A Completion for Distributive Lattices

C. Ganesa Moorthy¹ and SG. Karpagavalli²

¹Department of Mathematics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India. ²Department of Mathematics, Dr. Umayal Ramanathan College for women, Karaikudi-630 004, Tamil Nadu,

Abstract: A completion for a class of lattices is constructed and it is observed that a congruence relation on a given lattice can be extended to its completion.

Key words: Complete lattice, Congruence relation.

AMS Subject Classification (2010): 06B23,06D10,18B35.

T. Introduction

Distributive lattices do have some special properties to characterize ideals in them. Corollary 4 in section 3 of chapter 2 in [1] implies that any ideal in a distributive lattice is a congruence class, and a study of congruence relations in distributive lattices leads to fruitful results (cf:[2]). So, a completion for a class of distributive lattices is constructed through ideals in this article, and an extension of a congruence relation to completion is also discussed. Let us use the following definitions for this purpose.

Definition 1.1 Let us say that a sublattice (L_1, \vee, \wedge) of a lattice (L_2, \vee, \wedge) is dense in L_2 , if any element x in L_2 is either a supremum of a collection of elements in L_1 or an infimum of a collection of elements in L_1 .

Definition 1.2 If (L_1, \vee, \wedge) is dense in (L_2, \vee, \wedge) , then let us say that (L_2, \vee, \wedge) is a completion of (L_1, \vee, \wedge) , if L_2 is a complete lattice.

An extension of a congruence relation to completion is also to be discussed, and the following definition is applicable for this purpose.

Definition 1.3 Let (L_2, \vee, \wedge) be a completion of (L_1, \vee, \wedge) . A congruence relation θ ' on L_2 is said to be a complete extension of a congruence relation θ on L_1 , if the restriction of θ' to L_1 is θ , and if $\vee_{i \in I} x = \vee_{i \in I} y_i$ $(\text{mod }\theta')$ in L_2 , whenever $x_i \equiv y_i \pmod{\theta}$, $\forall i \in I$, in L_1 and the suprema exist in L_2 , and if $\land_{i \in I} x_i \equiv \land_{i \in I} y_i \pmod{\theta}$ θ ') in L_2 , whenever, $x_i \equiv y_i \pmod{\theta}$), $\forall i \in I$, in L_1 and the infima exist in L_2 , for collections $(x_i)_{i \in I}$ and $(y_i)_{i \in I}$ in L_1 .

Definition 1.4 A congruence relation on a lattice (L, \vee, \wedge) is complete, if $(x_i)_{i \in I} \subseteq L$, $(y_i)_{i \in I} \subseteq L$ and $x_i \equiv y_i$ $(\text{mod }\theta)$, $\forall i \in I \text{ imply } \bigvee_{i \in I} x_i \equiv \bigvee_{i \in I} y_i \pmod{\theta}$ and $\bigwedge_{i \in I} x_i \equiv \bigwedge_{i \in I} y_i \pmod{\theta}$, whenever these suprema and infima exist.

II. **Lattice Completion**

Let us recall that if L is the cartesian product of a collection of lattices $((L_i, \vee_i, \wedge_i))_{i \in I}$, then 'join' and 'meet' $operations \ can \ be \ defined \ pointwisely \ on \ L \ by \ (x_i)_{i \in I} \lor \ (y_i)_{i \in I} = (x_i \lor_i y_i)_{i \in I} \ and \ (x_i)_{i \in I} \land \ (y_i)_{i \in I} = (x_i \land_i y_i)_{i \in I} \ .$ These operations are to be considered in this article for sublattices of a cartesian product lattice.

Definition 2.1 Let (L, \vee, \wedge) be a lattice. To each $a \in L$, let (a] denote the (ideal) sublattice (a] = $\{x \in L : x \le a\}$. Let us now define the inverse limit L^* as a subset of the cartesian product lattice of the collection of lattices $((a))_{a \in L}$ by $L^* = \{(x_a)_{a \in L} : x_a \in (a]; \forall a \in L, \text{ and } x_a = x_b \land a, \text{ whenever } a \le b \text{ in } L\}.$

Lemma 2.2 Suppose $(x_a)_{a \in L} \in L^*$. Then $x_a = \bigvee_{c \in L} (x_c \wedge a), \forall a \in L$.

Proof: Given a,c \in L, there exists $b \in$ L such that $b \ge a$, $b \ge c$, $x_c = x_b \land c$, and such that $x_c \land a = (x_{b \land} c) \land a = (x_b \land c)$ a) \land c = $x_a \land$ c $\leq x_a = x_a \land$ a. This proves that $x_a = \bigvee_{i \in I} (x_c \land a)$.

Lemma 2.3 Let L and L* be as in the definition 2.1. Then, to each $x \in L$, we have $(x \wedge a)_{a \in L} \in L^*$. Proof: Fix $x \in L$. To each $a \in L$, we have $x \wedge a \in (a]$. If $a \le b$ in L, then $(x \wedge b) \wedge a = x \wedge (b \wedge a) = x \wedge a$. So, $(x \wedge b) \wedge a = x \wedge (b \wedge a) = x \wedge a$. $a)_{a\in L}\in L$.

