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Abstract: In this paper,    Z = 
3 t

x y z

 
    

type plane gravitational waves is studied with source Cosmic 

cloud strings coupled with Electromagnetic fields in Rosen’sbimetric theory of relativity.It is shown that there is 

nil contribution either from Cosmic cloud orfrom Maxwell’sfield andalso for  cosmic cloud strings coupled  

with Maxwell’s field in this theory.Only vacuum model can be constructed. 
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I. Introduction 

Rosen [12-13] proposed the bimetric theory of gravitation to remove some of the unsatisfactory 

features of the Einstein’s general theory of relativity, by assuming two metric tensors.  In this theory he has 

proposed a new formulation of the general relativity by introducing a background Euclidean metric tensor 
ij
 in 

addition to the usual Riemannian metric tensor 
ij

g at each point of the four dimensional space-time. With the 

flat background metric
ij
  the physical content of the theory is the same as that of the general relativity. 

Thus, now the corresponding two line elements in a coordinate system xi are – 
2 i j

ij
ds g dx dx (1.1)                                                                                       And

2 i j

ij
d dx dx  (1.2) 

Where ds is the interval between two neighboring events as measured by means of a clockand a measuring rod. 

The interval d is an abstract or geometrical quantity not directly measurable.  One can regard it as describing 

the geometry that would exist if no matter were present.H Takeno [16] propounded a rigorous discussion of 

plane gravitational waves, definedvarious terms by formulating a meaningful mathematical version and 

obtained numerous results. 
 

Using definition of plane wave, we will use here,  

  Z =  
3 t

x y z

 
    

  type plane gravitational waves by using the line elements, 

   2 2 2 2 2ds A dx dy C dz dt      (1.3) 

 

LalK.B. ;Ali,N.[9] have studied wave solutions of the field equations of general relativity in a generalized 

Takeno’s space-time, MitskievicN.V.andPandey S.N. [10], analyzed the motion of test particles in plane 

gravitational waves.The theory of plane gravitational waves have been studied by many investigators, 

H Takeno [17]; Pandey [11]; Goldman I.[5];Gowdy,R.H. [6];Bondi, H. et.al.[1],Torre,C.G.[18]; Hogan, 

P.A.[8];Deo and Ronghe[14],[15], Deo and Suple [2],[3],[4] and they obtained various solutions . 

 In continuation of this, we will study    Z =  
3 t

x y z

 
    

  type plane gravitational wave 

with Cosmic cloud string coupled with Maxwell’s field and will observe the result in the context of 
Bimetrictheory of  relativity. 

 

 

II. Field Equations In Bimetric Relativity 
Rosen N. [12, 13] has proposed the field equations of Bimetric Relativity from Variation 
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Principle as  

 

1
8

2

j j j j

i i i i
K N Ng T     (2.1)                                                               

       Where   

1

2

j hj

i hi
N g g

     | | (2.2)          

N N

 ,
g




  (2.3)                                                                      

and ij ij
g g   , (2.4) 

      Where a vertical bar (|) denotes a covariant differentiation with respect to
ij
  

2.1  Z = 
3 t

x y z

 
    

  type plane gravitational wave with Cosmic Cloud strings: 

For Z = 
3 t

x y z

 
    

  plane gravitational wave, we have the line element   as 

   2 2 2 2 2ds A dx dy C dz dt     (3.1)                   

where ( )A A Z
,
 C = C(Z) and Z =  

3 t

x y z

 
    

 

     Corresponding to the equation (3.1), we consider the line element for background metric 
ij
  as   

 2 2 2 2 2d dx dy dz dt     
 (3.2) 

and ,
j

i
T  the energy momentum tensor for Cosmic cloud strings is given  by  

j

i
T =  

j

i strings
T   =

j j

i i
v v x x  (3.3) 

     together with  
4 1

4 1
1 1v v and x x   where  

i
v  is the four-velocity of the cloud of particles,

ix  is 

the four vector representing the direction of anisotropy(x-axis)and  is the rest energy density for a cloud of 

strings with particles attached along the extension .Thus p
     where 

p
 is the particle 

energy density and  is the tension density of the strings. In co-moving coordinate system we have  

