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Abstract: We extend some existing results on the zeros of polynomials by considering more general coefficient
conditions. As special cases the extended results yield much simpler expressions for the upper bounds of zeros
than those of the existing results. The zero-free regions of analytic functions subject to similar coefficient
conditions are also investigated.
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I.  Introduction

Many results on the location of zeros of polynomials are available in the literature. A.Joyal, G.Labelle
and Q.I.Rahman [3] obtained the generalized results by considering the coefficients to be real, instead of being
only positive. In literature [5-11] attempts have been made to extend and generalize the Enestrom-Kakeya
theorem. Aziz and Zargar [4] also relaxed the hypothesis of Enestrdm-Kakeya theorem in a different way.
Existing results in the literature also show that there is a need to find bounds for special polynomials, for
example, for those having restrictions on the coefficient, there is always need for refinement of results in this
subject. Among them the Enestrom-Kakeya theorem [1,2] given below is well known in the theory of zero
distribution of polynomials.

Theorem (Enestrom-Kakeyatheorem): LetP(z)=X.I_, a;z'be a polynomial of degree n such that 0 <a, < a; <
a, <, ..., < a, then allthe zeros of P(z) lie in |z|<1.

Here we establish more generalized results by using Enestrém-Kakeya Theorem.

Theorem 1. Let P(z) =X ,a;z' be a polynomial of degree n > 2and 2< m < nwith real
coefficients such that
dp = dp—1 < dn—2 = dn_3 < dn_4 = > dn_m+1 <a

= >an—m—1 2"‘33 Zaz Zal Zao
if both n and (n-m) are even or odd

n-m =—

(OR)
A, =z a1 <a, 223,353, 4=2"""<Aq,_n41 = Ay_m = Ap_m_1 = "Az = Ay = a1 = Q
if nis even and (n-m) is odd (or) if n is odd and (n-m) is even

then all the zeros of P(z) lie in
1
|Z| < — [ |aO| —ag+a,+ 2{(an—2 tap 4+ ta et an—m) - (an—l t+a,3++-+a,_pi3t

lan|
an—m+1 ] .if both n and (n-m) are even or odd
(OR)
then all the zeros of P(z) lie in
1
m [ |aO| —apta,+ 2{(an—2 ta, 4+ tapezt an—m+1) - (an—l ta, 3+ +tappat
an—m+2 ].if n is even and (n-m) is odd (or) if n is odd and (n-m) is even.

lz| <

Corollary 1.. Let P(z) =X ,a;z' be a polynomial of degree n > 2and 2 < m < nwith positive real
coefficients such that for some

a, 23,158,223, 35,422 A4l S 3 = 3y
if both n and (n-m) are even or odd

—m-1 =

(OR)
a, 23,158,238, 35, 42" SApyp =2
if nis even and (n-m) is odd (or) if n is odd and (n-m) is even

n—m = dp_m-1 = +erdjg = dp = dq = Ay
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then all the zeros of P(z) lie in
1
|z < ; [an + 2{(an—2 tap 4t tag it an—m) - (an—l tap3t++-tag_pmizt an—m+1)} ]
if both n and (n-m) are even or odd
(OR)
then all the zeros of P(z) lie in

1
|Z| < a_ [an + 2{(an—2 +ta, 4+ tam3t an—m+1) - (an—l ta, 3+ +-+a, gt an—m+2)}]-

n
if nis even and (n-m) is odd (or) if n is odd and (n-m) is even
Remark 1. By taking a; > 0 fori = 0,1,2, ...,n — 1,in theorem 1,then theorem 1, reduces to Corollary 2.

