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Abstract:  In this paper, a food web model consisting of two predator-one stage structured prey involving  

Lotka-Voltera type of  functional response and a prey refuge , is proposed and analyzed. It is assumed that the 

prey growth logistically in the absence of predator. The role of prey refuges in predator-prey model is 

investigated. The existence , uniqueness and boundedness of the solution are studied. The existence and the 

stability analysis of all possible equilibrium points are studied. Suitable Lyapunov functions are used to study 

the global dynamics of the proposed model. Numerical simulation for different sets of parameter value and for 
different sets of initial conditions are carried out to investigate the influence of parameters on the dynamical 

behavior of the model and to support the obtained analytical results of the model .     
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I. Introduction 
The dynamic relationship between predators and their prey has long been and will continue to be one of 

the dominant themes in both ecology and mathematical ecology due to its universal existence and importance. 

Over the past decades, Mathematics has made a considerable impact as a tool to model and understand 

biological phenomena. In return, biologists have confronted the mathematics with variety of challenging 
problems , which have simulated developments in the theory of nonlinear differential equations. Such 

differential equations have long played important role in the field of theoretical population dynamics, and they 

will, no doubt, continue to serve as indispensable tools in future investigations. Differential equation models for 

interactions between species are one of the classical applications of mathematics to biology. The development 

and use of analytical techniques and the growth of computer power have progressively improved our 

understanding of these types of models. Although the predator-prey theory has been much progress, many long 

standing mathematical and ecological problems remain open ,  1  . Food chains and food webs depict the 

network of feeding relationship within ecological communities. During the last few decades, a large number of 

food-chain and food-web systems have been proposed to describe the food transition patterns and 

processes  2 − 4  .Living organisms enter into a variety of relationships, such as Prey-Predator, Competition, 
Mutualism, Commensalism and so on, among themselves according to the needs of individuals as well as those 

of species groups. Food webs are one example of interactions that go beyond feeding relationships. Recently 

,number of researchers have been proposed and studied the dynamics of food webs involving some types of 

these relationships, for example see  5 − 8  and the references their in .The study of the consequences of hiding 

behavior of prey on the dynamics of predator prey interactions can be recognized as a major issue in applied 

mathematics and theoretical ecology  9,10  . Some of the empirical and theoretical work have investigated the 

effect of prey refuges and drawn a conclusion that the refuges used by prey have a stabilizing effect on the 

considered interactions and prey extinction can be prevented by the addition of refuges  11,12  .In fact, the 

effect of prey refuges on the population dynamics are very complex in nature, but for modeling purposes, it can 
be considered as constituted by two components, the first effects which affect positively the growth of prey and 

negatively that of predators. Comprise the reduction of prey mortality due to decrease in predation success. The 

second one may be the trad-offs and by-products of the hiding behavior of prey which could be advantageous or 

detrimental for all the interacting populations. A classic secondary effect is the reduction in the birth rate of prey 

population, because refuges are safe but rarely offer feeding or mating opportunities ,  13,14  .Z. Ma and et.al 

  15  derived a predator-prey model with Lotka-Voltera functional response incorporating prey refuges, the 

refuges are considered as two types: a constant proportion of prey and a fixed number of prey using refuges. 

They evaluate the effect with regard to the stability of the interior equilibrium. The results show that the refuges 

used by prey can increase the equilibrium density of the prey population while decrease that of predator .On the 

other hand , it is well known that, the age factor is importance for the dynamics and evolution of many 
mammals. The rate of survival, growth and reproduction almost depend on age or development stage and it has 

been noticed that the life history of many species is composed of at least two stages, immature and mature, and 

the species in the first stage may often neither interact with other species nor reproduce, being raised by their 

mature parents. Most of classical prey-predator models of two species in the literature assumed that all predators 

are able to attack their prey and reproduce ignoring the fact that the life cycle of most animals consists of at least 
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two stages ( immature and mature ) . Recently, several of the prey-predator models with stage-structure of 

species with or without time delays are proposed and analyzed  16 − 19  . In this paper the food web prey-
predator model involving prey’s refuges is proposed and analyzed , so that the prey growing logistically in the 

absence of predators. The effect of prey’s refuges and prey stage-structure on the dynamical behavior of the 

food web model is investigated theoretically as well as numerically. 

