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Abstract: A factorization procedure for matrices that satisfy the without row or column exchange condition 
(WRC) is introduced. The strategy is to reduce a column to corresponding column of the identity matrix. 

Factors so obtained are triangular matrices with same entries in a row or column. These factors and their 

inverse with simple structures can be constructed using the entries of a given non-zero vector without any 

computations among the entries. The advantage is that n
2
+2n flops associated with conventional Gaussian 

elimination (GE) or Neville elimination (NE) can be saved using the present approach in solving n x n non-

homogeneous linear system. The benefits of applying this procedure for decomposing symmetric indefinite 

matrices are discussed by introducing a tridiagonal reduction procedure. Results on numerical experiments are 

provided to demonstrate that entries are much less perturbed than GE for typical problems considered here 

using the proposed approach. AMS classifications: 15A04, 15A23 

Keywords: Symmetric Indefinite matrices; Matrix Factorization; Linear Transformations; Tridiagonal 

Reduction.  

 

I. Introduction 

Consider factorization of a given n x n non-singular square matrix nMA  as 

  A = LU        (1.1) 

In (1.1) factor L is a lower triangular n x n matrix and U is an n x n unit upper triangular matrix. If A is a 
symmetric positive definite matrix then (1.1) can be  represented as in (1.2) below where D is a diagonal matrix. 

  A= U
T
DU       (1.2) 

Now consider factorization of symmetric indefinite matrix A given below.  
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For this matrix A, a factorization process need not be ended with a decomposed form LU or UT
DU. 

Hence special strategies are devised in factorizing a symmetric indefinite matrix. One such strategy is to involve 

off diagonal entries in the pivoting process. For maintaining symmetry, transformations such as Gauss, Neville 

etc. used for introducing zeros in a column are applied as a sequence of conjugate transformations on A. Final 
target is to represent A as a conjugate transformation of a lower triangular matrix L on a symmetric tridiagonal 

matrix N as A= LNL
T
. When Gauss transformations are applied, to avoid element growth in factors, the entry 

with maximum absolute value is searched in a column and is brought to pivot position. This type of factorization 

is proposed by Parlette and Reid[1].  Aasen[2] proposed modifications on Parlette and Reid algorithm, which is 

more stable and economic than [1].  Here, at first, Parlette and Reid algorithm will be modified with use of new 

transformation matrix in place of Gauss transformation and advantages of such a step will be discussed. 

Following this, a strategy for decomposing a given symmetric indefinite matrix shall be presented. Advantages 

of this algorithm over Aasen’s algorithm also will be discussed.  

 

II. A Simple Operator Matrix for Transforming a Given Non-Zero Vector to a Column of the 

Identity Matrix 
Let a non-zero vector x=[x1 x2 … xn]

T; xi ≠0 ,i=1,2,…,n  be given. Consider the lower bidiagonal 

matrix and its inverse defined as below. 
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Columns in (2.2) are consisting of the given vector itself and its projections to subspaces of dimension 

k=n-1, n-2,…,1. Clearly, B(x)x=e1  and   B(x)
-1

e1= x. These results (2.1) and (2.2) can be applied to factorize a 

given      n x n non-singular matrix, say, A=[xij]. Consider A1=B(x1)A where                x1=[ x11 x21 ... xn1 ]
T 

, first 
column vector of A. Then first column of A1 will be e1. L1=B(x1)

-1 will be the first lower triangular factor. Now 

consider, first row of A1. Let it be y1
T=e1

T
A1. U1=B(y1)

-T will be the first upper triangular factor.   A1
*
= AB(y1)

T. 

So in A1
*, both first row and column will be identical to that of the identity matrix. This procedure can be 

extended to the second column and row of A1
* to derive A2

* and so on, and terminate after n-steps, to obtain 

An
*
=I and A= L1L2…LnUnUn-1…U1.. It may be noted that Li are of general structure  (2.3) and Ui are that of  

transposes of (2.3). 
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If in a column or row, some entries are zeros, then corresponding to blocks of non-zero entries, 

appropriate block submatrices of the matrices (2.1) and (2.2) can be considered. In such matrices, against zero 
entries of the considered column or row, corresponding rows and columns of the identity matrix can be 

considered. For example, let x=[ x1 x2 0  x4 x5 0  0   0    x9]
T. Then by the above way of considering the non-zero 

blocks individually, we have 
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There involves no computations among entries to constitute these matrices as against computation of 

suitable multiplier for elimination in GE. Notably this strategy can work only with matrices that satisfy WRC 

condition. That is, when all leading principle sub-matrices of the given matrix are non-singular.  
The strategy of triangularzing A for linear system solution Ax=b can be presented as follows. At i

th 

step, in matrix Ai-1
*
 , divide each row i,i+1,…,n by the respective leading entries xii