Theorem 2.Let P(z) =X, a;z! be a polynomial of degree n > 2and 2 < m < nwith real
coefficients such that for some
A, <3, 123,232,323, 4<"<A,_n41 Zq_m = Ay_pm_1 = raz =3 = a1 = Qg
if both n and (n-m) are even or odd
(OR)
A, 23,123,232 A4 =2 A1 S Ao 2 A1 2
if nis even and (n-m) is odd (or) if n is odd and (n-m) is even

Vv
&
Vv
&
v
£
v
Qo
f=}

then all the zeros of P(z) lie in
1
|Z| < — [ |aO| —apg—a, + 2{(an—1 ta, 3+ +-+agpe3t an—m+1) - (an—Z ta,4t-ta_pes Tt

lan|
an—m+-2 ].if both n and (n-m) are even or odd
(OR)
then all the zeros of P(z) lie in

1
|z| < —[|ao| —ag—a, + 2{(an—1 ta,3t+-t+a,_pi2t an—m) - (an—Z ta,4t-ta, 3t

lan |

an—m+1.if nis even and (n-m) is odd (or) if n is odd and (n-m) is even .

Corollary 2.Let P(z) =X, a;z' be a polynomial of degree n > 2and 2 < m < nwith positive realcoefficients
such that for some

a, < dn_q = dn_p < dn_3 = dn_4 <--< dp—m+1 =a
if both n and (n-m) are even or odd

n—-m > dp_m-1 > s+ dj3 > dj > dq > dyp

(OR)
A, 8,123, 28, 328, 45 2 i1 S 2 A1 =0 A3 =0y =01 = Ay
if nis even and (n-m) is odd (or) if n is odd and (n-m) is even

then all the zeros of P(z) lie in
1 .
|z| < ; [2{(an—1 tay 3 +++a,_p3t an—m+1) - (an—Z tap 4t +a, et an—m+2)} —a,] . if
both n and (n-m) are even or odd
(OR)
then all the zeros of P(2) lie in

1 .
|Z| = Z [2{(an—1 tay3t+++a, et an—m) - (an—Z tap 4t -ta, 3t an—m+1)} - an] . ifn
is even and (n-m) is odd (or) if n is odd and (n-m) is even .

Remark 2. By taking a; > 0 fori = 0,1,2,...,n — 1, in theorem 2, then theorem 2, reduces to Corollary 2.

Theorem 3.Let P(z) =X, a;z" be a polynomial of degree n > 2and 2 < m < nwith real
coefficients such that for some
Ay 20y 1S Ay 320y 350y g = 201 S Aoy S U1 S 035a; <ap S ag
if both n and (n-m) are even or odd
(OR)
Ay 2 0p1 S0y 320y 350y g 2 S o] 2 Qe S Ay
if nis even and (n-m) is odd (or) if n is odd and (n-m) is even

IA

e a3 Saz Sal Sao
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then all the zeros of P(z) lie in
1
lz| < |a_ [ |a0| + ayt+a, + 2{(an—2 tap 4+t t an—m+2) - (an—l ta, 3+t +ap ezt

nl
an—m+11] . if both n and (n-m) are even or odd
(OR)
then all the zeros of P(z) lie in

1
lz| < o [lagl+ ag+a, +2{(a,s +ap_4+ + iz + @yomi1) — @1+ Az ++ -+ ay_pin +

an—m] . ifnisevenand (n-m) is odd (or) if n is odd and (n-m) is even.

Corollary 3.Let P(z) =Y*, a;z" be a polynomial of degree n > 2and 2 < m < nwith positive real coefficients
such that for some
Ay 20 S0y 20y 30y g 2" 2 0pogy1 S Ay S Ay S A3 S0 S A S A9
if both n and (n-m) are even or odd
(OR)
Ay 20y S0y 20y 3=0ng 2,0, S pomy1 2 Aoy S Qo1 S0 03 S A S0 = G
if nis even and (n-m) is odd (or) if n is odd and (n-m) is even

then all the zeros of P(z) lie in
1
|| < ; [an + 2{(a0 tay 2+t taupia t an—m+2) - (an—l ta, 3++t+a, 3t
an—m+1] . if both nand (n-m) are even or odd
(OR)
then all the zeros of P(z) lie in

1
|lz| < ; [a, + 2{(a0 ta, ;ta, 4+ tay 3t an—m+1) - (an—l taps3t++--+a,_ 2t

an—m] . ifnisevenand (n-m) is odd (or) if n is odd and (n-m) is even.

