On pairwise δ_I - semi-homeomorphism

V.Indhumathi*, M.Maheswari* and A.Anis Fathima**

*Department of Mathematics, N.G.M College, Pollachi-642 001, Tamil Nadu, India Department of Mathematics(CA), Sri GVG Visalakshi College for Women, Udumalpet-642 128, Tamil Nadu, India

Abstract: In this paper, the notions of pairwise δ_1 -semi-open functions, pairwise δ_1 -semi-closed functions, pairwise δ_l -semi-homeomorphism and pairwise δ_l^* -semi-homeomorphism are introduced and investigated some characterizations of these functions in ideal bitopological spaces.

Keywords and Phrases: pairwise δ_l -semi-open functions, pairwise δ_l -semi-closed functions, pairwise δ_l semi-homeomorphism, pairwise δ_I^* -semi-homeomorphism.

I. Introduction

In 1968, the concept of δ -open sets in topological spaces are introduced by

N. V. Velicko [7]. In 2005, δ-open sets are introduced by S. Yuksel et al. [8] in ideal topological spaces. A triple (X, τ_1, τ_2) where X is a non-empty set and τ_1 and τ_2 are topologies on X is called a bitopological space. In 1963, Kelly [4] initiated the systematic study of such spaces. The concept of ideals in topological spaces has been introduced and studied by Kuratowski [5] and Vaidyanathasamy [6]. An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal bitopological space is a bitopological space (X, τ_1, τ_2) with an ideal I on X and is denoted by (X,τ_1,τ_2,I) . For a subset A of X and j=1,2

 $A_{\tau_i}^*(I) = \{ x \in X : A \cap U \notin I \text{ for every } U \in \tau_i(X, x) \} \text{ is called the local function [5] of } A \text{ with respect to } I \text{ and }$ τ_i . We simply write A_i^* instead of $A_{\tau i}^*(I)$ in case there is no chance for confusion. For every ideal bitopological space

 (X,τ_1,τ_2,I) , there exists a topology $\tau_i^*(I)$, finer than τ_i , generated by $\beta(I,\tau_i)=$

 $\{U - I : U \in \tau_i \text{ and } I \in I\}$, but in general $\beta(I, \tau_i)$ is not always a topology [3]. Additionally, $\tau_i - cl^*(A) = A \cup A_i^*$ is a Kuratowski closure operator [6] for

 $\tau_i^*(I)$. In this paper, the notions of δ_I -semi-open functions, pairwise δ_I -semi-closed functions, pairwise δ_I semi-homeomorphism and pairwise δ_1^* -semi-homeomorphism are introducted and study some of its properties in ideal bitopological spaces.

II. **Preliminaries**

Throughout this paper, (X, τ_1, τ_2, I) , $(Y, \sigma_1, \sigma_2, I)$ and $(Z, \gamma_1, \gamma_2, I)$

(or simply X, Y and Z) always mean ideal topological spaces on which no separation axioms are assumed. For a subset A of a space (X, τ_1, τ_2, I) ,

 $\tau_i - int(A), \tau_j - cl(A),), \tau_i - int_{\delta}(A), \tau_j - cl_{\delta}(A), (i,j) - sint_{\delta_1}(A), \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote } \tau_i - interior, \text{ and } (i,j) - scl_{\delta_1}(A) \text{ denote }$ τ_i -closure, τ_i - δ -interior, τ_i - δ -closure, (i,j)- δ_l -semi-interior and (i,j)- δ_l -semi-closure of A respectively.

Definition 2.1. [1] A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is said to be (i, j)- δ_I -semi-open if $A \subseteq \tau_i - cl^*(\tau_i - int_\delta(A)).$

Definition 2.2 [2] A function $f: (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be p- δ_I -semi-continuous $f^{-1}(V)$ is (i, j)- δ_1 -semi-open in (X, τ_1, τ_2, I) for each σ_i -open set V of (Y, σ_1, σ_2) .

Lemma 2.3 [1] For a subset $A \subseteq (X, \tau_1, \tau_2, I)$, the following hold:

- 1. $(i,j) scl_{\delta_1}(X A) = X (i,j) sint_{\delta_1}(A)$
- 2. $(i,j) \sin t_{\delta_1}(X A) = X (i,j) \operatorname{scl}_{\delta_1}(A)$

Pairwise δ_I -semi-open and pairwise δ_I -semi-closed functions

Definition 3.1. A function $f:(X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, I)$ is called pairwise $-\delta_1$ -semi-open (briefly p- δ_1 semi-open) if for each τ_i – open set U of X, f(U) is (i,j)- δ_I -semi-open in Y.