*
, xi+1,i

*
,…, xn,i

*
 . Replace k

th
 

row by subtracting kth row from (k-1)
th row for k=n,n-1,…,i-1. That is, with kth row Rk, perform Rk → Rk / xkk

*. 

Then perform Rk → Rk - Rk-1; k=n,n-1,…i-1. This will reduce its ith column say, Ci to ei. Note that for k=1, 

A0
*
=A. So after n-steps , the system will be reduced to Ux=c  where U is an unit upper triangular matrix. 

Advantages we have with factors B(x)
-1 can be presented as follows. These matrices can be easily 

constructed as in (2.2) from entries of a given column. There involves no computation of multipliers. This will 

lead to reduce computational cost by n
2
+2n operations. A typical example from Golub and Van loan [3] is 

considered in the numerical illustration and experiments sections.  

 

III. Minimization Of Flops In The Procedure Compared To Gaussian Elimination 
A non-homogeneous linear system of the type Ax=b where A is an n x n non-singular matrix that 

satisfies WRC, can be solved by forward eliminations and backward substitutions using the factorization 

procedure by avoiding n2
+2n flops of GE.  

In GE in order to eliminate entries of first column of A=(aij) below the pivot entry a11, the n-1 multipliers 

to be computed are -ak1/a11, k=2,3,…,n. Similarly for the second column, it requires to compute n-2 multipliers 

and so on. Thus a total of n(n-1)/2  multipliers are to be computed so as to reduce the  given linear system to 

reduced triangular form. Thus computation of multipliers requires n(n-1)/2 divisions. It may be noted that 

reduced upper triangular form in GE will be typically a non-unit upper triangular form as below.  

 

a11
*
x1 + a12

*
 x2 + a13

*
 x2 + … + a1n

*
 xn     = c1

*
 

    a22
*
x2 + a23

*
 x2 + … + a2n

*
 xn     = c2

*
 

: :   : : : : :  (3.1) 

: : : : : : : 

: : : : : : : 

        an-1,n-1
*
xn-1 +  an-1n

*
 xn   = cn-1

*
   

            ann
*
xn     = cn

*
   

 

In the proposed factorization process, eliminations in a column are conducted using its own entries. So 

the n(n-1)/2 divisions required for computing multipliers are not required. As the mapping is to a column of the 

identity matrix, the reduced upper triangular form will be unit triangular.  So after n steps, the reduced upper 

triangular form typically will be  

  

 x1 + a12
**

 x2 + a13
**

 x2 + … + a1n
**

 xn     = c1 

       x2 + a23
**

 x2 + … + a2n
**

 xn     = c2 

 : :   : : : : :  (3.2) 

  : : : : : : : 

  : : : : : : : 

                 xn-1 +  an-1n
**

 xn      = cn-1   

                            xn     = cn   

 

Now in order to arrive at this form (3.2) out of (3.1) additional row wise divisions by the non-unit leading 

coefficients are required. This requires another ((n+1)(n+2)/2)-1 divisions.  

So while solving for the unknowns using backward substitutions in (3.2), the additional 

((n+1)(n+2)/2)-1 divisions of reduced upper triangular form of GE also are not required. In summary, using the 
present approach in (3.2), these additional divisions required in GE as presented in (3.1) can be avoided and 

computational load will be reduced by  

n(n-1)/2+((n+1)(n+2)/2)-1=n
2
+2n   (3.3)    

 

So a minimization of computational load is achieved in the present approach.  

The factorization procedure is discussed in detail in Nair[4]. 

