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Abstract: An analytical model under the no resonance condition is developed to determine the lift on inline 

oscillating circular cylinder under the lock-on regime. From numerical simulations of the flow field, lift 

coefficient data are obtained over the inline oscillating circular cylinder. Spectral analysis is applied to the data 

to characterize the non-linear coupling between the vortex shedding frequency and its third harmonic. From 

this analysis it is concluded that the van der Pol equation should be used to model the lift coefficient on inline 

oscillating circular cylinder in the lock-on regime. 
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I. Introduction 

 

Drag and lift forces on circular cylinder are directly related to the vortex shedding pattern in their 

wakes. Reducing these forces, reducing vortex induced-vibrations or augmenting the lift component would be 

the area of interest. To affect the wake pattern and associated forces on the circular cylinder, different forcing 

conditions have been shown significantly and one such condition is oscillation forcing. Studies by Tokumaru 

and Dimostakis [1], Lu and Sato [2], and Chou [3] on rotationally oscillating cylinder showed a significant drag 

reduction under specific forcing conditions. Choi et al. [4] showed that the maximum amplitude of the lift 

coefficient is increased in the lock-on region. 

 

The optimal approach to assess effects of cylinder forcing on the wake structure and the lift and drag 

forces would be a time-domain numerical simulation of the fluid flow and the structure’s motion. On the other 
hand, and for different purposes such as optimization of the forcing parameters, analytical models have been 

proposed as a more efficient alternative for determining fluctuating forces on oscillating circular cylinder. One 

of the first models proposed for vortex-induced vibrations of circular cylinder is the one by Hartlen and Currie 

[5]. In that model, the lift presented by Rayleigh equation, is linearly coupled to the cylinder’s motion. Using a 

combination of approximate solutions of the Rayleigh and Van der Pol equations and amplitude and phase 

measurements of higher-order spectral moments, Nayfeh, Owis and Hajj [6] showed that the lift coefficient, on 

the stationary circular cylinders should be modeled by the self-excited Van der Pol equation. Isam Janajreh and 

Muhammad Hajj [7] also proved the same result for the lift coefficient, on rotationally oscillating cylinder under 

the resonance condition. The extension of such models to develop an analytical model for the lift force on inline 

oscillating circular cylinder would be very beneficial for modeling vortex-induced vibrations, drag reduction or 

lift augmentation. 
 

In this model we have determined an analytical model for the prediction of the lift on inline oscillating 

circular cylinder under no resonance condition. Numerical simulations are performed to generate a data base 

from which parameters for the developed model are determined. Amplitude and phase measurements from 

higher order spectral parameters are matched with approximate solutions of the model to characterize the 

nonlinearities in the model and determine these parameters.  

 

II. CFD Simulations 
 
Direct Numerical simulations of the unsteady incompressible Navier-Stokes equations for different 

cases of the flow over an oscillating circular cylinder were performed. All simulations were performed at

100/Re   DU . The computational domain extended 5 cylinder diameters upstream, 10 diameters 

cross-stream on each side and 20 diameters down-stream. The domain was staggered by multiple blocks with a 

quadratic cell type mesh, in order to provide more faces and to enhance the cell communication and 

computational accuracy. The cylinder wall was padded with a boundary layer mesh to accurately capture the 
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viscous layer. The first cell thickness is 0.0002D and with a linear growth rate of 1.05. Imposed cylinder 

rotations were determined by two parameters, namely, the non-dimensional amplitude, 5.02/max UD  

where max is the maximum forcing angular velocity, and the forcing frequency 1.0/ UDf f , where ff  is 

the dimensional forcing frequency. 

2.1 Spectral Analysis 

 

Traditional signal processing techniques used in data analysis are based on second-order statistics, such 

as the power spectra which are the Fourier transforms of the second-order correlation functions. These quantities 

yield an estimate of energy content of the different frequency components in a signal or the coherence between 

equal frequency components in two signals. In many cases, higher-order spectral moments can be used to obtain 

more information from signals or time series. In nonlinear systems, frequency components interact to pass 

energy to other components at their sum and/or difference frequency. Because of this interaction, the phases of 
the interacting components are coupled. This phase coupling can be used for the detection of nonlinear 

interactions between frequency components in one or more time series. Faced with an unknown system in terms 

of its nonlinear characteristic, these moments can be applied to identify quadratic and cubic nonlinearities. The 

bi-spectrum [8, 9, 10], which is the next higher order spectrum to power spectrum, has been established as a tool 

to quantify the level of phase coupling among three frequency components and thus identify quadratic 

nonlinearities. To this work our particular interest is the tri-spectrum [11], which is the next higher order 

moment to the bi-spectrum, and which is used to detect and characterize cubic nonlinearities expected to be a 

part of the lift coefficient. 