1

1 strings
T  = ,  

4

4 strings
T  =    and 

j

i strings
T = 0 for i, j=2, 3 and for i j 

 

 Using equations (2.1) to (2.4) with (3.1) to (3.3),  

 

      We get the field equations as 

2

2

16

3

C C
D

C C


 
  
 
 

(3.4) 

2

2
0

C C
D

C C

 
  
 
 

  (3.5) 
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2

2
0

A A
D

A A

 
  
 
 

(3.6) 

2

2

16

3

A A
D

A A


 
  
 
 

(3.7) 

where
 

 

22

4

3t x y z
D

x y z

   
 
   

 

and

2 2

2 2

A A C C
A A C C

Z Z Z Z

   
   
   

, , ,  

 

Using equation (3.4) to (3.7), we get 

0    (3.8) 

 This equation of state is known as false vacuum. 

 Equation (3.8) immediately implies that cosmic cloud strings does not exist in Z =  
3 t

x y z

 
    

     plane 

gravitational wave in Rosen’s Bimetric theory of relativity. 

Hence for vacuum case 0     , the field equation reduced to  

 

2

2

0
A A

D
AA

 
  
 
 

 

i.e. 2

2

0
A A

AA

 
  
 
 

(3.9) 

and 

2

2

0
C C

D
CC

 
  
 
 

 

i.e. 2

2

0
C C

CC

 
  
 
 

(3.10) 

Solving equations (3.9) and (3.10), we have 

1

1

S Z
A R e  (3.11)  

 

and 

2

2

S Z
C R e (3.12) 

where R1 , S1 and R2 , S2 are the constants of integration. 

 

Thus substituting the value of (3.11) and (3.12) in (3.1), we get the vacuum line element as  

   1 22 2 2 2 2

1 2

S Z S Z
ds R e dx dy R e dz dt    (3.13) 
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Thus, it is found that in plane gravitational wave   Z = 
3 t

x y z

 
    

, the Cosmic cloud strings does not 

survive in Bimetric theory of relativity and only vacuum model can be constructed. 

By proper choice of co-ordinates the metric (3.13) can be transform to 

2 2 2 2 2Zds e dx dy dz dt       (3.14) 

Which is free from singularity at t = 0 and the spatial volume of the model is given by   

 
1

3 2
2

ZV g e    (3.15) 

 

This study can further be extended with the introduction of cosmological constant λ in the field equation which 

is defined as
j j

i i
N g . 

 Thus we get    2

2

A A
D

AA


 
  
 
 

(3.16) 

  And        

2

2

C C
D

C C


 
  
 
 

 (3.17) 

On solving equation (3.16) we have 

2

2

D Z
A EZ F

 
   

 

'
exp (3.18) 

Where E and F are constants of integration and 
 

 

4

22

1
'

3

x y z
D

D t x y z

  
   

    

 

 On solving (3.17) we obtain 

2

2

D Z
C GZ H

 
   

 

'
exp (3.19) 

Where G and H are constants of integration. 

 

Thus substituting the value of A and C [using (3.18)-(3.19)] the line element (3.1) reduces to 

   
2 2

2 2 2 2 2

2 2

D Z D Z
ds EZ F dx dy GZ H dz dt

    
          

   

' '
exp exp (3.20) 

Thus Z = 
3 t

x y z

 
    

 plane gravitational wave exists in Bimetric relativity with or without cosmological 

constant λ respectively. 

 Z = 
3 t

x y z

 
    

 type plane gravitational wave with Maxwell’s Field: 

In this section, we consider the region of the space-time filled with electromagnetic field 

whose energy momentum tensor is given by 

1

4

j jr ab j

i mag ir ab i
E F F F F g  

 (4.1)    

where
j

i mag
E is the electromagnetic energy tensor,

j

i
F is the electromagnetic field  
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tensor. 