 

II. The mathematical model 
            Consider the food web model consisting of two predators-stage structure prey in which the prey species 

growth logistically in the absence of predation, while the predators decay exponentially in the absence of prey 

species. It is assumed that the prey population divides into two compartments: immature prey population 𝑁1(t) 

that represents the population size at time t and mature prey population 𝑁2(t) which denotes to population size at 

time t . Furthermore the population size of the first predator at time t is denoted by 𝑁3(t) , while  𝑁4(t) represents 

the population size of second predator at time t . Now in order to formulate the dynamics of such system the 

following assumptions are considered :        

1. The immature prey depends completely in its feeding on the mature prey that growth logistically with 

intrinsic growth rate 𝛼 > 0 and carrying capacity  𝑘 > 0 . The immature prey individuals grown up and becomes 

mature prey individuals with grown up rate 𝛽 > 0 . However the mature prey facing death with natural death 

rate 𝑑1 > 0 .                                                                                                           
2. There is type of protection of the prey species from facing predation by first and second predators with refuge 

rate constant  𝑚 ∈   0 , 1 )  .                                                                                                       
3. The first and second predators consumed the mature prey individuals only according to the Lotka-Voltera 

type of functional response with predation rates  𝑐1 > 0 𝑎𝑛𝑑 𝑐2 > 0  respectively and contribute a portion of 

such food with conversion rates  0 < 𝑒1 < 1  𝑎𝑛𝑑  0 < 𝑒2 < 1 respectively. Moreover, there is an enter specific 

competition between these two predators with competition force rate 𝑐3 > 0 𝑎𝑛𝑑 𝑐4 > 0  respectively. Finally in 

the absence of food the first and second predators facing death with natural death rate   𝑑2 > 0  𝑎𝑛𝑑  𝑑3 > 0 .            
Therefore the dynamics of this model can be represented by the set of first order nonlinear differential 

equations:  
𝑑𝑁1

𝑑𝑡
= 𝛼 𝑁2   1 −

𝑁2

𝐾
  − 𝛽 𝑁1 

𝑑𝑁2

𝑑𝑡
= 𝛽 𝑁1 − 𝑑1  𝑁2 − 𝑐1   1 − 𝑚  𝑁2  𝑁3 − 𝑐2   1 − 𝑚  𝑁2  𝑁4 

𝑑𝑁3

𝑑𝑡
= −𝑑2  𝑁3 + 𝑒1  𝑐1   1 − 𝑚  𝑁2  𝑁3 − 𝑐3  𝑁3  𝑁4                                                                                               1   

𝑑𝑁4

𝑑𝑡
= −𝑑3  𝑁4 + 𝑒2  𝑐2   1 − 𝑚  𝑁2  𝑁4 − 𝑐4  𝑁3  𝑁4 

with initial conditions 𝑁𝑖(0) ≥ 0 . Note that the above proposed model has thirteen parameters in all which make 

the analysis difficult. So in order to simplify the system , the number of parameters is reduced by using the 

following dimensionless variables and parameters : 

𝑡 = 𝛼 𝑇 ,  𝑢1 =
𝛽

𝛼
 ,  𝑢2 =

𝑑1

𝛼
 ,  𝑢3 =

𝑑2

𝛼
 ,  𝑢4 =

𝑒1  𝑐1  𝐾

𝛼
 𝑢5 =

𝑐3

𝑐2

 ,  𝑢6 =
𝑑3

𝛼
 ,  𝑢7 =

𝑒2  𝑐2  𝐾

𝛼
 ,  𝑢8 =

𝑐4

𝑐1

  ,           

𝑥 =
𝑁1

𝐾
 , 𝑦 =

𝑁2

𝐾
 , 𝑧 =

𝑐1𝑁3

𝛼
 , 𝑤 =

𝑐2𝑁4

𝛼
  . 

Then the non-dimensional form of system   1   can be written as : 

𝑑𝑥

𝑑𝑡
= 𝑥   

𝑦  1 − 𝑦 

𝑥
− 𝑢1   = 𝑥  𝑓1  𝑥 , 𝑦 , 𝑧 , 𝑤   

𝑑𝑦

𝑑𝑡
= 𝑦   

𝑢1  𝑥

𝑦
− 𝑢2 −  1 − 𝑚  𝑧 −  1 − 𝑚  𝑤  = 𝑦  𝑓2  𝑥 , 𝑦 , 𝑧 , 𝑤   

𝑑𝑧

𝑑𝑡
= 𝑧   −𝑢3 + 𝑢4   1 − 𝑚 − 𝑢5  𝑤  = 𝑧  𝑓3  𝑥 , 𝑦 , 𝑧 , 𝑤                                                                                 2   