Definition 3.2. A function $f:(X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, I)$ is called pairwise $-\delta_1$ -semi-closed (briefly p- δ_1 semi-closed) if for each τ_i – closed set U of X, f(U) is (i,j)- δ_I -semi-closed in Y.

Example 3.3. Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$,

 $\tau_2 = \{ \phi, \{a, c\}, X \}$ and let $Y = \{p, q, r\}$ with topologies $\sigma_1 = \{ \phi, \{q\}, \{r\}, \{q, r\}, Y \}$,

$$\begin{split} &\sigma_2 = \{\ \varphi, \{q\}, \{r\}, \{q, r\}, \{p, r\}, Y\} \ \text{and an ideal } I = \{\varphi, \{p\}\}. \ \text{Let } f: (\ X, \tau_1, \ \tau_2, I\) \\ &\rightarrow (\ Y, \sigma_1, \ \sigma_2, \ I) \ \text{be a function defined as } f(a) = q, f(b) = r \ \text{and } f(c) = p. \ \text{Then } f \ \text{is } p - \delta_{I^-} \ \text{semi-open and } \\ &p - \delta_{I^-} \ \text{semi-closed}. \end{split}$$

Theorem 3.4. A function $f: (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, I)$ is $p-\delta_I$ -semi-open if and only if for each $x \in X$ and each neighborhood U of x, there exists $V \in (i, j)-\delta_I SO(Y)$ containing f(x) such that $V \subseteq f(U)$.

Proof: Suppose that f is $p - \delta_I$ -semi-open. For each $x \in X$ and each neighborhood U of x, there exists an open set, U_0 such that $x \in U_0 \subseteq U$. Since f is $p - \delta_I$ -semi-open, $V = f(U_0) \in (i,j) - \delta_I SO(Y)$ and $f(x) \in V \subseteq f(U)$. Conversely, let U be an τ_i - open set of X. For each $x \in U$, there exists $V_x \in (i,j) - \delta_I SO(Y)$ such that $f(x) \in V_x \subseteq f(U)$. Therefore, we obtain $f(U) = \bigcup \{V_x | x \in U\}$ and hence f(U) is $(i,j) - \delta_I$ -semi-open in Y, by Theorem 3.16 of [1]. This implies that f is $p - \delta_I$ - semi-open.

Theorem 3.5. A bijective function $f:(X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2, I)$ is $p-\delta_I$ -semi-open if and only if for each subset $W \subseteq Y$ and each τ_i – closed set F of X containing $f^{-1}(W)$ there exists an (i,j)- δ_I -semi-closed set $H \subseteq Y$ containing W such that $f^{-1}(H) \subseteq F$.

Proof: Necessity: Suppose that f is a p- δ_I -semi-open function. Let W be any subset of Y and F is a τ_i - closed subset of X containing $f^{-1}(W)$. Then X - F is τ_i -open and since f is p- δ_I -semi-open, f(X - F) is (i,j)- δ_I -semi-open in Y. Hence H = Y - f(X - F) is p- δ_I -semi-closed in Y. $f^{-1}(W) \subseteq F$ implies that $W \subseteq H$. Moreover, we obtain $f^{-1}(H) = f^{-1}(Y - f(X - F)) = f^{-1}(Y) - f^{-1}(f(X - F)) \subseteq X - (X - F) = F$. Hence $f^{-1}(H) \subseteq F$. Sufficiency: Let U be any τ_i - open set of X and W = Y - f(U). Then $f^{-1}(W) = f^{-1}(Y - f(U)) = f^{-1}(Y) - f^{-1}(Y) = f^{-1}(Y)$

f⁻¹(f(U)) \subseteq X – U and X – U is τ_i - closed. By hypothesis, there exists an (i,j)- δ_1 -semi-closed set Hof Y containing W such that f⁻¹(H) \subseteq X – U. Then we have f⁻¹(H) \cap U = φ and H \cap f(U) = φ . Therefore we obtain Y – f(U) \supseteq H \supseteq W = Y – f(U) and f(U) is (i,j)- δ_1 -semi-open in Y. This shows that f is p - δ_1 -semi-open.

Theorem 3.6. For a function $f: (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, I)$, the following are equivalent:

- 1. f is p- δ_I -semi-open.
- 2. For every subset A of X , $f[\tau_i int(A)] \subseteq (i, j) sint_{\delta_1}(f(A))$

Proof: (1) \rightarrow (2): Let f be p- δ_1 -semi-open. Since τ_i – int(A) is τ_i -open in X,

 $f[\tau_i - int(A)]$ is $(i, j) - \delta_l$ -semi-open in Y. Then we have $(i, j) - sint_{\delta_l}(f[\tau_i - int(A)]) = f[\tau_i - int(A)] \subseteq f(A)$. This implies $f[\tau_i - int(A)] \subseteq (i, j) - sint_{\delta_l}(f(A))$.

