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Abstract: Observing the environment and recoganizing patterns for the purpose of decision making are 

fundamental to any scientific enquiry. Pattern recognition is a scientific discipline so much so that it enables 

perception in machines and also it has applications in diverse technology areas. Among the scientific community, 

statistical pattern recognition has received considerable attention in recent years. The statistical pattern 

recognition challenges are mostly approached by Hidden Markov Models (HMMs). A Hidden Markov Model 
(HMM) is a probabilistic mathematical discrete structure with the state emission probabilities apart from 

consisting the components of a probabilistic finite state automaton (PFA). Over the years, researches have been 

carried out to study the relations between HMM and PFA. Probabilistic finite state automata are mathematical 

models constructed to generate distributions over a set of strings. The computation of the probability of 

generating a string as a total, and a string with given prefix or suffix have important applications in the field of 

parsing. In this attempt, the Semi - Probabilistic Finite State Automata (Semi-PA), the most general class of 

Probabilistic Automata is discussed in detail.  

AMS Classification: 68Q10 and 68Q45.   

Key words: Semi-PA, extended transition function and transition probability.  

 

I. Introduction 
Over the years, many researchers have attempted various formal as well as stochastic models to learn, 

infer and identify or approximate the behavioural pattern of a system in a scientific way. Probabilistic finite state 

automata (PFA) are a fundamental structural model built to deal with the problem of probabalizing a structured 

space by adding probabilities to structure and also they are used to implement other finite state models [1].  

 This paper presents an overview of probabilities of strings generated by Semi – probabilistic automata 

(Semi-PA), the most general class of probabilistic finite state automata. The probabilistic languages and 

probability distributions generated by Semi-PA, in particular probabilities of strings generated by Semi-PA are 

discussed through extended transition functions. The challenges of parsing strings of any arbitrary length 

(possibly infinite) generated by semi-PA are also dealt with. The equivalence of two semi-probabilistic finite 

automata, the equivalence of automata with single initial state to multiple initial states and also single initial state 
to a designated final state are proved. 

 

1.1 Probabilistic Languages 

A nonempty set   of symbols is called alphabet and a finite sequence of symbols over  is called a word 

or a string. Usually words are denoted by the letters u , v , w ,.... The number of symbols appearing in a word u  

is called its length and is denoted as |u |.  is used to denote a word of zero length. If u  and v  are any two 

words, then the new word uv  called concatenation of u  and v  is formed by adjoining the symbols in v  to 

those symbols in u . For each wordu , u = u = u . In the word wuv  , u  is called prefix of w with respect 

to the suffix v . 

For any Nn , the symbol 
n  denote the set of words of length n  over the alphabet . 

 is the 

set of all words of finite length including the empty word . 
 is the set of all words including the words of 

infinite length. For any word u , 
u  denote the set of infinite words with prefix u . 

n denote the set of 

words of length less than or equal to n . In general, a subset L  of 
  is defined as a language over . 

 

II. Semi - Probabilistic Automata 
This section presents an overview of probabilities of strings generated by Semi – Probabilistic automata 

(Semi-PA).The proofs of certain theorems of Dupont [3] have not been cited in the literature. The interesting 

aspect of this paper is to provide few new results supported by examples.  

 

Definition 2.1: A Semi-Probabilistic automaton (Semi-PA) is a mathematical model consists of the following 
components. 
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i)   - a finite set of alphabets 

ii) },.....,{ 21 nqqqQ  - a finite set of states 

iii)  : Q    Q → [0,1] - a mapping defining the transition probability from one state to another 

iv) i : Q →  [0,1] - a mapping defining the initial probability for each state and 

v)  : Q  → [0,1] - a mapping defining the final probability for each state 

with the conditions 

 



Qq

qi 1, and      Qq ,  1 = ),,(  )(
Qqa

qaqq  


  

In general, a Semi-PA is represented as ),,,,(  iQA  . 

 Typically, a Semi-Probabilistic automaton is represented as directed graphs with labels on each edge. 
The initial and final probabilities of each state are given as an ordered pair, and each edge carries an alphabet and 

its transition probability. The following is an example of a Semi-PA. 