𝑑𝑤

𝑑𝑡
= 𝑤   −𝑢6 + 𝑢7   1 − 𝑚  𝑦 − 𝑢8  𝑧  = 𝑤  𝑓4  𝑥 , 𝑦 , 𝑧 , 𝑤   

with  𝑥 0 ≥ 0  , 𝑦 0 ≥ 0  , 𝑧 0 ≥ 0 𝑎𝑛𝑑 𝑤 0 ≥ 0 . It is observed that the number of parameters have been 

reduced from thirteen in the system   1   to eight in the system   2   .Obviously the interaction functions of the 

system   2    are continuous and have continuous partial derivatives on the following positive four dimensional 

space. 𝑅+
4 =     𝑥 , 𝑦 , 𝑧 , 𝑤  ∈ 𝑅4 ∶ 𝑥 0 ≥ 0 , 𝑦 0 ≥ 0 , 𝑧 0 ≥ 0 , 𝑤 0 ≥ 0  . Therefore these functions are 
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lipschitzian on 𝑅+
4  , and hence the solution of the system   2   exists and is unique . Further, all the solutions of 

system   2   with non-negative initial conditions are uniformly bounded as shown in the following theorem .   

Theorem   1  :  All the solutions of system   2   which initiate in 𝑅+
4  are uniformly bounded . 

Proof: Let  𝑥 𝑡  , 𝑦 𝑡  , 𝑧 𝑡  , 𝑤 𝑡   be any solution of the system   2   with non-negative initial condition  

  𝑥0  , 𝑦0 , 𝑧0  , 𝑤0  ∈ 𝑅+
4  . Now according to the first equation of system   2   we have : 

      
𝑑𝑥

𝑑𝑡
= 𝑦   1 − 𝑦  − 𝑢1  𝑥  . So, by using the comparison theorem on the above differential inequality with the 

initial point  𝑥 0 = 𝑥0 we get : 𝑥 𝑡 ≤
1

 4 𝑢1  
+   𝑥0 −

1

 4 𝑢1  
  𝑒−𝑢1𝑡 . Thus, lim𝑡→∞  𝑥 𝑡 ≤

1

4 𝑢1
 and hence 

sup 𝑥 𝑡 ≤
1

4 𝑢1
 , ∀ 𝑡 > 0 , ∀ 𝑢1 > 0 . Now define the function :   𝑀 𝑡 = 𝑥 𝑡 + 𝑦 𝑡 +

1

𝑢1
𝑧 𝑡 +

1

𝑢7
𝑤 𝑡  and 

then taken the time derivative of 𝑀 𝑡  along the solution of the system   2.2   we get : 

 
𝑑𝑀

𝑑𝑡
≤ 

1

4
+ 𝑥 − 𝑠 𝑀     𝑤ℎ𝑒𝑟𝑒    𝑠 = min    1 , 𝑢2  , 𝑢3  , 𝑢6    . Then     

𝑑𝑀

𝑑𝑡
+ 𝑠 𝑀 ≤ 𝐻   𝑤ℎ𝑒𝑟𝑒   𝐻 =

1

4
+

1

 4 𝑢1  
 .  

Again by solving this differential inequality for the initial value 𝑀 0 = 𝑀0 ,  we get : 

𝑀 𝑡 ≤
𝐻

𝑠
+  𝑀0 −

𝐻

𝑠
  𝑒−𝑠𝑡   . Then, lim𝑡→∞ 𝑀 𝑡 ≤

𝐻

𝑠
   .So, 0 ≤ 𝑀 𝑡 ≤

𝐻

𝑠
  , ∀ 𝑡 > 0 .Hence all the solutions 

of system   2   are uniformly bounded and the proof is complete .  

 

III. The existence of equilibrium points 
In this section, the existence of all possible equilibrium points of system   2   is discussed. It is observed that, 

system   2   has at most five equilibrium points, which are mentioned in the following : 

The equilibrium point 𝐸0 =   0 ,0 ,0 ,0   , which known as the vanishing point is always exists. 