 $\begin{array}{l} \textbf{Lemma 2.4 Suppose L given definition 2.1 is distributive so that $(x \lor y) \land z = (x \land z) \lor (y \land z)$; $\forall x,y,z \in L$. Then the inverse limit L^* given in definition 2.1 is a sublattice of the product lattice of the collection $((a])_{a \in L}$. Proof: $Let $(x_a)_{a \in L}$, $(y_a)_{a \in L} \in L$. Then $(x_a)_{a \in L} \land (y_a)_{a \in L} = (x_a \land y_a)_{a \in L}$ and $(x_a)_{a \in L} \lor (y_a)_{a \in L} = (x_a \lor y_a)_{a \in L}$. Also, if $a \le b$ in L, then $(x_b \land y_b) \land a = (x_b \land a) \land (y_b \land a) = x_a \land y_a$; and $(x_b \lor y_b) \land a = (x_b \land a) \lor (y_b \land a) = x_a \lor y_a$. So, $(x_a)_{a \in L} \land (y_a)_{a \in L} \in L$ and $(x_a)_{a \in L} \lor (y_a)_{a \in L} \in L$ so that L^* is a lattice.}$

Lemma 2.5 Suppose (a) is a complete lattice for each $a \in L$, and suppose

 $z \wedge (\vee_{i \in I} x_i) = \vee_{i \in I} (z \wedge x_i)$, whenever $x_i \in (a]$; $\forall i \in I$, for any fixed $a \in L$, and

 $z \in (a]$. Then L^* given in the definition 2.1 is a complete lattice.

Proof: If $x, y, z \in L$, then there is a $c \in L$ such that $x \le c, y \le c, z \le c$ so that $x, y, z \in (c]$ and hence $(x \lor y) \land z = (x \land z) \lor (y \land z)$. So, by the previous lemma, L^* is a lattice.

Let $((x_a^{(i)})_{a\in L})_{i\in I}$ be a collection of elements in L^* . If $a\leq b$ in L, then $(\wedge_{i\in I} x_b^{(i)}) \wedge a = \wedge_{i\in I} (x_b^{(i)} \wedge a) = \wedge_{i\in I} x_a(i) \in (a]$, $x_b^{(i)} \wedge a \in (a]$, and $x_b^{(i)} \in (b]$, $\forall i\in I$, and when (a] and (b] are complete. Thus $\wedge_{i\in I} (x_a^{(i)})_{a\in L}$ exists in L^* . If $a\leq b$ in L, then $(\vee_{i\in I} x_b^{(i)}) \wedge a = \vee_{i\in I} (x_b^{(i)} \wedge a) = \vee_{i\in I} x_a^{(i)}$. This proves that L^* is a complete lattice.

Lemma 2.6 Suppose L satisfies the hypothesis of lemma 2.4. If $T: L \to L^*$ is defined by $T(x) = (x \land a)_{a \in L}, \forall x \in L$, then T is an injective lattice homomorphism.

Proof: By lemma 2.3, $T(x) \in L^*$, $\forall x \in L$. If T(x) = T(y), then $x \wedge a = y \wedge a$, $\forall a \in L$, and hence $x = x \wedge x = y \wedge x = x \wedge y = y \wedge y = y$. This proves that T is 1-1. Let $x, y \in L$. Then $T(x \wedge y) = ((x \wedge y) \wedge a)_{a \in L} = ((x \wedge a) \wedge (y \wedge a))_{a \in L} = (x \wedge a)_{a \in L} \wedge (y \wedge a)_{a \in L} = T(x) \wedge T(y)$, and $T(x \vee y) = ((x \vee y) \wedge a)_{a \in L} = ((x \wedge a) \vee (y \wedge a))_{a \in L} = (x \wedge a)_{a \in L} \vee (y \wedge a)_{a \in L} = T(x) \vee T(y)$. This proves the lemma.

So, if L is a distributive lattice, then we can identify L as the sublattice T (L) of L*.

Lemma 2.7 If L and T are as in lemma 2.6, then T (L) is dense in L* in the sense of definition 1.1.

Proof: Let $(x_a)_{a\in L}\in L$. To each fixed $c\in L$, define $x(c)\in (c]$ L by $x(c)=x_c$. To each $a\in L$, let π_a denote the coordinate projection of the product lattice defined by $((c])_{c\in L}$ onto (a]. Then $\pi_a(T(x(c)))=x_c\wedge a, \forall c\in L$ and $\forall a\in L$. Therefore, by lemma 2.2, we have $x_a=\vee_{c\in L}(x_c\wedge a)=\vee_{c\in L}\pi_a(T(x(c)))=\pi_a(\vee_{c\in L}(T(x(c))), \forall a\in L$. This proves that $(x_a)_{a\in L}=\vee_{c\in L}T(x(c))$, when $T(x(c))\in T(L)$. This proves the lemma.