 

Example 2.2: Let ),,,,(  iQA  where Q  = { 43210 ,,,, qqqqq  };   = {H, T},  is defined as 

2/1),,( 10 qHq ; 0),,( 10 qTq ; 4/3),,( 31 qTq ; 0),,( 21 qHq ; 8/7),,( 43 qHq ;

0),,( 23 qTq ; 4/1),,( 44 qHq ; 4/1),,( 44 qTq and 0),,(  qaq  for all other choices of 

Qqq , and a .  

1)( 0 qi ; 0)( iqi for .4,3,2,1i 2/1)( 0 q ; 4/1)( 1 q ; 1)( 2 q ; 8/1)( 3 q ; 2/1)( 4 q

. 

 
Fig. 2.1 

 

The state for which 0)( qi  is called initial state and the state for which 0)( q  is called final state. It is 

not necessary that start states and final states always be different. Also for some Qq , )(qi  and )(q  both 

may be equal to zero. A Semi-PA may also have more than one start state and more than one final state. 

 The computation of probability of substrings generated by a given Semi-PA is discussed in detail in the 

following pages.  

Definition 2.3: Let ),,,,(  iQA  be a Semi-PA. A function ̂  defined from Q   Σ* Q  to [0, 1] such 

that 

i) ),,(ˆ qq   =     1            if  qq   

                      0            otherwise 

ii)  For 
w and uaw   where a  is the last symbol of w ,      

),,(ˆ qwq  = 
 Qq

),,(ˆ quq  ),,( qaq   is called extended transition function of A . 

 ),,(ˆ qwq  denotes the probability of reaching state q   from state q  while generating the word w

and ),,( qaq   denotes the transition probability of the symbol a while reaching q  from q . 

Definition 2.4: Let ),,,,(  iQA  be a Semi-PA. Then the probability of generating a word w  by A  is 

defined as 



Qqq

A qiwP
,

)()( ),,(ˆ qwq  )(q .  
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Similarly the probability of generating a word with prefix w  by A is defined as )()(
,

qiwP
Qqq

A 




),,(ˆ qwq  . 

 In particular 



Qq

A qqiP )()()(   and 



Qq

A qiP )()( =1. 

Theorem 2.5:  Let ),,,,(  iQA   be a Semi-PA. Then )(wPA = )(wPA  + )( wPA .  

Proof: )(wPA  = )(
,

qi
Qqq




),,(ˆ qwq   

)(wPA  = )(
,

qi
Qqq




),,(ˆ qwq  )(q  

)( wPA = )(waPA

a




 

)(waPA = 
 Qqq

qi
,

)( ),,(ˆ qwaq  = 
 Qqq

qi
,

)( [



Qq

qwq ),,(̂ ),,( qaq  ] 

                                    = )(
,,

qi
Qqqq




),,(ˆ qwq  ),,( qaq   

Therefore )( wPA  =
a

A waP )(  = 
 a Qqqq

qi
,,

)( ),,(ˆ qwq  ),,( qaq   

)(wPA  +  )( wPA = )(
,

qi
Qqq




),,(ˆ qwq  )(q  + 
 a Qqqq

qi
,,

)( ),,(ˆ qwq  ),,( qaq   

                        = )(
,

qi
Qqq




),,(ˆ qwq  [ )(q + 
 


a Qq

qaq ),,( ] 

                        = )(
,

qi
Qqq




),,(ˆ qwq  ,            

                        = )(wPA  

 

Theorem 2.6:  If ),,,,(  iQA  , is a Semi-PA then 

(i) )( 0AP  = 1 

(ii) )()()( 1 k

A

k

A

k

A PPP  

(iii)  1)()( 1   n

A

n

A PP
 

Proof: Proof of (i)   It is easy to see that )(AP = )( 1AP = )(aPA

a




 

and )( 0AP = )(AP  = )(qi
Qq




),,(ˆ qq   = )(qi
Qq




  = 1   

Proof of (ii)  By definition, )( k

AP    = )(wPA

w k




  = 
 kw

)(
,

qi
Qqq




),,(ˆ qwq   

 and )( k

AP    = )(wPA

w k




= 
 kw

)(
,

qi
Qqq




),,(ˆ qwq  )(q  

 Also,     )( 1 k

AP  =  )(  k

AP  =  )(
1

waPA

wa k




 

