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Abstract:  The aim of this paper, is to study the integro-differential equations with a bulge 

function, to find the exact solution we use Elzaki transform, inverse Elzaki transform and the convolution 

theorem. This method is more efficient and easy to handle such partial differential equations and integro-

differential equations with a bulge function in comparison to other methods. The result showed the efficiency, 

accuracy and validation of Elzaki transform method. 
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I. Introduction 
Nonlinear equations are of great importance to our contemporary world. Nonlinear phenomena have 

important applications in applied mathematics, physics, and issues related to engineering. Despite the 

importance of obtaining the exact solution of nonlinear partial differential equations in physics and applied 

mathematics there is still the daunting problem of finding new methods to discover new exact or approximate 

solutions. 

In the recent years, many authors have devoted their attention to study solutions of nonlinear partial 

differential equations using various methods. Among these attempts are the Adomian decomposition method, 

homotopy perturbation method, variational iteration method [1-5], Laplace variational iteration method [6-8] 

differential transform method, Elzaki transform[14-17 ] and projected differential transform method.  

Many analytical and numerical methods have been proposed to obtain solutions for nonlinear PDEs 

with fractional derivatives, such as local fractional variational iteration method [9], local fractional Fourier 
method, Yang-Fourier transform and Yang-Laplace transform and other methods. Two Laplace variational 

iteration methods are currently suggested by Wu in [10-13].  

The main purpose of their work is to provide a new numerical approach based on the use of continuous 

collocation Taylor polynomials for the numerical solution of delay integro-differential equations. In this paper, 

we study the integro-differential equations with a bulge function. The solution is derived by using Elzaki 

transform, inverse Elzaki transform, the convolution theorem and the Taylor series expansion. 

  

Definition 1.  

The Elzaki Transform [2]. Given a function f t  defined for all t ≥ 0, the Laplace transform of f is the function 

F defined as follow: 

       E f t  , v = T v = v  f t e−
t

v dt
t

0
     ,    v ∈  k1  , k2                                (1) 

for all values of   s for which the improper integral converges 
 

Theorem 1. The Convolution Theorem [3].  

Let f t   and g t   be defined in A . having Elzaki transform  M v   and N v  then  the Elzaki transform of the 

convolution of  f t  and  g t    is,  

                   E  f ∗ g  t  =
1

v
 M v N v                                                              (2) 

Where  

                         f ∗ g  t =  f x − t g t dt
t

0
 

whenever the integral is defined. 

The Integro-differential equation is an equation that involves both integrals and derivatives of an unknown 

function of the form: 

 

         
d

dx
y t +  f t, y t  dt

x

x0
= g x , y x         y x0 = x0                            (3) 

The Trapezoidal rule can be used for the numerical solution of the integro-differential equation as follows: 
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         f x, y x  dx = h f xk , yk + f xk+1 , yk + hyk
′   

xk +h

xk
+ O h3              (4) 

And, 

   F x , s, y s  dsdx
x

x0

xk +h

xk
=

h

2
  f xk , s , y s  

x

x0
+  f xk+1 , yk + hyk

′  
x

x0
   (5) 

 

II. Solution of the Integro-Differential Equation With a Bulge Function by Using Elzaki 

Transform 

Lemma 1.  

The Elzaki transform of the bulge function e−
 t−l 2

2    is expressed by. 

 

      E e−
 t−l 2

2  = e−
l2

2  v2 + lv3 +  −1 + l2 v4 +  −3l + l3 v5                        (6) 

 

 Proof.  