(2) \rightarrow (1): Let A be an τ_i -open set in X. Then, $f(A) = f[\tau_i - \text{int}(A)] \subseteq (i, j) - \text{sint}_{\delta_I}(f(A))$ and so $(i, j) - \text{sint}_{\delta_I}(f(A)) = f(A)$. Therefore f(A) is $(i, j) - \delta_I$ -semi-open in Y. Hence f is p- δ_I -semi-open.

Theorem 3.7. For a function $f: (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, I)$, the following are equivalent:

- 1. f is p- δ_1 -semi-closed.
- 2. For every subset A of X, $(i,j) scl_{\delta_1}(f(A)) \subseteq f[\tau_i cl(A)]$.

Proof: Obvious from the Theorem 3.6 and Lemma 2.3.

Theorem 3.8. For any bijective function $f:(X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, I)$, the following are equivalent:

- 1. f^{-1} is p- δ_I -semi-continuous.
- 2. f is p- δ_I -semi-open.
- 3. f is p- δ_1 -semi-closed.

Proof: (1) \Rightarrow (2): Let U be a τ_i -open set of X. Then, by assumption, $(f^{-1})^{-1}(U) = f(U)$ is p- δ_i -semi-open in Y. Hence f is p- δ_i -semi-open.

(2) \Rightarrow (3): Let F be a τ_i -closed set of X. Then F^c is τ_i -open set in X. Since

f is p- δ_I -semi-open, $f(F^c)$ is (i,j)- δ_I -semi-open in Y. Hence f is p- δ_I -semi-closed.

(3) \Rightarrow (1): Let F be a τ_i -closed set of X. Then by assumption f(F) is (i, j)- δ_I -semi-closed set in Y and we have f(F) = $(f^{-1})^{-1}(F)$. Hence f^{-1} is p- δ_I -semi-continuous.

IV. Pairwise δ_I -semi-homeomorphism and pairwise δ_I^* -semi-homeomorphism

Definition 4.1. A bijective function $f: (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, I)$ is called pairwise $-\delta_I$ -semi-homeomorphism (briefly (i, j)- δ_I -semi-homeomorphism) if both f and f^{-1} are is p- δ_I -semi-continuous.

The family of all $p-\delta_l$ -semi-homeomorphisms of an ideal bitopological space (X, τ_1, τ_2, I) onto itself is denoted by $(i, j) - S_{\delta_l} H(X, \tau_1, \tau_2, I)$.

Theorem 4.2. Let $f:(X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, I)$ be a bijective and $p-\delta_I$ -semi-continuous function. Then the following are equivalent.

- 1. f is p- δ_I -semi-open.
- 2. f is p- δ_1 -semi-homeomorphism.
- 3. f is p- δ_I -semi-closed.

Proof: (1) \Rightarrow (2): Let V be τ_i -open set of X. Then, by assumption, f(V) is (i, j)- δ_l -semi-open in Y. But $f(V) = (f^{-1})^{-1}(V)$ and so $(f^{-1})^{-1}(V)$ is (i, j)- δ_l -semi-open in Y. This shows that f^{-1} is p- δ_l -semi-continuous. Hence f is p- δ_l -semi-homeomorophism.

(2) \Rightarrow (3): Let F be a τ_i -closed set in X. Then by assumption f^{-1} is p- δ_l -semi-continuous and so $(f^{-1})^{-1}(F) = f(F)$ is (i, j)- δ_l -semi-closed in Y. Thus f is p- δ_l -semi-closed.

(3) \Rightarrow (1): Let V be a τ_i -open in X. Then V^c is τ_i -closed in X. By assumption $f(V^c)$ is $(i,j)-\delta_I$ -semi-closed in Y. But $f(V^c)=(f(V))^c$. This implies that $(f(V))^c$ is $(i,j)-\delta_I$ -semi-closed in Y and so f(V) is $(i,j)-\delta_I$ -semi-open in Y

Hence f is p- δ_I -semi-open.

Definition 4.3. A bijective function $f: (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2, I)$ is called pairwise - δ_I^* -semi-homeomorphism (briefly p- δ_I^* -semi-homeomorphism) iff both f and f^{-1} are is p- δ_I -semi-irresolute.