The first equilibrium point 𝐸1 =   𝑥  , 𝑦  ,0 ,0   where 𝑦 = 1 − 𝑢2  , and 𝑥 =
𝑢2  

𝑢1
  1 − 𝑢2    exists uniquely in 

Int. 𝑅+
2  (Interior of 𝑅+

2 ) of 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 under the following necessary and sufficient condition : 

 𝑢2 < 1                                                                                                                                                                            3   

The first three species equilibrium point  𝐸2 =   𝑥  , 𝑦  , 𝑧  ,0   where   𝑥 =
𝑢3

𝑢1 𝑢4   1−𝑚 
    

𝑢4   1−𝑚 −𝑢3

𝑢4   1−𝑚 
     ,  

 𝑦 =
𝑢3

𝑢4   1−𝑚 
 𝑎𝑛𝑑 𝑧 =

𝑢4   1−𝑚    1−𝑢2   −𝑢3

𝑢4   1−𝑚 2   exists uniquely in Int. 𝑅+
3  of  𝑥𝑦𝑧 − 𝑠𝑝𝑎𝑐𝑒under the following 

necessary and sufficient condition :   𝑢3 < min    𝑢4   1 − 𝑚  ,  𝑢4  1 − 𝑚    1 − 𝑢2                                       4    

The second three species equilibrium point 𝐸3 =   𝑥  , 𝑦  , 0 , 𝑤    where  𝑥  =
𝑢6

𝑢1  𝑢7   1−𝑚 
   

𝑢7   1−𝑚 −𝑢6

𝑢7   1−𝑚 
   ,  

𝑦  =
𝑢6

𝑢7   1−𝑚 
  𝑎𝑛𝑑 𝑤  =

𝑢7    1−𝑢2     1−𝑚 −𝑢6

𝑢7   1−𝑚 2   exists uniquely in Int.𝑅+
3  of  𝑥𝑦𝑤 − 𝑠𝑝𝑎𝑐𝑒 under the following 

necessary and sufficient condition :    𝑢6 < min    𝑢7   1 − 𝑚  , 𝑢7    1 − 𝑢2    1 − 𝑚                                      5   

Finally, the positive equilibrium point 𝐸4 =   𝑥∗ , 𝑦∗ , 𝑧∗ , 𝑤∗    where 𝑥∗ =
𝑦∗

𝑢1
 1 − 𝑦∗  , 

𝑦∗ =
1−𝑢2+

𝑢6
𝑢8

  1−𝑚 +
𝑢3
𝑢5

  1−𝑚 

1+
𝑢7
𝑢8

  1−𝑚 2+
𝑢4
𝑢5

  1−𝑚 2
, 𝑧∗ =

𝑢7

𝑢8
 1 − 𝑚  𝑦∗ −

𝑢6

𝑢8
 𝑎𝑛𝑑 𝑤∗ =

𝑢4

𝑢5
 1 − 𝑚  𝑦∗  −

𝑢3

𝑢5
 exists in Int.𝑅+

4  under the 

following necessary and sufficient conditions : 

 1 +
𝑢7

𝑢8

  1 − 𝑚 2 +
𝑢4

𝑢5

  1 − 𝑚 2 > 1 − 𝑢2 +
𝑢6

𝑢8

  1 − 𝑚 +
𝑢3

𝑢5

  1 − 𝑚                                                       6 𝑎   

 𝑢7   1 − 𝑚  1 − 𝑢2 +
𝑢6

𝑢8

  1 − 𝑚 +
𝑢3

𝑢5

  1 − 𝑚  >   𝑢6  1 +
𝑢7

𝑢8

  1 − 𝑚 2 +
𝑢4

𝑢5

  1 − 𝑚 2                  6 𝑏   

     𝑢4 1 − 𝑚  1 − 𝑢2 +
𝑢6

𝑢8
 1 − 𝑚 +

𝑢3

𝑢5
 1 − 𝑚  > 𝑢3  1 +

𝑢7

𝑢8
 1 − 𝑚 2 +

𝑢4

𝑢5
 1 − 𝑚 2                            6 𝑐                                                                       

 

IV. Local stability analysis 
In this section, the local stability analysis of system   2   around each of the above equilibrium points are 

discussed through computing the Jacobian matrix 𝐽 𝑥 , 𝑦 , 𝑧 , 𝑤  of system   2   at each of them which given by :   

𝐽 =   𝑎𝑖𝑗   
4×4

          𝑤ℎ𝑒𝑟𝑒                                                              

𝑎11 = −𝑢1   , 𝑎12 = 1 − 2 𝑦  , 𝑎13 = 0  , 𝑎14 = 0  , 𝑎21 = 𝑢1  , 𝑎22 = −𝑢2 −  1 − 𝑚  𝑧 −  1 − 𝑚  𝑤 ,          
 𝑎23 = − 1 − 𝑚 𝑦 , 𝑎24 = − 1 − 𝑚 𝑦 , 𝑎31 = 0, 𝑎32 = 𝑢4   1 − 𝑚 𝑧 , 𝑎33 = −𝑢3 + 𝑢4   1 − 𝑚 𝑦 − 𝑢5  𝑤, 
 𝑎34 = −𝑢5  𝑧  , 𝑎41 = 0 , 𝑎42 = 𝑢7 1 − 𝑚  𝑤 , 𝑎43 = −𝑢8  𝑤  , 𝑎44 = −𝑢6 + 𝑢7   1 − 𝑚  𝑦 − 𝑢8  𝑧 .              