 

IV. Parlett-Reid Algorithm with the new Transformation 
In order to overcome the difficulties encountered while factorizing a given symmetric indefinite matrix 

A, several steps have been taken so that A is decomposed to simpler systems. Some of these steps are listed 

below. 
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i) A is decomposed to symmetric tridiagonal and lower triangular factors so as to involve the off-diagonal 

elements in the formation of Gauss matrix Mk and pivoting process.  

ii) To maintain symmetry, matrices Mk are applied to A as a sequence of conjugate transformations. 
iii) To avoid possible element growth, permutations are applied so that current vector x =[x1 x2 … xn]

T is 

having an entry,                            max{ |x1|, |x2|, … |xn|} at the pivot position. 

 

With the above steps, it has been demonstrated by Parlett and Reid[1] that A can be decomposed as  

  PAP
T
 = LNL

T                                                        (4.1) 

 

In (4.1) P is a permutation matrix, L is a unit lower triangular matrix and N is a symmetric tridiagonal matrix. 

The Parlett and Reid algorithm is a straight forward implementation of Gauss transformation matrices Mk ; 

k=1,2,…,n in accordance with the above three aspects and can be generally represented as  

 Ak = Mk(PkAk-1Pk
T
)Mk

T
   ; k=1,2,…,n-2                           (4.2) 

 
For matrix A of section-1, if this algorithm is applied, following are the factors. 
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It is computationally expensive with n
3
/3 flops as far as factorization of symmetric matrices is 

concerned and less efficient when compared to Aasen’s[2] algorithm with n3
/6 flops. Aasen’s algorithm is stable 

with a simple pivoting strategy.  

 The sample problem considered here from Golub and Van Loan [3] is a typical example to highlight 

the advantages of factorization by matrices (2.1). These are demonstrated below by factorization of the 

symmetric indefinite matrix A in (1.3) by implementing (4.2) of Parlett-Ried factorization where transformation 

B(xk) as discussed in section-2 is applied in place of Mk,  for k=1,2,…,n, first without pivoting and  later with 

pivoting.  

 

V. Parlett-Reid Algorithm with B(x) as Operator 
Consider the matrix in (1.3) as A0. 

Step-1 

 Take the first column to construct T1 and T1
-1

 as defined in (2.1) and (2.2). Obtain A1 =  T1
-1

A0 T1
-T

. 

Note that in Step-1, the first column and row of A1  is that of the identity matrix.  

 

Step-2 

 Take the second column vector of A1 where we consider only those entries on the diagonal and below. 

As in step-1, construct T2 and T2
-1

, where as defined already, the first two columns of these will be that of the 

identity matrix. Obtain A2 = T2
-1

A1 T2
-T

. In A2, the first three columns and rows will be that of the identity 
matrix.  

Actually with 2 steps, prescribed by Parlett and Reid, the factors, symmetric tridiagonal matrix N and 

lower triangular matrix L are ready. The matrix L is given by 
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The matrices L and N satisfy the equation A = LNL
T. We shall continue the factorization with one 

more additional step for reasons cited below in the observations. 

 

Step-3 

Construct T3 and T3
-1

, using third column of A2 and obtain                     A3 =  T3
-1

A2 T3
-T

. 
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In general Ak =  Tk
-1

Ak-1 Tk
-T

  can be obtained at k
th step, k=1,2,..,n-1 to decompose a given n x n 

symmetric matrix  as in (4.1). 

If possible pivoting at each step in the above process of decomposing matrix (1.3) so that current 

column entries are with maximum absolute values than corresponding entries of all other columns towards right 
of it, after step-3 we get,   
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The matrix L is given by 
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i.  Thus it can be observed that  

ii.  N is a symmetric tridiagonal matrix with 1 as its off-diagonal entries where these are computed multipliers 

of each steps in GE. 

iii. In the lower triangular component L, as the diagonal entries are avoided for generating the operator Tk  at 

step-k, the first column and row of  L will be always e1 and e1
T respectively. 

iv. It has ended up with unity along the off diagonals of N rather than along the diagonal of matrix L as in 

Parlett-Reid. This is an added advantage with this factorization. That is, one need not be concerned with the 

computation and storage of the off-diagonal entries.  
v.  To complete the factorization in this way, additional one more step has to be conducted. So there are total 

n-1 steps as against n-2 steps prescribed by Parlett and Reid. The operator B(x) for this step has its n-1 

rows and columns identical with that of I. So the concerned matrix multiplications are simple operations 

solely intended to update the last diagonal entry of N.  