Remark 4.4. 1. The spaces (X, τ_1 , τ_2 , I) and (Y, σ_1 , σ_2 , I) are p- δ_I^* -semi-homeomorphic if there exists a p- δ_I^* -semi-homeomorphism from (X, τ_1 , τ_2 , I) onto (Y, σ_1 , σ_2 , I).

2. The family of all p- δ_1^* -semi- homeomorphisms of an ideal bitopological space (X, τ_1 , τ_2 , I) onto itself is denoted by p- $S_{\delta_1}^*H(X)$.

Theorem 4.5. If the bijective function $f: (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2, I)$ is an $p-\delta_1^*$ -semi-homeomorphism, then $(i, j) - scl_{\delta_1}(f^{-1}(B)) = f^{-1}((i, j) - scl_{\delta_1}(B))$ for every $B \subseteq Y$.

Proof. Since f is p- δ_1^* -semi-homeomorphism, then both f and f⁻¹ are p- δ_1 -semi-irresolute. Let B is a subset of Y. Since (i, j) $-\operatorname{scl}_{\delta_1}(B)$ is (i, j)- δ_1 -semi-closed in Y, f⁻¹ $\left((i,j) - \operatorname{scl}_{\delta_1}(B)\right)$ is (i,j)- δ_1 -semi-closed in X. But

 $(i,j) - scl_{\delta_I}(f^{-1}(B))$ is the smallest $(i,j) - \delta_I$ -semi-closed set containing $f^{-1}(B)$. $(i,j) - scl_{\delta_I}(f^{-1}(B)) \subseteq (i,j) - scl_{\delta_I}(f^{-1}(B))$

 $f^{-1}((i,j)-scl_{\delta_1}(B))$. Again, $(i,j)-scl_{\delta_1}(f^{-1}(B))$ is $(i,j)-\delta_1$ -semi-closed in X. Since f^{-1} is $p-\delta_1$ -semi-irresolute, $f((i,j)-scl_{\delta_1}(f^{-1}(B)))$ is $(i,j)-\delta_1$ -semi-closed in Y. Now

 $B = f(f^{-1}(B)) \subseteq f((i, j) - scl_{\delta_1}(f^{-1}(B))).$

$$\begin{split} &(i,j)-scl_{\delta_{I}}(B)\subseteq \Big((i,j)-scl_{\delta_{I}}(f((i,j)-scl_{\delta_{I}}(f^{-1}(B))))\Big)=f\Big((i,j)-scl_{\delta_{I}}\big(f^{-1}(B)\big)\Big). \text{ This implies} \\ &f^{-1}\left((i,j)-scl_{\delta_{I}}(B)\right)\subseteq f^{-1}\left(f((i,j)-scl_{\delta_{I}}(f^{-1}(B)))\right)=(i,j)-scl_{\delta_{I}}\big(f^{-1}(B)\big). \text{ Thus } f^{-1}\left((i,j)-scl_{\delta_{I}}(B)\right)\subseteq (i,j)-scl_{\delta_{I}}\big(f^{-1}(B)\big). \end{split}$$

Corollary 4.6. If $f:(X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, I)$ is an p- δ_1^* -semi-homeomorphism, then

$$(i,j)-scl_{\delta_1}(f(B)\,)=f\Big((i,j)-scl_{\delta_1}(B)\,\Big)\ \ \text{for every } B\subseteq X.$$

Proof. Obvious from the Lemma 2.3 and Theorem 4.5

Corollary 4.7. If $f:(X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2, I)$ is a $p - \delta_I^*$ -semi-homeomorphism then $f((i, j) - scl_{\delta_I}(B)) = ((i, j) - scl_{\delta_I}(f(B)))$ for every $B \subseteq X$.

Proof: For any set $B \subseteq X$,

$$\begin{split} (i,j) - & \operatorname{sint}_{\delta_{1}}(B) &= ((i,j) - \operatorname{scl}_{\delta_{1}} f(B^{c}))^{c}. \\ f\Big((i,j) - & \operatorname{sint}_{\delta_{1}}(B)\Big) = f(((i,j) - \operatorname{scl}_{\delta_{1}} f(B^{c}))^{c}). \\ &= (f((i,j) - \operatorname{scl}_{\delta_{1}}(B^{c})))^{c}. \end{split}$$

Then by corollary 4.6, we see that,

$$\begin{split} f\Big((i,j)-sint_{\delta_{I}}(B)\Big) &= \Big((i,j)-scl_{\delta_{I}}(f(B^{c}))\Big)^{c} \\ &= \Big((i,j)-sint_{\delta_{I}}(f(B))\Big). \end{split}$$

Theorem 4.8 If $f: (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, I)$ and $g: (Y, \sigma_1, \sigma_2, I) \rightarrow$

 $(Z, \gamma_1, \gamma_2, I)$ are p- δ_1^* -semi-homeomorphism then the composition gB f:

 $(X, \tau_1, \tau_2, I) \rightarrow (Z, \gamma_1, \gamma_2, I)$ is also p- δ_I^* -semi-homeomorphism.