                                       = 
 1kwa


 Qqq

qi
,

)( ),,(ˆ qwaq   

                                         =  
 1kwa

)(
,,

qi
Qqqq




),,(ˆ qwq  ),,( qaq   

  Therefore 
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)()( 1 k

A

k

A PP  = 
 kw

)(
,

qi
Qqq




),,(ˆ qwq  )(q  +                   

                        


 1kwa

)(
,,

qi
Qqqq




),,(ˆ qwq  ),,( qaq   

                         =  
 kw

)(
,

qi
Qqq




),,(ˆ qwq   [  ),,(  )(
Qqa

qaqq  


 ] 

                         = 
 kw

)(
,

qi
Qqq




),,(ˆ qwq  ,              

                         =  )( k

AP   

Proof of (iii)   For any integer k , )()()( 1 k

A

k

A

k

A PPP  

Suppose if k varies from 0 to n  then,  

)()()( 100  AAA PPP ; )()()( 211  AAA PPP ; ………………….. 

)()()( 11 n

A

n

A

n

A PPP  
; )()()( 1 n

A

n

A

n

A PPP  

Adding these equalities, it can be found that 

)( 0AP + )( 1AP + ………….. + )( 1 n

AP + )( n

AP   

 =  )()( 10  AA PP + )()( 21  AA PP +………….. + )()( 1 n

A

n

A PP  
+ )()( 1 n

A

n

A PP  

Therefore  )()()( 10   n

A

n

AA PPP  

As )( 0AP  = 1, it is easy to see that 1)()( 1   n

A

n

A PP
 

 

 There are varieties of finite-state models have been discussed in the literature to generate probability 

distributions 
on the strings over an alphabet. Many of such models aim at predicting the next symbol in the string, 

thereby describing probability
 
distributions over each 0,  nn

. The main objective of these attempts is to know 

the amount of information one needs from the prefix to compute the next state probability. In the following 

theorems, we discuss the probability of strings over an alphabet with a given prefix. 

Lemma 2.7: Let ),,,,(  iQA  be a Semi-PA. Then for any
*u , )()( uPuP AA  . 

Theorem 2.8: Let ),,,,(  iQA  be a Semi-PA. Then for any
*u and for any integer k ,

)()( uPuP A

k

A  . 

Definition 2.9: Let ),,,,(  iQA  be a Semi-PA with a single initial state Qq . Then )(qi = 1 and 

0)( qi for 
qQq 

.  

It follows from the above definition that if ),,,,(  iQA  is a Semi-PA such that )(qi = 1 for some Qq

, then for any word
w , 

 



Qq

A qwqwP ),,(ˆ)(  and 



Qq

A qqwqwP )(),,(ˆ)(   

In a deterministic Semi-PA a  there exist at most one path such that 0),,( qaq  , whose underlying 

graph is one which has only one start state. For a deterministic Semi-PA it is possible to define a transition 

function   on QQ   to [0,1] in a natural way as ),,( qaq  such that 0),,( qaq . 

Definition 2.10: Let ),,,,(  iQA   be a Semi-PA. A is called deterministic Semi-PA if 

(i) there exist a Qq such that )(qi = 1 

(ii) a there is at most one pair ),( qq  of states such that 0),,( qaq
 

The transition function   is defined on ]1,0[ QQ , such that 1)( 0 qi , Qq 0 and for some

Qq  , ),,(),,( 00 qaqQaq   . 
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Result 2.11: Let ),,,,(  iQA   be a deterministic Semi-PA then for any word 
w , )(wPA

),,(ˆ qwq  )(q  and )(wP A ),,(ˆ qwq  . 

Theorem 2.12: A Semi-PA ),,,,(  iQA  defines a semi-distribution over
 . 

Theorem 2.13: Let ),,,,(  iQA  be a Semi-PA. Also let aubw  where ba,  and
*u . Then 

),,(ˆ qwaq  = ),,(ˆ qbwq  , where ubw   and auw  . 