Theorem 2.8 Suppose L satisfies the hypostheses of lemma 2.5. Then L^* is a completion of L in the sense of definition 1.2.

Proof: Let us identify L with T (L), and then T (L) is dense in L^* and L is complete. So, L^* can be considered as a completion of L.

Remark 2.9 Since L is distributive, by the proof of the lemma 2.5, L^* of the previous theorem 2.8 is also distributive.

III. Extension of a congruence relation

Let θ be a congruence relation on a lattice L. When x and y are related by in L, let us write $x \equiv y \pmod{\theta}$. Define a relation θ^* on the product lattice of the collection $((a])_{a \in L}$ by $(x_a)_{a \in L} \equiv (y_a)_{a \in L} \pmod{\theta^*}$ if and only if $x_a \equiv y_a \pmod{\theta}$, $\forall a \in L$. Since θ is a congruence relation, θ^* is also a congruence relation. Let us use the same notation for its restriction to L^* and for its restriction to T (L) for T of lemma 2.6, when L is distributive. Let us assume in this section that L is distributive.

Lemma 3.1 $x \equiv y \pmod{\theta}$ in L if and only if $T(x) \equiv T(y) \pmod{\theta^*}$.

Proof: If $x \equiv y \pmod{\theta}$, then $x \land a \equiv y \land a \pmod{\theta}$, $\forall a \in L$, and hence

 $T(x) \equiv T(y) \pmod{\theta^*}$.

Suppose T (x) \equiv T (y) (mod θ^*), for some x, y \in L so that x \land a \equiv y \land a

 $(\text{mod }\theta),\,\forall a\in L.$ Then

 $x \wedge x \equiv y \wedge x \pmod{\theta}$

 $\equiv x \wedge y \pmod{\theta}$

 \equiv y \wedge y(mod θ) so that x \equiv y (mod θ). This proves the lemma.

By this lemma, θ^* on L can be considered as an extension of on L. With this identification, we can state the following theorem 3.2.

Theorem 3.2 Let θ' be a congruence relation on L^* which is a complete extension of θ to L^* . Then $\theta' \leq \theta'$ on L^* . Proof: Suppose $(x_a)_{a \in L} \in L^*$, $(y_a)_{a \in L} \in L^*$ and $(x_a)_{a \in L} \equiv (y_a)_{a \in L} \pmod{\theta'}$. Then $x_a \equiv y_a \pmod{\theta}$, $\forall a \in L$. Hence

 $x(c)\equiv y(c)\pmod{\theta}$, when $x(c)=x_c$ and $y(c)=y_c$, $\forall c\in L$. Then by our identification of L with T(L), we have $T(x(c))\equiv T(y(c))\pmod{\theta'}$, $\forall c\in L$. So, $\bigvee_{c\in L}T(x(c))\equiv\bigvee_{c\in L}T(y(c))\pmod{\theta'}$, or $(x_a)_{a\in L}\equiv (y_a)_{a\in L}\pmod{\theta'}$ in view of the proof of the lemma 2.7. $\theta^*\leq \theta'$ on L^* .

 $\begin{array}{l} \textbf{Theorem 3.3 Suppose (a] is complete and } \theta \text{ is complete on (a], } \forall a \in L. \text{ Then } \theta^* \text{ is also complete on } L^*. \\ \text{Proof: Suppose } ((x_a^{(i)})_{a \in L})_{i \in I}, ((y_a^{(i)})_{a \in L})_{i \in I} \text{ are subcollections of } L^* \text{ such that } (x_a^{(i)})_{a \in L} \equiv (y_a^{(i)})_{a \in L} \pmod{\theta^*}, \\ \forall i \in I. \text{ Then } \vee_{i \in I} x_a^{(i)} \equiv \vee_{i \in I} y_a^{(i)} \pmod{\theta} \text{ and } \wedge_{i \in I} x_a^{(i)} \equiv \wedge_{i \in I} y_a^{(i)} \pmod{\theta}, \text{ because the suprema and the infima exist in the complete lattice (a], } \forall a \in L.So, \vee_{i \in I} (x_a^{(i)})_{a \in L} \equiv \vee_{i \in I} (y_a^{(i)})_{a \in L} \pmod{\theta^*} \text{ and } \wedge_{i \in I} (x_a^{(i)})_{a \in L} \equiv \wedge_{i \in I} (y_a^{(i)})_{a \in L} \pmod{\theta^*}. \\ \text{Thus } \theta^* \text{ is also complete on } L^*. \\ \end{array}$

Remark 3.4 If the conditions of lemma 2.5 and theorem 3.3 are satisfied, then L^* is a completion of L and θ^* on L is a complete extension of θ on L.

References

- [1]. G.Gratzer, General lattice theory, Academic press, New York, 1978.
- [2]. F.Wehrung, A solution to Dilworth's congruence lattice problem, Advances in Mathematics, 216(2007)610-625

DOI: 10.9790/5728-11227375 www.iosrjournals.org 75 | Page