pw)" 24°CBA—w)° ABA-wu)® 2A°(BA-w)
457" 21 6 15 15 15 6
=ﬂ,3( _322(32/154_ 31— 5+ 4 _ + _ 4+ 3 _ 2+ 2 _ 3)’
u—32) BA-w) 8A'(BA-pu) 2ACBA-p)" 41°CBA-p)” A°(Ci-u)
e73/1t 3e73lt 3 2
eru-ay ™ T ar -3 22 3
pu—34) (u—=34)" 24 31-pu
B 1574 ( 3 N 3 N 3 )
A% (u—-32)° 24° (BA-wp)? ABA-w)’’
15¢* 5 4 9 3
T8, a2 (3t 3T YR T ),
A(u—-32)" 412 (BA-pw)’ 2AC@B1—-w) A°(GBA-u)
45¢%* 15 5 9 6 20
=3, 7t Tt o i, ae T e T 3, ),
A (u—34)° 164" (BA—-pw)" 24°BA—pw)° ABA—w)> A°(Bl—pw)
90" 21 6 15 6 15 15
T3, 7 (st T Y I T T Y I YR Y ),
A (u—=34)" 324> (BA—-wu)y 41BA-—wu) A°BA-w) 2A(31-wu)" 81 (B1-—p)
90e** 7 7 21 9 45
T8, a2 (5t Ty ARV IRy
A(u—-34)" 164° (BA-pw)” 16A4°GBA-pu) ABA—-wu) 16A°(BA-w)
15

36—(21+p)t

),

Qg A+t 1 3

),

Qe @A ( 3 3 6 )
25 (u+ AP 4% AA+u) (A+wp)?
Qe G4t q 6 10 9
=— (5 + =+ s+ — ).
25 (u+ A2 228 AA+p)? (A+wp)? 4AP(A+p)
3e—(2/l+/1)t 3e—(2/1+;1)t 1 3

ge—(21+,u)t 3

).
3 6

m,, = + + :
223w+ AP AR A(A+ ) (mu)z)
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18e G4t q 6 10 9
My, =— 3 ( 3T 7t st 3 )
A(u+A) 227 A(A+p)” (A+up)>° 41°(A+uw)
18?1t 15 10 15 3 9
my =— 3 ra 3T i 3 + 2 2 )'
A2(u+2)° 164 24+ (A+p)t 2234 +u) 22%(A+ )
- 3e—(2}.+,u)t o 15e—(2}.+/1)t 1 . 3 )
oAt (u+ AT A (w+ A A A+
15e @4t 3 3 6
my, =— 3 ( >t + 2)’
A(u+A) 41 A(A+n) (A+up)
45 At q 6 10 9
My =— 3 3T >t 3t 32 )
A (u+A) 22 A(A+p) (A+wp)>° 41 (A+uw)
90e 15 10 15 3 9
My =— 3 i 3T 7t 3 + 2 2 )’
A2(u+2)°1624%  A(A+u)’  (A+p)t 223(A+u) 2A%(A+ )
9Qe At 3 15 15 21 15 3
my; =— 3( 5T 7T 4 + 5T 2 3 T3 2)’
A2(u+2)°162°  AA+p)* 162°A+u) (A+p)° 22%(A+u)® A3(A+p)
I 3e—(ﬂ.+2,u)t . B 9e—(ﬂ.+2,u)t ( 3 N 2 )
B8t (u+A)? T 8L (u+A)? 24 A+u
gg (A2t 3 3 3
Mo = iy 22 T st 2
w(u+A) (A+n) (A+n)
ge 2t g 4 3 9
M= e e e 2oan 2
o (p+A) (A+ ) (A+n) (A+ )
m B 3e—(/1+2,u)t = 3e—(/1+2/1)t 3 . 2 )
U8 ()R 21w+ A)? 24 A+
gg (A2t 3 3 3
M = iy 22 T s 2
w(u+A) (A+u) (A+w)
S 9g 42t 5 4 8 9 )
TP (A A A+ AP(A+p) 224+ p)?T
Qe “+2mMt 15 5 5 6 9
My =— 2 7t st o3 + 353 2 ),
w(u+A) 1647 (A+p)' 20 (A+u) AA+u)° 24°(A+p)
o e I e 3 1)
V7R VTRV I VTS < TTEY ) S TRy AT
3e% 6 3 3
My = 2 3 2t 2 T )’
2p°Bu—A4) QBu-4)" 4u” u@Bu-2)
K ( 10 1 9 6 )

mg, = + + +
020 (Bu—A) (Bu—A) 24 ApP(Bu—A)  uBu-A)

Substituting the values of A;, By, C;, D; and H; and from equation (23), (21), (20), (24) and (22) into equation
(4), we obtain:

a=¢{ga’e " +qg,a’be " +(q, +q,)(@°c+ab*)e >}
b= &{ra’e " +r,(ab? +a’c)e "}
¢ = &{l, (ab® +a’c)e ™ +1,(b*d + 2acd + 2abh)e " +1,(cd? + 2bdh +ah?)e > +1,dh%e '}

—2At
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d = e{n,a’de™" +n,ad’e " 4 n,d% > +n,(b’d +2acd + 2abh)e " +n,(cd? + 2bdh
+ah?)e " 4 n.dh’e** +n,(2abd +a*h)e ** +n,(bd* + 2adh)e **** 4 n,d*he 2

+n,,(b*d +2acd + 2abh)e** +n,,(cd* + 2bdh + ah?)e ***)* 4 n ,dh’e >}
(26)
h = &{p,(2abd +a*h)e** + p,(bd? + 2adh)e *** + p.d*he " + p,(b?d + 2acd +

2abh)e " + p,(cd? + 2bdh + ah®)e”***" + p,dn’e >}

Here all of the equation of (26) have no exact solutions, but since a,b,c,d,h are proportional to the small

parameter &€ , so they are slowly varying functions of time t. Consequently, it is possible to replace a, b, ¢, d, h
by their respective values obtained in linear case (i.e., the values of a, b, ¢, d, h obtained when & = 0) in the right
hand side of equation (26). This type of replacement was first introduced by Murty and Deekshatulu ([4], [22])
to solve similar type of nonlinear equations.