Definition 2.14:  Let ),,,,(  iQA  be a Semi-PA. The function  is defined on Q    Q  to [0,1], 

then  

(i) 



Qq

qaqQaq ),,(),,(  is the transition probability of the symbol a  

(ii) ),,( Qq   = 
 


a Qq

qaq ),,(  is the transition probability of generating all symbols a  while 

reaching all possible states Qq   from q . 

Result 2.15: Let ),,,,(  iQA  be a Semi-PA, then 1),,(  Qq . 

Definition 2.16: Let ),,,,(  iQA  be a Semi-PA. The function defined on Q   Σ* Q  to [0, 1]such 

that ),,(ˆ Qq n = 
 


nw Qq

qwq ),,(̂  , Qq  is called the probability of generating a word w of length n , 

by the Semi-PA A , while reaching the state q from q . 

Result 2.17: Let ),,,,(  iQA   be a Semi-PA. For any integer ‘ n ’ and any states Qqq ,

),,(ˆ Qq n  = 



Qq

n Qqqq ),,(ˆ),,( 1

 
Definition 2.18: Two Semi-PA are equivalent if they define the same semi-distribution. 

Theorem 2.19: Any Semi-PA is equivalent to a Semi-PA with a single initial state. 

Theorem 2.20: If A and A are equivalent, then )()( wPwP AA  . 

The following example highlights the theorem 2.19. 

Example 2.21: Consider the following Semi-PA ),,,,(  iQA   

 
Fig. 2.2 

 

where Q  = { 321 ,, qqq  };   = {H, T} and   is defined such that 

3.0),,( 11 qHq ; 5.0),,( 21 qTq ; 2.0),,( 22 qTq ; 2.0),,( 12 qHq ; 1.0),,( 12 qTq ;

2.0),,( 32 qHq ; 2.0),,( 13 qHq ; 2.0),,( 12 qHq ; 3.0),,( 33 qHq and 0),,(  qaq  

for all other choices of Qqq , and a . In this example both 1q  and 2q are two initial states with 

6.0)( 1 qi and 4.0)( 2 qi . 

Also 1q , 2q  and 3q  are final states with 2.0)( 1 q 3.0)( 2 q , 2.0)( 3 q .  

The equivalent Semi-PA    ,,,, iQA  is constructed as given in the following diagram Fig 2.3. 
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Fig. 2.3 

 

The number of transitions from the initial state 0q  of A to a state Qq   is decided based on the 

transitions from a start state of A to q . 

The transition function    of equivalent Semi-PA A is defined as follows: 





Qq

qHqqiqHq ),,()(),,( 110  =0.26; Similarly 



Qq

qTqqiqTq ),,()(),,( 110  = 0.04 

Also 



Qq

qTqqiqTq ),,()(),,( 220  = 0.38; 



Qq

qHqqiqHq ),,()(),,( 330   =0.08 

Thus 



Qq

qqiq )()()( 0  = 0.24 

The three conditions to prove the Theorem 2.19 can be verified for a newly constructed Semi-PA A . They are as 

follows. 

(i)  
 


a q

qaqq ),,()( 00   

                     = ),,(),,(),,(),,()( 302010100 qHqqTqqHqqTqq    

                     = 0.24 + 0.04 + 0.26 + 0.38 + 0.08 =1.  

(ii) )(AP  = 
Qq

qqi )()(  = 0.24= )( 0q  = )(AP   

(iii)To show )()( wPwP AA 
 

Let HTHTw  where Ha   and THTu  ,  

Then, )(auPA  = 



Qqq

qqauqqi
,

)(),,(ˆ)(   = 



Qqq

qqHTHTqqi
,

)(),,(ˆ)(   = 7.392 10-3 

      
)(auPA  = 




Qq

qqauqqi )(),,(ˆ)( 00    = 7.392 10-3 

Therefore )(auPA = )(auPA  

Hence the Semi-PA    ,,,, iQA  is equivalent to the Semi-PA ),,,,(  iQA 
.  