Proof: Let U be $(i,j)-\delta_{l}$ - semi-open in Z. Since f and g are p- δ_{l}^* -semi-homeomorphisms, $f^{-1}(g^{-1}(U)) = (gB f)^{-1}(U)$ is $(i,j)-\delta_{l}$ - semi-open in X. This implies that gB f is $(i,j)-\delta_{l}$ - semi-irresolute. Again, let G be an

 $(i,j)-\delta_l$ - semi-open in X. Since f is $p-\delta_l^*$ -semi-homeomorphism, $(f^{-1})^{-1}(G)=f(G)$ is $(i,j)-\delta_l$ - semi-open in Y. Since g is $p-\delta_l^*$ -semi-homeomorphism, $(g^{-1})^{-1}(f(G))=g(f(G))=(gB\ f\)\ (G)=((gB\ f)^{-1})^{-1}(G)$ is $(i,j)-\delta_l$ -semi-open in Z. This implies that $(gB\ f)^{-1}$ is $(i,j)-\delta_l$ - semi-irresolute. Since f and g are $p-\delta_l^*$ -semi-homeomorphisms, f and g are bijective and so $gB\ f$ is bijective. Hence $gB\ f$ is $p-\delta_l^*$ -semi-homeomorphism.

Theorem 4.9. The set $p-S^*_{\delta_1}H(X)$ is a group under composition of functions.

Proof: Let f, $g \in p$ - $S_{\delta_1}^*H(X)$. Then fB $g \in p$ - $S_{\delta_1}^*H(X)$ by Theorem 4.8. Since f is bijective, $f^{-1} \in p$ - $S_{\delta_1}^*H(X)$. This completes the proof.

Theorem 4.10. If $f: (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2, I)$ is an $p-\delta_I^*$ -semi-homeomorphism. Then f induces an isomorphism from the group $p-S_{\delta_I}^*H(X)$ onto the group $p-S_{\delta_I}^*H(Y)$.

 $\textbf{Proof:} \text{ Let } f \in p\text{--} S^*_{\delta_1} H(X). \text{ Then define a map } \chi_f : p\text{--} S^*_{\delta_1} H(X) \to p\text{--} S^*_{\delta_1} H(Y)$

by $\chi_f(h) = fBhBf^{-1}$ for every $h \in p$ - $S_{\delta_1}^*H(X)$. Let $h_1, h_2 \in p$ - $S_{\delta_1}^*H(X)$. Then $\chi_f(h_1 B h_2) = f B(h_1 B h_2)Bf^{-1} = f B(h_1 B f^{-1}BfB h_2)Bf^{-1}$

$$= (f B h_1 B f^{-1})B(fB h_2 B f^{-1})$$

$$= \chi_f(h_1)B \chi_f(h_2).$$

Since $\chi_f(f^{-1}B \ h \ Bf) = h$, χ_f is onto. Now, $\chi_f(h) = I$ implies $fBhBf^{-1} = I$. That implies h = I. This proves that χ_f is one-one. This shows χ_f is an isomorphism.

Theorem 4.11. p- δ_1^* -semi-homeomorphism is an equivalence relation in the collection of all ideal bitopological spaces,

Proof: Reflexive and Symmetric properties are obvious and Transitive property follows from Theorem 4.8.

References

- [1]. V.Inthumathi and A.Anis Fathima, On $(i, j)-\delta_{i}$ semi-open sets (Submitted).
- [2]. V.Inthumathi, M.Maheswari and A.Anis Fathima, On p-δ₁- semi-continuous and p-δ₁-semi-irresolute functions (Accepted in Journal of Advanced Studies in Topology).
- [3]. D.Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- [4]. J.C.Kelly, Bitopological spaces, Proc.London Math.Soc., 3(1963), 71-89.
- [5]. K.Kuratowski, Topology, Vol.I, Academic Press, New York, (1996).
- [6]. R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [7]. N.V. Velicko, H-closed Topological Spaces, Amer. Math. Soc. Transl., 78(2) (1968), 103-118.
- [8]. S.Yuksel, A.Acikgoz and T.Noiri, On δ I continuous functions, Turk. J.Math., 29(2005), 39-51.