Remark 3. By taking a; > 0 fori = 0,1,2,...,n — 1, in theorem 3, then theorem 3, reduces to Corollary 3.

Theorem 4.Let P(z) =X, a;z" be a polynomial of degree n > 2and 2 < m < nwith real
coefficients such that for some
a, <0, 120, 50, 320, 4SO mi1ZAm <0_m1 < a3a,<a; <qg
if both n and (n-m) are even or odd
(OR)
a, < a,_1 = a,_» < a,_3 = Ay _y <z Ay —m+1 <a
if nis even and (n-m) is odd (or) if n is odd and (n-m) is even

<a

n-m — Yn-m-1

IA
5
A
N
A
2
A
Q
(=}

then all the zeros of P(z) lie in

1
|Z| < m [ |a0| + ay—a, + 2{(an—1 tap 3ttt a, 3t an—m+1) - (an—Z tap 4t -+ a it
an—m] . if both n and (n-m) are even or odd

(OR)

then all the zeros of P(z) lie in

1
|Z| < m[|ao| +ay—a, + 2{(an—1 tap 3+ +t+a,_pat an—m+2) - (an—Z tay 4t t+a_pazt

an—m+1 .if niseven and (n-m) is odd (or) if n is odd and (n-m) is even .

Corollary 4.Let P(z) =X, a;z" be a polynomial of degree n > 2and 2 < m < nwith real
coefficients such that for some
A, <0, 120, 350, 320, 4SS0 i1 2oy SUpp1 S 035a; <ap Sag
if both n and (n-m) are even or odd
(OR)
Ay SAp1 20y 3 =Ay 320y 4 S 21 S oy S Ay
if nis even and (n-m) is odd (or) if n is odd and (n-m) is even

IA
5
A
N
A
B
A
Q
o

then all the zeros of P(z) lie in

DOI: 10.9790/5728-11252128 www.iosrjournals.org 23 | Page



Zeros of Polynomials With Restricted Coefficients

1
lz| < m [ |a0| + ay—a, + 2{(an—1 tap 3+t tay ezt an—m+1) - (an—Z tan 4+ Fa et
an—m] . if both n and (n-m) are even or odd
(OR)
then all the zeros of P(z) lie in
1
lz| < m[laol +ay—a,+2{(ap 1+ a,_3++-Fa st AGmi)— (@t ay_y+ Ay +

an—m+1 .if niseven and (n-m) is odd (or) if n is odd and (n-m) is even .
Remark 4. By taking a; > 0 fori = 0,1,2,...,n — 1, in theorem 4, then theorem 4 , reduces to Corollary 4.

I1.  Proofs Of The Theorems
Proof of the Theorem 1.
LetP(z)=a,z" + a,_1z2" '+ a, 22" 2+ a,_3z" 3 + -+ ay_p, 2" 4+ ayz? + a1z + .
be a polynomial of degree n> 2

Letus consider the polynomial Q(z)=(1-z) P(z) so that
Q@)=(1-2)(a,z" + ay_12" 1+ -+ a1 2™+ @ Z2™ F Ay 2™+ a2 + ag)
:_anzn_'—1 + (an - an—l)Zn + (an—l - an—Z)Zn_1 + et (an—m+1 - an—m)zn_m+1 + (an—m -

Apm—1)Z" "+ (Aot = Qe —2)Z" " 4 (a3 — @) 27 + (a; — a1)2* + (a; — ap)z +a,
Also if |z| > 1 then—— < fori = 0,1,2,..,n — 1.