Note that the converse of the above theorem 2.19 is also true. Before claiming that an equivalent Semi-PA with 

multiple initial states can be constructed from a given Semi-PA with single initial state, the method of calculating 

initial probabilities in such cases is provided. 

Consider the Semi-PA    ,,,, iQA  with )( 0qi =1 and )( 1qi = )( 2qi = )( 3qi = 0.   

Consider the following Semi-PA represented in Fig 2.4. 
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Fig.2.4 

 

It is known that  ),,( qaq   = 



Qq

qaqqi ),,()( 

 





Qq

qHqqiqHq ),,()(),,( 110   = ),,()(),,()(),,()( 133122111 qHqqiqHqqiqHqqi  
 
 

(2.1)
 





Qq

qTqqiqTq ),,()(),,( 110   = ),,()( 122 qTqqi                                 

(2.2) 





Qq

qTqqiqTq ),,()(),,( 220  = ),,()(),,()(),,()( 233222211 qTqqiqTqqiqTqqi        

(2.3) 





Qq

qHqqiqHq ),,()(),,( 330  = ),,()(),,()( 333322 qHqqiqHqqi        

(2.4) 

From equation (2.2), it is observed that 0.03 = )( 2qi (0.01)  )( 2qi = 0.3 

Also from (2.4), we have 0.15 = (0.3 0.2) + )( 3qi (0.3) )( 3qi = 0.3 

From (2.1), we have 0.24 = )( 1qi (0.3) + (0.3 0.2) + (0.3 0.2) )( 1qi = 0.4 

Finally we get
Qq

qi )( = )( 1qi + )( 2qi + )( 3qi = 0.4 + 0.3 + 0.3 = 1. 

 Hence the equivalent Semi-PA ),,,,(  iQA  with multiple initial states for the above Semi-PA

   ,,,, iQA with a single initial state is as follows: 

 
Fig. 2.5 

 

Theorem 2.22: A Semi-PA with a single initial state is equivalent to any Semi-PA with multiple initial states. 

Proof: Let ),,,,( 0   qQA  be a Semi-PA with single initial state 0q .  

Let ),,,,(  iQA   be defined as follows. 

i. a  ),,( qaq   = ),,( qaq   if Qqq ,  

ii. Qq   



Qq

qaqqi ),,()(   = ),,( 0 qaq  , a   

iii.   )(q  = )(q     if Qq  

 

To show A is a Semi-PA, we have to prove 
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(i) 
 


a Qq

qaqq ),,()(  = 1 

(ii)



Qq

qi 1)(        

Proof of (i) 

Consider 
 


a Qq

qaqq ),,()(  = 
 


a Qq

qaqq ),,()(  = 1  

Proof of (ii)      

Using the equation ),,( qaq   = 



Qq

qaqqi ),,()(   

As the transition probability ),,( qaq  and ),,( qaq  are known, we arrive to simultaneous equations 

satisfying the condition; number of equations greater than or equal to the number of unknowns. By solving these 

equations



Qq

qi 1)( can be easily proved.  

Therefore A is a Semi-PA. 

 Next to prove A and A are equivalent Semi-PA’s, we have to show  

(iii) )()( wPwP AA  , where auw   and a  

(iv) )()(  AA PP   

Proof of (iii), Now )()( auPwP AA    

     = 



Qq

qqauq )(),,(ˆ
0     = 




Qq

qqauqqi )(),,(ˆ)( 00     

                    = 



Qqq

qquqqaqqi
,

00 )(),,(ˆ),,()(   

                    = 



Qqqq

qquqqaqqi
,,

)(),,(ˆ),,()(   

                    = )(auPA      = )(wPA  

Proof of (iv), Consider )(AP  = )()( 00 qqi    = 
Qq

qqi )()(   = )(AP  

 Hence A  and A defines the same semi-distribution.  

A Semi-PA A can be thought of having a designated initial state and a designated final state, with a special 

end-of-word symbol for reaching the final state from every state. In general it is represented as

),,,,(    iQA . As in any Semi-PA the outgoing edges of each state generate symbols drawn from

, with each edge a probability value being associated such that for every state the probabilities of all outgoing 

edges sum up to one. 