  

Above introduced higher order spectral moments are multi-dimensional Fourier Transforms of higher-

order statistical moments. For any real random process )(tx and its stationary moments up to order n, one could 

define the nth order moment function as 

                                     
)}()......()({),........,,( 11121   nnn txtxtxEm 

                                      (1) 

Where {}E  represents ensemble averaging and 121 ,........,, n
 
represents time differences. 

By Fourier Transforming the second, third and fourth-order moment functions, one obtains, respectively, the 

auto-power spectrum, auto-bispectrum and auto-trispectrum [11]. Then the hierarchy of higher-order moment 

spectra is expressed as 
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Where )( fXT is the Fourier Transform of )(tx define over a time durationT , and the superscript is used to 

denote complex conjugate. The higher-order spectral moments and their normalized counterparts are capable of 

identifying nonlinear coupling among frequency components and quantifying their phase relations [8, 9,10]. In 

this work, we will stress the use of the auto-trispectrum to determine the phase relation between the vortex 

shedding component and its third harmonic. This relation will be used in determining the parameters of the 

proposed analytical model. 

 

III. Analytical Model for the Lift 
 

The lift coefficient on inline oscillating cylinder is modeled by a parametrically excited van der Pol 

oscillator which is written as 

                                          

                                          0)cos(222  LLLLLsL CtCCCCC  
                                  (5) 

 

Where s is the shedding frequency,  and  represents the linear and nonlinear damping coefficients,   

and  are respectively the amplitude and phase of the external harmonic function which represents the inline 
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oscillations. To balance the damping, nonlinearities and parametric excitation in equation (5),  ,  and are 

scaled as  ,  and . The parametrically excited van der Pol equation is then written as 

                           

                          0)cos(222  LLLLLsL CtCCCCC  
                                            (6) 

 

Using the method of multiple scales [12, 13], an analytical approximate solution is derived for equation (6) for 

the no-resonance condition, i.e.  is away from s2 . The approximate solution is of the form  
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In Equation (7), the amplitude a  and phase  are governed by 
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When a and are constants in equation (8), i.e., for steady-state oscillations, the solution given in equation (7) 

represents a periodic motion which can be written in complex form as 
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The Fourier transform  L
,
of )(tCL is then given by 
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Examining the expression for  L given in equation (10), it is noted that the solution thus contains components 

with frequencies at s , s3 ,
 s  and s . The amplitudes and phases of these components are given 

by 
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The auto-trispectrum is then used to identify different frequency components in the above solution. Two of these 

moments are  
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The magnitude of the auto-trispectrum ),,( sssllllS   depends on the coefficient of the cubic nonlinearity 

.Its phase, given by    ss  33  , is equal to
2

 . The magnitude of the auto-trispectrum

),,( sssllllS   depends on the coefficient of the parametric excitation  . Its phase is equal to −π. For 

nonlinear systems that can be modeled by the parametrically excited van der Pol equation, these quantities can 

be used to determine  and  and determine the suitability of using the harmonically-excited van der Pol 

equation to model the lift on a forced inline oscillating cylinder. For the parametrically excited van der Pol 

equation with no resonance, the steady state oscillations are obtained by setting 0a in equation (8). Under 

those conditions, the amplitude of the vortex shedding frequency component, a , is related to the damping and 

nonlinear damping coefficients by 
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To determine linear and nonlinear damping coefficients, and the excitation parameter in equation (6) from the 
amplitude and phases of the Fourier components in the time series, the lift coefficient is re-written as 
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By comparing equation (18) with equation (7) and applying equation (17), one obtains 
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Alternatively, and as explained above,   and can be obtained from the magnitude of the auto-trispectra 

defined in equations (15) and (16). Rearranging equations (15) and (16), one obtains                                                                       
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Using the Fourier transform of )(tCL
at frequencies s , s and s , the phase of parametric 

excitation can be determine as 

                                         

                                                 ss LL                                                                      (25)   

                                          or          ss LL  
                                                                   (26)

 

 

Where   SL  is the phase angle of  SL  ,   SL   is the phase angle of  SL   and

  SL   is the phase angle of  SL  . 