|z[m—¢

NOWlQ(Z)l = |a'n||Z|n+1 _{ |an - an—l“zln + |an—1 - a’n—2||Z|n_1 + et |an—m+1 - an—m||zln_m+l +
@y —m — an—m—1||Z|n_m @yt = Q22|+ 4 |ag — a2 + |ay — ag]|z]P+]a; —
agllz] + |agl }

1 lan—1—an—2| lan—2—an—3l |an—3—an—4l lan-m+1—an-ml
= |a,|lz["[|z|-+—{]a, — a + == +
—| nll | [l | |an|{| n n—1| |zl |Zz |Z|3 |Z|m—1
lan—m—an-m-1l , lan-—m—-1—0n_m—2| laz—az| , laz—a1| | lai—agl| , lao|
+ +oe ot + + 0l
|z|™ |z|m +1 |z =3 |z 2 |zt [z 3

1
g |an||Z|n[|Z|_m{ |an - an—1|+ |an—1 - an—Zl + |an—2 - an—3| + |an—3 - an—4|+ et |an—‘m+1 -

an—m+|an—m-an—m—1+|an—m—1-an—m-2+|a3—a2+|a2—al +| al— a0+ a0]

> | ||z [z~ 1 { (@ = Gn1) + (@2 = Gy1) + (@2 = Gy 3) ++ (@ng = Gy 3) + o+ (@ —

Ay mi1) * (@ = Q1) + (@1 — Quomz) o+ (@3 —ax) + (az —ay) + (a; — ag) + |ag| }H.if
both n and (n-m) are even or odd

= |an||Z|n[|Z|_|alj {IaOI —ayta, + 2 {(an—z ta, 4t a2t an—m) - (an—l +ta, 3+ +-+
an—m+3+an—m+11}]

> 0if

1
IZI > m [ |a0| —apt+a, + 2{(an—2 tap gttt an—m) - (an—l ta, 3ttt a3t
an—m+1].

This shows that if Q(z)> 0 provided

1
|Z| > m [ |a0| —ayt+a, + 2{(an—2 tan 4t tay et an—m) - (an—l ta, 3+t+-ta,_ 43t

an—m+1].
Hence all the zeros of Q(z) with |z|> 1 lie in

1
Zl <— [ |a0| —ayta, + 2{(an—2 tan 4t tay et an—m) - (an—l ta, 3+ttt ay_pme3t

= lagl
an—m+1].
if both n and (n-m) are even or odd.
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But those zeros of Q(z) whose modulus is less than or equal to 1 already satisfy the above inequality.
Since all the zeros of P(z) are also the zeros of Q(z) lie in the circle defined by the above inequality and this
completes the proof of the Theorem 1, if both n and (n-m) are even or odd.

Similarly we can also prove for n is even and (n-m) is odd (or) if n is odd and (n-m) is even degree
polynomials. For this we can rearrange the terms of the given polynomial and compute accordingly. That is if n
is even and (n-m) is odd (or) if n is odd and (n-m) is even then all the zeros P(z) lie in

Zl < ; [ |a0| —ay+a, + 2{(an—2 tap g+t a3zt an—m+1) - (an—l tap 3+ttt ap et

This completes the proof of the Theorem 1.

Proof of the Theorem 2.
LetP(z)=a,z" + a,_1z2" '+ a, 22" 2+ ap,_3z" 3 + -+ Ay, 2" 4+ ayz? + a1z + .
be a polynomial of degree n> 2

Letus consider the polynomial Q(z)= (1-z ) P(z) so that
Q@)=(1-2)(a,z" + ay_12" 1+ -+ a1 2™+ @ 2™ F Ay Z™ a2 + ag)

= =,z + (@ — 072"+ Qo1 — 3, 2)Z" Tt (@ — Q)2 (@ —
Ayn=1)Z" "+ Qo1 = Ao —2) 2"+ et (a3 — @) 2 + (@ — )2 + (a1 — ap)z + a,

Also if |z| > 1 thenwt_,. < fori=01.2,..,n—1.