 

Theorem 2.23: A Semi-PA with single initial state is equivalent to a Semi-PA with single initial state and 

designated final state provided one considers a special end-of-word symbol for reaching final state from every 

state. 

Proof: Let ),,,,(   iQA  be a Semi-PA with single initial state 0q . 

 Let ),,,,(    iQA  with single initial state 0q  and single final state fq be 

defined as follows: 

i. }{ fqQQ   

ii.   , where  is the special final symbol such that every state reaches the final state 

generating . 

iii. a , ),,( qaq   =     ),,( qaq  ,  if Qqq ,
 

                                         
),,()( qaqqi  

             
if 0qq   

                                        0   if fqq   
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iv.       ),,( fqq   =     )(q    

v.        )(qi     =    1                 if 0qq   

          0                otherwise        

vi.        )(q    =  
     

1              if fqq   

                            0              otherwise  

 To show A is a Semi-PA with single initial state 0q and a designated final state fq , the following 

conditions should hold. 
 


a Qq

qaqq ),,()(   = 1 as }{ fqQQ  and  . 

Consider 
 


a Qq

qaqq ),,()(   

case (i) if fqq  then 
 


a Qq

ff qaqq ),,()(  = 1

   

case (ii)  if fqq   then 
  


a Qq

qaqq ),,()(  = 0 +  
 





a Qq

qaq ),,(  

          = 
 


a Qq

fqqqaq ),,(),,(  =  )(),,( qqaq
a Qq

 
 

= 1.    

   

case (iii) if 0qq  then 
 


a Qq

qaqq ),,()(  = 
 


a Qq

qaqq ),,()( 00   

   = 
 


a Qq

qaqqiq ),,()()( 000  = 0 +  
 





a qQq f

qaqqi
}{

00 ),,()(  

   = 
 


a Qq

qaqqi ),,()( 00  + ),,( 0 fqq  = 
 


a Qq

qaq ),,( 0 + )( 0q   

   = 1. 

 Hence A represents a Semi-PA with single initial state 0q and a designated final state fq . 

To prove A and A are equivalent, we need to prove 

(i) )()(  AA PP   , where  is an empty word. 

(ii) )()( auPauP AA   , for any word u  and any symbol a . 

Proof of (i)  Consider )(AP  = )()( 00 qqi   = 1 ),,( 0 fqq   = )(AP   

Proof of (ii)Next, let 
*w such that auw   where a  and 

*u . 

       Then )(wPA = )(auPA  
= 




Qqq

qqauqqi
,

00 )(),,(ˆ)(   

                             = 



Qqq

qquqqaqqi
,

00 )(),,(ˆ),,()(   

                            = 



Qqq

qquqqaq
,

0 )(),,(ˆ),,(   

                               = ),,(),,(ˆ),,(
}{,

0 f

qQqq

qqquqqaq
f

 


 

                             = ),,(),,(ˆ),,()(
,

00 f

Qqq

qqquqqaqqi  


 

                            = )(auPA   

                            = 
)(wPA   

 Hence A  and A defines the same semi-distribution and therefore they are equivalent Semi-PA. 

Example 2.24:  Consider a Semi-PA Awith single initial state. 
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Fig. 2.6 

 

The following is an equivalent Semi-PA A with single initial state and designated final state. 

 
Fig.2.7 

 

III. Conclusion 
There are various types of finite state machines proposed in the literature to generate or model probability 

distribution on the stings over an alphabet. Some models assume probabilities on states, others on transitions. 

Semi-PA is one such finite state machine assuming probabilities on its transitions, and based not on an acyclic 

automaton, so that it enables us to define distributions over the set of strings of infinite length. 

A number of results centered on the issues related to parsing strings generated by Semi-Probabilistic 

Automata in terms of extended transition function are provided. One can study the relationship between these 

models and probabilistic automata. Also, the important tasks of parsing the strings of any arbitrary length 

(possibly infinite) generated by Semi-Probabilistic Automata are to be explored. This work can also be extended 

to other probabilistic models like hidden markov models, finite state tree automata.  
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