Therefore, the solution of (26) is:
1_ e—Zit 1_ e—Zit 1_ e
+,a°h +(g5 +0,)(@°c+ab?)

21t

a=a,+e{ga’ ¥

21t

. 1_ 2t
b=h,+ g{rlasz +1,(ab* +a’c)

1-e

}

1_ —2At —ei(ﬂﬁu)t

1, (b%d + 2acd + 2abh) 128
A+u

+1,(cd? +
@7)

¢ =c, +&{l,(ab® +a’c)

_ p—2ut _ A~ @Bu=At
SR e
3u—A4

1— -2t 1— e—(ﬂ-%—/l)t _ p—2ut
+n,ad’ +n,d°®

24 A+u
—(A+p)t —2ut 1_ e—ZM

+n,(cd? +2bdh+ah2)l_e—+ nydh? =— +n,(2abd +a’h)
A+u 24 24

2bdh + ah?)

d =d, +&{na’d +n,(b?d + 2acd + 2abh)

1_ elet

—(A+pu)t _ p—2ut

+n8(bd2+2adh)1_;—+ nyd’h?
+

1_e—2M
+n,,(b’d +2acd + 2abh)

2 2 1—g (e 2
n,(cd”+2bdh+ah®)—————+n,,dh
A+ H

l _ 6721'[
21

—(A+p)t —2ut

h=h, +{p,(2abd +a’h) +p, (bd? +2adh)1‘/f—+ p,d2h=—" 4 p,(b%d +
+ 4

_ a-2at

24
Hence, we obtain the first approximate solution of the equation (14) as:
X(t, &) = (a+bt+ct?)e™ +(d +ht)e ™ + su

_ a(A+u)t _ a—2ut
4 po(cd? + 2bdh+an?) 128 L p gn2 178
A+u

2acd + 2abh) ! }

1(28)
wherea, b, ¢,d and h are given by the equation (27) and U, is given by (25).

IV.  Figures and Tables
In order to test the accuracy of an approximate solution obtained by a certain perturbation method, we

have compared the approximate solution to the numerical solution.We have computed X(t, 8) using (28), in

which a, b, ¢,d and h are obtained from (27) and U, is calculated from equation (25). The result obtained from
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(28) for various values of t, and the corresponding numerical solution obtained by a fourth order Runge-Kutta
method is presented in the followingFig.1,Fig.2,Fig.3 and Fig.4respectively.

0.9 -
Perturbation Result

0.8
\ - - -- Numerical Result
0.7 4\
0.6 1 |
05 4 |

x \

\

04 4 \
0.3 - \

0.2 - \\\

Figure 1: Comparison between perturbation and numerical results for z=3.6,4=0.95ande =0.1
with the initial conditionsa, =0.45, by =0.25, ¢, =0.15, d, =0.30, h, =0.25.

07 A Perturbation Result
N - - -~ Numerical Result

\
06 -\
0.5 4

x0.4 - \

0.2 A N

0.1 - T

Figure 2: Comparison between perturbation and numerical results for z=3.5, 1=0.9and¢ =0.1
with the initial conditions a, = 0.45, b, = 0.35, ¢, =0.10, d, =0.25, hy =0.20.
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0.8 -

0.7 Perturbation Result
' - === Numerical Result

0.6 !

0.5 4
x0.4 - \

0.3 - \

0.2 A haN

0'1 _ —«——;—g——;———g——:‘——~' o

0 T T T T ] 1

0 1 2 3 4 5 6
t

Figure 3: Comparison between perturbation and numerical results for z=3.2, A =0.8 ande =0.1
with the initial conditions ay = 0.40, b, =0.30, ¢, =0.10, d, =0.25, h; =0.15.

0.6 -

Perturbation Result

0.5 4\ - === Numerical Result

0.4 - \

x0.3 - \

0.2 - N

- Ss = —_—

~——
—

Figure 4: Comparison between perturbation and numerical results for =3, A=0.7and¢=0.1
with the initial conditionsa, = 0.35, b, =0.35, ¢, =0.10, d, =0.15, hy =0.15.

For various values of t, the corresponding perturbation andnumerical results are shown in the following Table 1,
Table 2, Table 3andTable 4 respectively.
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Table 1:Comparison between perturbation andTable 2:Comparison between perturbation and

numeicalresults

numerical results

Timat)

Parturbation
Foasult(x)

Numarical
Fazult{x)

Tima(t)

Parturbation
Fazult{x)

Numarical
Fozzult(x)

Table 3:Comparison between perturbation andTable 4:Comparison between perturbation and

numerical results

numerical results

Parturbation
Fozsult{x)

Kumarical
Fozsult{x)

Tima(t)

Parturbation
Foazult(x)

Numearical
Foazult(x)

o EETAAT

.......

V.  Conclusion
In this study, we have carried out the modification of the KBM method and successfully applied the

modified method to the fifth order more critically damped nonlinear systems. Based on the modified KBM
method transient responses of nonlinear differential systems have been investigated. For fifth order more
critically damped systems the solutions are looked for such circumstances where in the triply eigenvalues are
small and the two eigenvalues are large. For different sets of initial conditions of the modified KBM method, the
results provide solutions which show well agreement with the numerical solutions
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