 

VI. Procedure for Factorization of Symmetric Indefinite Matrix 
Aasen’s algorithm takes advantage of inverses of previous Gauss Transformations, Mi ; i=1,2,…k-1, 

applied to factorize A. For convenience, let permutations Pk applied to A at step-k, k=1,2,…,n-2 be ignored to 

understand crucial activities that lead to diagonal entries of symmetric tridiagonal matrix N, say αk , k=1,2,…,n 

and its off-diagonal entries βk+1, k=2,3,…n. 

At step-k, product of Gauss Transformations Mk applied on A,



1

1

1

ki

iM and k
th column  [aik]

T
 ; 

i=1,2,…,n-2 of  A, are used to generate following for the kth step 

i) k
th Gauss Vector 

ii) k
th Gauss  Transformation Mk 
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iii) αk , k
th diagonal element of N 

iv) βk+1 , k+1
th off-diagonal element of  N.   

 
Keeping the above requirements as targets, a new algorithm shall be introduced to reduce positive 

indefinite matrices to symmetric tridiagonal matrix N and lower triangular matrix L satisfying A=LNL
T
. As 

already observed, because of the feature that factorization by B(x) ends up with a symmetric tridiagonal matrix 

N which is having off-diagonal entries as 1, one need not be concerned with computation and storage of   βk+1 , 

k=2,….n. So here at each step, vector x of the transformation B(x) shall be computed whose k+1
th entry will be 

αk+1 ; k=1,2,…..,n-1 where α1 will be entries a11 of A. The central concept of the algorithm going to be 

presented here is to make use of the equation   

Ak = (Tk
-1

…..T2
-1

T1
-1

)A(Tk
-1

…..T2
-1

T1
-1

)
T
                            (6.1) 

 

at step k to generate vector xk+1 and there by diagonal entry  αk+1 of N. 

Consider at step k,   
 Hk = (Tk

-1
…..T2

-1
T1

-1
)

T                                                                  (6.2) 

 

Let h be the n vector defined by 

h = (Hk)
T
A(Hkek+1)                      (6.3) 

 

Now obviously h is the required vector that shall define xk+1 for generating 

Tk+1
-1

=Ik-2+B(xk+1)            (6.4) 

 

In (6.4) Ik-2 is an n x n matrix consisting of the first upper-left k-2 columns and rows of the identity 
matrix and other rows and columns are zeros.  k+1

th element of  h will be the required diagonal element αk+1 of 

N.  Thus making use of steps (6.2), (6.3) and (6.4), it can be obtained Tk+1 and αk+1 and after n-1 steps, all n 

diagonal entries of N will be computed. The lower triangular matrix L will be provided by  

  L =T1T2….Tn-1          (6.5) 

 
The computed L and N will be satisfying equation A=LNL

T. In Aasen’s algorithm using Gauss 

Transformation Mk at each step, once a vector h is computed, max{ |hk+1|, |hk+2|, ……,|hn|} is brought to  pivot 

position k+1 of  h  by exchanging entries at positions k+1 and q,k+1≤q≤n where |hq|≥ |hj| ; j=k+1,k+2,…,n. The 

procedure defined by (6.1) through (6.4) above is a simple one with O(n3
/6) flops for computing vectors, say hk 

; k=1,2,…n-1 using (6.3) as in the case of Aasen’s algorithm. As presented in Section-3, computations of 

multipliers are not required with this procedure. Hence (n-2)(n-1)/2-1 divisions can also be saved compared to 

Aasen’s algorithm. 

 

VII. Numerical Illustration Of The Procedure For Factorization Of 

Symmetric Indefinite Matrix 
Numerical illustration of the procedure shall be presented below by factorizing the same matrix A used 

above in the discussion on Parlett-Reid algorithm with B(x) operator. 