Now [Q(2)| = |a, |lzI"* = { la, — ay_q|lz[® + |ay_y = @]z + -+ | @ognss = G |12 +
1@ = Gyt 1|21 + 1@yt = Gy |27+ o 4 |ag — ap 2] + |ay — ag]|z]*+]a; —

aol|z| + lao| }

1 lan—1—an_2| | lan—2-an_3| | |an—3—an_4| l[an—m+1—an_ml
n — — n n n n n n e n—m n—m
= |an||Z| [|Z| |an|{ |an an—ll + |z| |Z|2 |Z|3 |Z|m—1 +
|an—m—=an-m-1l + |an-m—-1—@n-m-2| . laz—az| , laz—a1| , |ai—aol , |aol 1
lz|I™ |zm +1 |z[m =3 |z[m =2 [zl |z

1
g |an||Z|n[|Z|_m{ |an - an—1|+ |an—1 - an—Zl + |an—2 - an—3| + |an—3 - an—4|+ et |an—‘m+1 -

an—m+|an—m-an—m—1+|an—m—1-an—m-2+|a3—a2+|a2—al +| al— a0+ a0]

1
= |an||Z|n[|Z|_m{ (an—l - an) + (an—l - an—Z) + (an—3 - an—Z) ++ (an—3 - an—4) + ot (an—m+1 -

an—m) + (an—m - an—m—l) + (an—m—l - an—m—Z) + et (a3 - aZ) + (aZ - al) + (al - aO) + |a0| }]If
both n and (n-m) are even or odd

1
= |an||Z|n[|Z|_m {[ |a0| —ap—a, + 2{(an—1 ta, 3ttt a3t an—m+1) - (an—Z ta, g4+t
an—m+4+an—m+2} |

> 0if
1
IZI > m [ |a0| —ap—a, + 2{(an—1 tap 3+t tap 3t an—m+1) - (an—Z ta, 4t -+ pat

an—m+2].

This shows that if Q(z)> 0 provided
2l >~

lanl
an—m+2).

[ |a0| —ay—a, + 2{(an—1 tap,3t+-+a, 3t an—m+1) - (an—Z tap 4ttt ap_ st

Hence all the zeros of Q(z) with |z|> 1 lie in

1
Zl =< m [ |a0| —ay—a, + 2{(an—1 tap s+ +-ta,_pmizt an—m+1) - (an—Z ta, 4t +a, st

an—m+2).
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if both n and (n-m) are even or odd.

But those zeros of Q(z) whose modulus is less than or equal to 1 already satisfy the above inequality.
Since all the zeros of P(z) are also the zeros of Q(z) lie in the circle defined by the above inequality and this
completes the proof of the Theorem 2, if both n and (n-m) are even or odd.
Similarly we can also prove for n is even and (n-m) is odd (or) if n is odd and (n-m) is even degree polynomials.
For this we can rearrange the terms of the given polynomial and compute accordingly. That is if n is even and
(n-m) is odd (or) if n is odd and (n-m) is even then all the zeros P(z) lie in

|z| <

Ag|l —ag —a
|an|[| Ol 0 n

+ 2{(an—1 +a,_3++-+ An—m+2 + an—m) - (an—Z +a,_4+-+ An—m+3 + an—m+1)}]
This completes the proof of the Theorem 2.

Proof of the Theorem 3.
LetP(z)=a,z" + a,_1z" '+ a,_ 22" ? + a, 32" 3+t ap_p, 2" "+ + ay2% + a1z + ag.
be a polynomial of degree n> 2

Letus consider the polynomial Q(z)= (1-z ) P(z) so that
Q@)=(1-2)(a,z" + ay_12" 1 + -+ a1 2™+ @ 2™ F a1 Z™ T+ a2 + ag)