The Taylor series expansion 𝑒𝑥  is of the form 

       𝑒−
 𝑡−𝑙 2

2 =  
𝑥𝑛

𝑛!
∞
𝑛=0 = 1 + 𝑥 +

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯                                               (7) 

Therefore, by substituting equation (7) with   𝑥 = −
 𝑡−𝑙 2

2
 , we obtain 

   𝑒−
 𝑡−𝑙 2

2 = 𝑒−
𝑙2

2 + 𝑒−
𝑙2

2 𝑙𝑡 + 𝑒−
𝑙2

2  −
1

2
+

𝑙2

2
 𝑡2 + 𝑒−

𝑙2

2  −
𝑙

2
+

𝑙3

6
 𝑡3                      (8) 

By taking the Elzaki transform to equation (8) and using the fact that the 

Elzaki transform is linear, we derived, 

      𝐸  𝑒−
 𝑡−𝑙 2

2  = 𝑒−
𝑙2

2  𝑣2 + 𝑙𝑣3 +  −1 + 𝑙2 𝑣4 +  −3𝑙 + 𝑙3 𝑣5                        (9) 

 

Lemma 2.  

The solution of the integro differential equation with a bulge function, 

            
𝑑𝑦

𝑑𝑡
= 𝑒−

 𝑡−𝑙 2

2 +  𝑦 𝑡 − 𝑢 𝑐𝑜𝑠 𝑢 𝑑𝑢
𝑡

0
    ,  𝑦 0 = 𝛿 

can be expressed by: 

  𝑦 𝑡 =
𝑒
−
𝑙2

2

720
𝑡 720 + 360𝑡𝑙 + 120𝑡2𝑙2 + 30 −3𝑙 + 𝑙3 𝑡3 + 6 −1 + 𝑙2 𝑡4 +  −3𝑙 + 𝑙3 𝑡5 +

𝛿 2+𝑡2 

2
(10) 

 

Proof.  

By taking the Elzaki  transform to the above equation, we have, 

                𝐸  
𝑑𝑦

𝑑𝑡
 = 𝐸  𝑒−

 𝑡−𝑙 2

2  + 𝐸   𝑦 𝑡 − 𝑢 𝑐𝑜𝑠 𝑢 𝑑𝑢
𝑡

0
                                 (11) 

Applying the convolution theorem, it yields, 

                𝐸  
𝑑𝑦

𝑑𝑡
 = 𝐸  𝑒−

 𝑡−𝑙 2

2  + 𝐸 𝑦 𝑡  𝐸 𝑐𝑜𝑠 𝑡                                               (12) 

And again by applying the convolution theorem and Lemma 1 to equation 

(12), we obtain, 

     
𝑇 𝑣 

𝑣
− 𝑣 𝑓 0 =

𝑒−
𝑙2

2  𝑣2 + 𝑙𝑣3 +  −1 + 𝑙2 𝑣4 +  −3𝑙 + 𝑙3 𝑣5 +
1

𝑣
 𝑇 𝑣 

𝑣2

1+𝑣2
                                                                                                                         (13) 

Or, 

  𝑇 𝑣 = 𝑒−
𝑙2

2  𝑣2 + 𝑙𝑣3 +  −1 + 𝑙2 𝑣4 +  −3𝑙 + 𝑙3 𝑣5 
𝑣  +𝑣3

1
+ 𝛿

𝑣2+𝑣4

1
         (14) 

We can next use the partial fraction method to equation (14), we have, 

  E f t   = e−
l2

2  v3 + lv4 + l2v5 +  −3l + l3 v6 +  −1 + l2 v7 + l −3l + l3 v8 + δ v2 + v4    (15) 
 

Then, the inverse Elzaki  transform can be employed to equation (14) to 

Obtain, 
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 y t =
e
−

l2

2

720
t 720 + 360tl + 120t2l2 + 30 −3l + l3 t3 + 6 −1 + l2 t4 +  −3l + l3 t5 +

δ 2+t2 

2
  (16)  

 

Example   
we consider the integro-differential equation with a bulge function from lemma 2. which is, 

            
dy

dt
= e−

 t−l 2

2 +  y t − u cos u du
t

0
    ,  y 0 = 1  

 

by fixing l = 2 , 6 ,   δ = 1 and   h = 0.1 in the trapezoidal rule, we compare 

the exact solution from equation (16) and the approximate solution obtained 

by the trapezoidal rule [4] as shown graphically. 

 
Figure 1: Exact solution and numerical solution of example for l = 2 and h = 0:1. 

 

 
Figure 2: Exact solution and numerical solution of example for l = 6 and h = 0:1. 