 

Step-1 

 Consider the same matrix (1.3).  Using the first column vector, T1 and T1
-1

 can be constructed. We have 

α1 is 0. Note that the diagonal position is ignored and so first column and row of T1 and T1
-1 are that of the 

identity matrix.  
  H1   =       (T1

-1
)
T
 

  H1e2                 =       [ 0   1   0   0]
T
 

  A(H1)e2           =        [1  2   2    2]
T
 

  H1
T
A(H1)e2     =        [1  2  -1   -1/3]

T
 

So h at step-1 is [1  2  -1   -1/3]
T
 and so α2 is 2. Avoid diagonal position, and construct T2 and T2

-1.  
Step-2 

Compared to the Parlett-Reid algorithm, T2 and α2 are arrived at very easily. Obtain H2 =(T2
-1

 T1
-1

)
T
. 

 H2e3   =    [ 0    1   -1/2   0 ]
T
 

  A(H2)e3      = [0    1   1/2   1/2]
T
 

  H2
T
A(H2)e3     = [0   1   3/4   -1/2]

T
 

Thus h at step-2 is [0   1   3/4   -1/2]
T, α3 is 3/4 and as before avoiding diagonal entry, T3 and T3

-1  can be 
constructed.  
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Step-3 

Obtain H3 = ( T3
-1

T2
-1

 T1
-1

)
T
. 

 H3e4        =     [0    2     -4     2 ]
T
 

  A(H3)e4           = [0   0     -2       0]
T
 

  H3
T
A(H3)e4     = [0    0      1      8]

T 

 

In this last step, as promised, the algorithm successfully computed 4th diagonal entry α4 = 8 from 

computed h given as [0   0   1    8]
T. Computational load is significantly reduced in obtaining diagonal entries αk 

; k=2,3,…,n and operators Tk ; k=1,2,…n-1 compared to Parlett-Reid.  Thus the procedure is based on 

generating the diagonal entries of N, making use of the matrix Hk at step k.  

The advantages and uniqueness of the process compared to Aasen’s algorithm are 

i) No computing and storage of off diagonal entries of symmetric tridiagonal matrix N are required as these 

will be always unity. 

ii) No computing of multipliers for eliminating entries below pivot positions of a column. 
iii) No searching for the element with in the vector xk+1 having maximum absolute value and exchange with the 

element at pivot position are involved.  

iv) Column and row exchanges may be implemented whenever such exchanges make the current column 

entries with maximum absolute values compared to corresponding entries of columns towards right of it.  

v) The operator involved is B(x) instead of Gauss Transformation Mk .  

vi) End result will be exactly the same factors computed using Parlett-Reid with B(x) as operator. 

It can be observed that equation (6.3) generating successive vectors hk ; k=1,2,..,n-1 replaces 

multiplication of matrices in (4.2) with much simple matrix-vector multiplication to achieve exactly same result. 

This also is a minimization of computational costs, resulting in n
3
/6 operations as against n

3
/3 operations in 

(4.2).  

 

VIII. Results of Numerical Experiments conducted using Aasen’s Algorithm and Proposed 

Algorithm 
Both algorithms were implemented by coding in Borland C++ Version 3.1 and executed under MS 

VC++ 6.0 in a Pentium IV PC using double precision arithmetic’s.  It may be noted that there were searching for 

maximum absolute valued entry in Gauss vector at each step and corresponding pivoting is also implemented 

with respect to Aasen’s algorithm.  

The test conducted was to decompose concerned matrices A to compute triangular factors, lower 
triangular factor L, Symmetric tridiagonal factor N, and compute A*=LNL

T. Then absolute forward errors 

discussed in Higham [5] abs(A- A
*
) are computed to verify the effectiveness of the two algorithms.  

 

Test 8.1 

The 4 x 4  matrix A of section-1 was generated and tested to show effect of floating point arithmetic 
with the algorithms. Results are tabulated below. 

    Table 8.1 Absolute forward errors in Decomposing Indefinite Matrix of  size 4 x 4 

 
 Aasen’s Algorithm Present Algorithm 

Minimum   0.00000e+000 0.00000e+000  

Maximum  0.00000e+000  4.44089e-016 

Mean     0.00000e+000 5.55112e-017 

 

Here the matrix is dense and both algorithms reconstructed the matrix in a comparable way.  

Test 8.2 





















4303

3320

0221

3010

A  

In this test some entries other than those at pivot positions of the 4 x 4 matrix of section-1 was replaced with 
zeros and performed the two decompositions.  