 

IV. Results and Discussion 
 

Vorticity contours in the wake of the cylinder subjected to inline oscillations under no resonance 

conditions are presented in Fig.1. The vortex shedding pattern presented in this Fig.1 is compared with the 

pattern observed when the cylinder is held stationary as presented in Fig. 2. Vortex shedding patterns observed 

in both the cases are nearly similar. 

 

 
 

Figure 1: Vorticity contour in the wake of inline oscillating cylinder. Forcing condition: UD 2/max  

4.0/,01.0 UDf s
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 2: Vorticity contour in the wake of stationary cylinder. Forcing condition: 1747.0/  UDfSt s
 

(adapted from Isam Janajreh and Muhammad Hajj [7]) 
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Table 1. Lift spectral parameters for the inline 

oscillating cylinder (no resonance case) 

Table 2: Lift model parameters in parametrically 

excited van der Pol equation (no resonance case) 

 

The above notion is further strengthened by the lift and drag time series in the lock-on case, presented 

in Fig.3. Both coefficients are characterized by perfect sinusoidal variations. The lift has a major frequency that 
corresponds to the vortex shedding frequency. The major frequency component in the drag is twice that of the 

lift. This sinusoidal behavior indicates a perfect vortex shedding as would be observed in the stationary case. 

 

To verify the lift coefficient model, the lift spectral parameters and lift model parameters in 

parametrically excited van der Pol equation are obtained from the power spectra. In this CFD simulation post-

processing (Fast Fourier Transform, FFT) was performed in Ansys fluent, Tecplot-360 and Matlab for the graph 

of power spectra. And then result from the Matlab software was used to identify lift spectral parameters.  

  

      
 

Figure 3: Time histories of the lift and drag coefficients on the inline oscillating cylinder. Forcing condition: 

4.0/.,01.02/max   UDfUD f  

 

The power spectrum of the lift coefficient on the inline oscillating cylinder, obtained from the CFD 

simulations at an excitation frequency of 0.4 Hz and amplitude near 0.01 is shown in figure 5. In this figure, 

peaks at sss  ,3,  and s  are noted. These peaks show that there is no resonance under these 

conditions.Values of the spectral parameters f ,
1a ,

2a , 3a , 
4a , ))(( sL  , ))(( SL   and 

))(( SL  are shown in Table 1. These values are then used to estimate , ,   and  based on 

equations 19, 20, 21 and 24. These parameters are given in Table 2. They can be used to predict the steady-state 
lift by integrating equation 5. 

 

 

 

  
Ω 0.4  Ω 0.4 

y/D 0.01  y/D 0.01 

f 0.1633  ξ from L(Ω -ωs) 0.0311 

a1 0.17  ξ from L(Ω +ωs) 0.0138 

a2 0.004  τ (rad) 2.225 

a3 0.0005  μν 0.0242 

a4 0.0012  αν  from L(3ωs) 3.3469 

Φ(L(ωs)) 1.84    

Φ(L(Ω -ωs)) 3.525    

Φ(L(Ω +ωs)) 3.33    

 

Validation of the analytical model and its parameters is demonstrated by comparing its integrated time 

series with the one obtained from the original numerical simulation. This comparison is presented in Fig.4. 

Obviously, the derived model predicts the sinusoidal characteristic of the vortex shedding. The difference 

observed at the high frequencies is relatively insignificant when comparing it with the spectral amplitudes of the 

vortex shedding frequency. This difference may be due to the level of accuracy in the integration of the 

analytical model. Comparison of the two time series in Fig.4 shows that the identified parameters can be used to 

correctly determine the amplitude variations in the lift time series. 
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Figure 4: Comparison of the analytically modeled (red line) and numerically simulated (blue line) lift time 

series 

 
 

Figure 5: The power spectra of the numerically simulated lift coefficients obtained from Matlab Software 

 

V. Conclusion 

 In this study, an analytical model for the prediction of the lift on an inline oscillating cylinder in the 

lock-on regime has been developed. The parameters of the developed model were determined from a numerical 

simulation of the flow field using higher-order spectral analysis of the lift data. Higher-order spectral analysis of 

the lift data yielded relevant quantities that were matched with approximate solutions of the assumed model. 

Fast Fourier Transform (FFT) was performed using Matlab. The validity of the model has been demonstrated by 
comparing time domain characteristics of the analytically modeled lift coefficient with the numerically 

simulated data. Numerical simulation using Ansys fluent software is performed to validate the analytical model 

for the lift on an inline oscillating cylinder under no resonance. The perfect matching of the lift time series 

shows that Van der Pol oscillator should be used to model the lift on an inline oscillating cylinder.  
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