 

III. Conclusion 

In this work, we studied the integro-differential equations with a bulge function. We applied the 

trapezoidal rule for solving the numerical solutions. To approach the exact solution, we employed Elzaki  

transform, inverse Elzaki transform, Taylor series expansion and the convolution theorem. We can conclude, 
according to our examples, that the approximate solutions obtained by the trapezoidal rule in good agreement 

with the exact solution. 

 



Elzaki Transform and Integro-Differential Equation With a Bulge Function  

DOI: 10.9790/5728-11232528                                  www.iosrjournals.org                                                28 | Page 

References 
[1]. J. Biazar, H. Ghazvini, He’s variational iteration method for solving linear and non-linear systems of ordinary differential equations, 

Appl. Math. Comput. 191 (2007) 287–297. 

[2].  J.H. He, Variational iteration method for delay differential equations, Commun. Nonlinear Sci. Numer. Simul. 2 (4) (1997) 235–

236. 

[3]. J.H. He, Variational iteration method—a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech. 34 (1999) 

699–708. 

[4].  J.H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput. 114 (2000) 115–123. 

[5].  J.H. He, X.H. Wu, Variational iteration method: new development and applications, Comput. Math. Appl. 54 (2007) 881–894. 

[6]. S.A. Khuri, A. Sayfy, A Laplace variational iteration strategy for the solution of differential equations, Applied Mathematics Letters 

25 (2012) 2298–2305.                                 

[7].  E. Hesameddini and H. Latifizadeh, ―Reconstruction of variational iteration algorithms using the Laplace transform,‖ International 

Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no.11-12, pp. 1377–1382, 2009. 

[8].  G. C. Wu, D. Baleanu, ―Variational iteration method for fractional calculus - a universal approach by Laplace transform,‖ 

Advances in Difference Equations, 2013:18-27, 2013.  

[9].  X. J. Yang, D. Baleanu, ―Fractal heat conduction problem solved by local fractional variation iteration method,‖ Thermal Science, 

2012, Doi: 10.2298/TSCI121124216Y.  

[10]. G.C. Wu, Variational iteration method for solving the time-fractional diffusion equations in porous medium, Chin. Phys. B, 21 

(2012) 120504. 

[11]. G.C. Wu, D. Baleanu, Variational iteration method for the Burgers' flow with fractional derivatives-New Lagrange multipliers, 

Applied Mathematical Modelling, 37 (2012) 6183–6190. 

[12]. G.C. Wu, Challenge in the variational iteration method-a new approach to identification of the Lagrange mutipliers, Journal of King 

Saud University-Science, 25 (2013) 175-178. 

[13].  G.C. Wu. Laplace transform Overcoming Principle Drawbacks in Application of the Variational Iteration Method to Fractional 

Heat Equations, THERMAL SCIENCE 16( 4)(2012) 1257-1261 

[14]. Tarig M. Elzaki, Application of Projected Differential Transform Method on Nonlinear Partial Differential Equations with 

Proportional Delay in One Variable, World Applied Sciences Journal 30 (3): 345-349, 2014. DOI: 

10.5829/idosi.wasj.2014.30.03.1841. 

[15].  Tarig M. Elzaki, and  J. Biazar, Homotopy Perturbation Method and Elzaki Transform for Solving System of Nonlinear Partial 

Differential Equations, World Applied Sciences Journal 24 (7): 944-948, 2013. DOI: 10.5829/idosi.wasj.2013.24.07.1041. 

[16]. Tarig. M. Elzaki - Salih M. Elzaki –Elsayed A. Elnour, On the New Integral Transform ―ELzaki Transform‖ Fundamental 

Properties Investigations and Applications, Global Journal of Mathematical Sciences: Theory and Practical. ISSN 0974-3200 

Volume 4, Number 1 (2012), pp. 1-13 © International Research Publication House. 

[17]. Tarig M. Elzaki, and Salih M. Elzaki, On the Connections Between Laplace and Elzaki Transforms, Advances in Theoretical and 

Applied Mathematics. ISSN 0973-4554 Volume 6, Number 1 (2011), pp. 1-  