      

 Table 8.2: Absolute forward errors : Decomposition of Sparse Indefinite Matrix of  size 4 x 4 
 Aasen’s Algorithm Present Algorithm 

Minimum   0.00000e+000 0.00000e+000  

Maximum  2.22045e-016 0.00000e+000 

Mean     2.77556e-017 0.00000e+000 
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In test 8.2, note that when the matrix become sparse, proposed algorithm takes advantage of this 

structural property to decompose it in a better way. 

 

Test 8.3 

In this test, column entries at non-pivot positions of the 8 x 8 matrix A of section-1 was selectively and 
programmatically replaced with zeros. The matrix is then decomposed using the algorithms to obtain results 

below.  

                      Table 8.3.3  Comparison of  Forward Relative Errors For Test 8.3  
 Aasen’s Algorithm Present Algorithm 

Minimum   0.00000e+000 0.00000e+000  

Maximum  2.66454e-015  3.55271e-015 

Mean     5.78000e-016 3.19189e-016 

 

           By executing the programs it can be observed that error increasing tendency has a bias to the final stages 

of decomposition with the present algorithm where as these are scattered over the entire entries with Aasen’s 

algorithm. In other words, almost all the entries are perturbed more with the Aasen’s algorithm where as only 

the last row and column entries are perturbed with the present algorithm.  
  

Test 8.4           

For this test 8.4, the matrix of section –1 of order 50 x 50 is generated and decomposed. For 
convenience here only results of forward errors are presented in table 8.4.  

              Table 8.4 Comparison of  Relative Errors For decomposing Matrix A of order 50 x 50 
  

 Aasen’s Algorithm Present Algorithm 

Minimum   0.00000e+000 0.00000e+000 

Maximum  1.56319e-013  1.13971e-011  

Mean     1.39726e-014 1.49756e-012 

 

Cleary with the dense structure, Aasen’s algorithm is performing in a better way. But it may be noted 

that present algorithm is a in a much simple way brings out this result compared to Aasen’s algorithm.   

  

Test 8.5           

For this test 8.5, in matrix of test 8.4 of order 50 x 50, zeros were introduced using the code presented 
in test-8.4 to make it sparse and decomposed. The results corresponding to forward relative errors are as below. 

 

Table 8.5 Comparison of  Relative Errors For decomposing Sparse Matrix A of order 50 x 50 
 Aasen’s Algorithm Present Algorithm 

Minimum   0.00000e+000 0.00000e+000  

Maximum  1.47793e-012  3.19744e-014  

Mean     1.04563e-013 3.24736e-015  

 

This is the salient result out of all these tests. When the matrix is sparse and has nice special structural 

properties such as symmetry and order property for its column and row entries, this procedure can take 

advantage of these properties to decompose the matrix in a better way. One can also note that when almost all 

entries are perturbed in Aasen’s algorithm, right-lower boarder entries are perturbed more and the more the 

entries are towards left-upper boarder, the less the perturbations to these entries by present algorithm. For 

example, there are zero perturbations for the very first column entries while decomposing using present 

algorithm. 

 

IX. Conclusions 

The procedure presented here involves O(n3
/6)

 flops. It works by simultaneously reducing the columns 

and rows to decompose a given symmetric indefinite matrix A to equivalent symmetric tridiagonal matrix N and 

triangular matrix L such that A=LNL
T. These matrices can be constituted using the entries of a given non-zero 

vector without any computations among its entries. It transforms the vector to a column of identity matrix. 

Benefit of such a property is that off-diagonal entries of symmetric tridiagonal matrix N are all unity. 

Consequently successive vectors h of transformation B(h) are computed where off diagonal entries need not be 

computed as in Aasen’s procedure. These features contribute to saving of n
2
+2n divisions compared to the 

Gauss transformation while solving n x n non-homogeneous linear system using B(x).  
In the numerical experiments section, it has been demonstrated that entries of symmetric and sparse 

matrices, which have some order property, are much less perturbed while decomposing by the proposed 

algorithm compared to Aasen’s algorithm. In these situations, when almost all the entries are perturbed more 
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quantitatively in Aasen’s algorithm, those entries towards right-lower borders are only disturbed in similar 

scales by the present procedure.  
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