        As the electromagnetic field is moving along the x-direction alone,F23is the only nonzero  

component of Maxwell’stensor Fij.  

Maxwell’s equation is given by
, , ,        0 ij k jk i ki jF F F    

gives rise to F23  = - F32 = F (constant) 
Using equations (2.1) to (2.4) and (3.1) - (3.2) with energy momentum tensor (4.1), the field equationsare  

 

2

2

16

3

C C
D

C C


 
  
 
 

(4.2) 

2

2

16

3

C C
D

C C


 
   
 
 

(4.3) 

2

2

16

3

A A
D

A A


 
   
 
 

(4.4) 

2

2

16

3

A A
D

A A


 
  
 
 

(4.5) 

                   Where 

21

2

F

AC
   

 

Solving (4.4) and (4.5), we get  

23
0 0i e F F   . .  (4.6) 

  Thus for the space-time (3.1) Maxwell’s field does not survive in Bimetric theory of relativity and only 

vacuum model exists and it is same as defined in equation (3.20). 

 

2.2 Coupling of Cosmic cloud strings with Electromagnetic Field 

The energy momentum tensor for a mixture of cosmic cloud string and Electromagnetic field 

together is given by 

j j j

i i strings i mag
T T E  (5.1) 

Where 
j j

i strings i mag
T and E are already defined. 

 By the use of co-moving co-ordinate system,the field equation (2.1) to (2.4) for the metric (3.1) and (3.2) 

corresponding to the energy momentum tensor (5.1) can be written as 

 

 
2

2

16

3

C C
D

C C
  

 
   
 
 

(5.2) 

2

2

16

3

C C
D

C C


 
   
 
 

(5.3) 

2

2

16

3

A A
D

A A


 
   
 
 

(5.4) 
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 
2

2

16

3

A A
D

A A
  

 
   
 
 

(5.5) 

Using (5.3) and (5.4), we obtain 

ZC A e (5.6) 

where and   are constants of integration.    

  On solving (5.2) to (5.5) we get  

4 0     (5.7) 

  In view of the reality conditions (Hawking S.W. and Ellis G.F.R)[7] i.e. 0 0 0and    ,
 

must hold. 

The above conditions (5.7) is satisfied only when  

0 0 0and    , (5.8)     

This means that thephysical parameters, viz tension density ( ), rest energy density (  ) andthe magnetic field 

alongthe x-axis (  ) are identically zero.Thus plane gravitational waves with cosmic cloud strings coupled with 

Maxwell’s field does not survive in bimetric relativity and hence only vacuum model is obtained. 

  Using (5.8), the vacuum field equations are  

2

2
0

A A
D

A A

 
  
 
 

 

ie

2

2
0

A A

A A

 
  
 
 

(5.9) 

2

2
0

C C
D

C C

 
  
 
 

 

ie

2

2
0

C C

C C

 
  
 
 

(5.10) 

On solving (5.9) and (5.10),we get the same result as defined in equation (3.18) and (3.19)and we get the same 

vacuum solution which is obtained in (3.20). 

 

III. Conclusion 

It is well known that at early stage of universe cosmic strings and magnetic field play a fundamental 
role in the formation of universe. It is evident, from the literature that Einstein’s formalism of general relativity 

used to establish the existence of cosmic strings. Here it is shown that, in the study of   Z =  
3 t

x y z

 
    

type plane gravitational wave; there is nil contribution of Cosmic cloud strings coupled with Maxwell’s fieldin 

Bimetric theory of relativity respectively. It is observed that the matter fields either cosmic strings or 

Electromagnetic fields cannot be a source of gravitational field in the Rosen’s biometric theory but only vacuum 

model exists.  Hencebimetric theory doesn’t help in any way to study gravitational effects of cosmic strings and 

Maxwell’s field at the early stages of evolution of the universe 
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