_anzn_'—1 +(a, —ap-1)z" + (a1 — an—Z)Zn_1 ot (Apmy1 — an—m)zn_m+1 + (nm —
Ayn=1)Z" "+ (oot = Ao —2) 2"+t (a3 — @) 2 + (@ — )2 + (a1 — ag)z + a,
Also if |z| > 1 then— < fori = 0,1,2, ..., n — 1.

|Z|n—l

Now |Q(Z)| = |a'n||Z|n+1 _{ |an - an—l“zln + |an—1 - a’n—2||Z|n_1 + -t |an—m+1 - an—m||zln_m+1 +
|an—m - an—m—1||zln_m + |an—m—1 - an—m—ZHZln_m_1 +- |a3 - a2||Z|3 + |a2 - a1||Z|2+|a1 -
aol|z| + lao| }

1 _1—Qn— Co—ay,_ Ca—Q _ —an
> |an||Z|n[|Z|_m{|an_an—1|+|an 1—Qn 2|+|an 2" an 3|+|an 3" an 4-|+”.+|an m+1—an m|+

|z] |z|? |z]3 |z|m 1
lan—m—an-m-1l | lan-m-1—an-m-2I laz—az| | lag—ai| | lai—aol , laol
+ + ... _}]
[z|™ |z[m+1 |z|m3 |z|n 2 |z|n 1 |z]™

1
2 |an||Z|n[|Z|_m{ |an - an—1|+ |an—1 - an—2| + |an—2 - an—3| + |an—3 - an—4|+ et |an—m+1 -

an—m+|an—m-an—m—1+|an—m—1-an—m-2+|a3—a2+|a2—al +| al— a0+ a0]

1
= |an||Z|n[|Z|_m{ (an - an—l) + (an—Z - an—l) + (an—Z - an—3) + + (an—4 - an—3) + et (an—m -
ymi1) + (@1 — Ayn) + (o — Gym—1) + -+ (ag —az) + (a; — az) + (a9 — ay) + |ag| }.if
both n and (n-m) are even or odd

1
= |an||Z|n[|Z|_m {|ao| +ay+a, + 2{(an—2 +a, 4+ + An—m+4 + an—m+2) - (an—l +a, 3 ++-+
an—m+3+an—m+1} ]

> 0if
1
IZI > m [ |a0| + apta, + 2{(an—2 tap g+t Qs t an—m+2) - (an—l ta, 3ttt a3t

an—m+1].

This shows that if Q(z)> 0 provided
1
|z > m [ |a0| +at+a,+ 2{(an—2 tap sttt an—m+2) - (an—l ta, 3+ +-+a_pzt

an—m+1].

Hence all the zeros of Q(z) with |z|> 1 lie in
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1
Zl < m [ |a0| + ay+a, + 2{(an—2 tan 4t tay pmpat an—m+2) - (an—l ta, 3++-tay py3t

an—m+1].
if both n and (n-m) are even or odd.

But those zeros of Q(z) whose modulus is less than or equal to 1 already satisfy the above inequality.
Since all the zeros of P(z) are also the zeros of Q(z) lie in the circle defined by the above inequality and this
completes the proof of the Theorem 3, if both n and (n-m) are even or odd.
Similarly we can also prove for n is even and (n-m) is odd (or) if n is odd and (n-m) is even degree polynomials.
For this we can rearrange the terms of the given polynomial and compute accordingly. That is if n is even and
(n-m) is odd (or) if n is odd and (n-m) is even then all the zeros P(z) lie in
2 <plaol+ ag+ay + 2(ang + gt s+ Gpnin) = (G F Gy b G +

an—rmj.

This completes the proof of the Theorem 3.

Proof of the Theorem 4.

LetP(z)=a,z" + a,_1z2" '+ a, 22" 2+ a,_3z" 2 + -+ ay_p, 2" 4+ ayz? + a1z + ay.
be a polynomial of degree n> 2

Letus consider the polynomial Q(z)= (1-z ) P(z) so that

Q@)=(1-2)(a,z" + ay_12" 1 + -+ a1 2™+ @ Z2™ F Ay 2™+ a2 + ag)

_anzn_'—1 +(a, —ap-1)z" + (a1 — an—Z)Zn_1 ot (Apmy1 — an—m)zn_m+1 + (an-m —
Ayn=1)Z" "+ (oot = Ao —2) 2"+ et (a3 — @) 2 + (@ — )2 + (a1 — ag)z + a,
Also if |z| > 1 then—— < fori = 0,1,2,..,n — 1.

|z|m—E

Now |Q(Z)| 2 |an||Z|n+1 _{ |an - an—lllzln + |an—1 - an—2||Z|n_1 +et |an—m+1 - an—‘m||Z|n_‘m+1 +
|an—m - an—m—1||zln_m + |an—m—1 - an—m—ZHZln_m_1 +- |a3 - a2||Z|3 + |a2 - a1||Z|2+|a1 -
aollz| + lao| }

1 _1—ap— _o—Qp— _3—ap— _ —ap—
> |an||Z|n[|Z|_|_{|an_an_1|+|an 1—Qn 2|+|an 2" Aan 3|+|an 3" an 4-|+”.+|an m+1—an m|+

an| |z] 7?2 | |Z||3 | |z|m 1
lan—m—an-m-1l | lan-m-1—an-m-2I laz—az| | lag—ai| | lai—ap ag
EEE—— 1 +ot 3 -t 1 +-23
[z|™ [z|™ lz|* [z [z |z

1
2 |an||Z|n[|Z|_m{ |an - an—1|+ |an—1 - an—2| + |an—2 - an—3| + |an—3 - an—4|+ et |an—m+1 -

an—m+|an—m-an—m—1+|an—m—1-an—m—-2+|a3—a2+|a2—al +| al— a0+ a0]

1
= |an||Z|n[|Z|_m{ (an—l - an) + (an—l - an—Z) + (an—3 - an—Z) ++ (an—3 - an—4) + ot (an—m+1 -

an—m) + (an—m—l - an—m) + (an—m—Z - an—m—l) + et (aZ - a3) + (al - aZ) + (ao - al) + |a0| }]If
both n and (n-m) are even or odd

1
= |an||Z|n[|Z|_m {|ao| + ay—a, + 2{(an—1 ta, 3t+ - +a, 3t an—m+l) - (an—z ta, 4t -+

an—m+2+an—m;} |

> 0if
1
|z > m [ |a0| +a—a, + 2{(an—1 ta, 3+ -+t a,pmezt an—m+1) - (an—Z ta, 4+ Tyt

an—rm).

This shows that if Q(z)> 0 provided
1
|Z| > _|ao| +ay—a, + 2{(an—1 ta, 3+t ++a,pe3t an—m+1) - (an—Z ta, 4t -+ a2t

lanl
an—m].
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Hence all the zeros of Q(z) with |z|> 1 lie in

1
Zl < m [ |aO| +ag—a, + 2{(an—1 ta, 3+ +-t+ay i3t an—m+1) - (an—Z ta, 4t tagme Tt

an—m)].
if both n and (n-m) are even or odd.

But those zeros of Q(z) whose modulus is less than or equal to 1 already satisfy the above inequality.
Since all the zeros of P(z) are also the zeros of Q(z) lie in the circle defined by the above inequality and this
completes the proof of the Theorem 4, if both n and (n-m) are even or odd.
Similarly we can also prove for n is even and (n-m) is odd (or) if n is odd and (n-m) is even degree polynomials.
For this we can rearrange the terms of the given polynomial and compute accordingly. That is if n is even and
(n-m) is odd (or) if n is odd and (n-m) is even then all the zeros P(z) lie in

lz| <

™ [lagl + ag —a,
. + 2{(an—1 + an-_3 ++- An_m+4 + an—m+2) - (an—Z +ap4++ An_m+3 + an—m+1)}]
This completes the proof of the Theorem 4.
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