The Local stability analysis at 𝐸0 ∶  The Jacobian matrix of system   2   at 𝐸0  can be written as : 

𝐽 𝐸0 =   

−𝑢1 1     0 0

   
𝑢1

0
−𝑢2 0
  0 −𝑢3   

0
0

   0  0      0 −𝑢6

   

Then the characteristic equation of  𝐽 𝐸0  is given by :     𝜆2 + 𝐴1  𝜆 + 𝐴2      −𝑢3 − 𝜆     −𝑢6 − 𝜆  = 0  
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where   𝐴1 = 𝑢1 + 𝑢2   ,   𝐴2 = 𝑢1    𝑢2 − 1    . 
So, either     −𝑢3 − 𝜆     𝑢6 − 𝜆  = 0                                                                                                                   7 𝑎   

which gives two of the eigenvalues of  𝐽 𝐸0  by :   𝜆0𝑧 = −𝑢3 < 0   and   𝜆0𝑤 = −𝑢6 < 0  

Or         𝜆2 + 𝐴1𝜆 + 𝐴2 = 0                                                                                                                                      7 𝑏   
which gives the other two eigenvalues of  𝐽 𝐸0  by : 

        𝜆0𝑥 =
−𝐴1

2
+

1

2
   𝐴1

2 − 4 𝐴2           and         𝜆0𝑦 =
−𝐴1

2
−

1

2
   𝐴1

2 − 4 𝐴2  

Therefore, if the following condition holds :  𝑢2 > 1                                                                                         7 𝑐     
𝐸0  is locally asymptotically stable in the  𝑅+

4  . However it is a saddle point otherwise . 

The Local stability analysis at 𝐸1 ∶ The Jacobian matrix of system   2   at  𝐸1 can be written as : 

𝐽 𝐸1 =

 
 
 
 
−𝑢1    1 − 2 𝑦                 0                    0

   𝑢1

  0
  
−𝑢2    − 1 − 𝑚  𝑦 

0 −𝑢3 + 𝑢4   1 − 𝑚  𝑦 
− 1 − 𝑚  𝑦 

0
  0  0                       0           −𝑢6 + 𝑢7   1 − 𝑚  𝑦 

 

 
 
 
 

 

Then the characteristic equation of  𝐽 𝐸1  is given by : 

  𝜆2 + 𝐴 
1𝜆 + 𝐴 

2    −𝑢3 + 𝑢4 1 − 𝑚 𝑦 − 𝜆   −𝑢6 + 𝑢7 1 − 𝑚 𝑦 − 𝜆 = 0      where 

𝐴 
1 = 𝑢1 + 𝑢2          𝑎𝑛𝑑            𝐴 

2 = 𝑢1    𝑢2 + 2 𝑦 − 1        
So , either     −𝑢3 + 𝑢4   1 − 𝑚  𝑦 − 𝜆    −𝑢6 + 𝑢7  1 − 𝑚  𝑦 − 𝜆  = 0                                                   8 𝑎   
which gives two of the eigenvalues of  𝐽 𝐸1  by : 

            𝜆1𝑧 = −𝑢3 + 𝑢4   1 − 𝑚  𝑦      and     𝜆1𝑤 = −𝑢6 + 𝑢7   1 − 𝑚  𝑦                              
Or            𝜆2 + 𝐴 

1  𝜆 + 𝐴 
2 = 0                                                                                                                                   8 𝑏   

which gives the other two eigenvalues of  𝐽 𝐸1  by : 

𝜆1𝑥 = −
𝐴 1

2
+

1

2
   𝐴 

1
2
− 4 𝐴 

2       and   𝜆1𝑦 = −
𝐴 1

2
−

1

2
   𝐴 

1
2
− 4 𝐴 

2    .Therefore , if the following condition 

holds :   
1−𝑢2

2
  <  𝑦  < min    

𝑢3

𝑢4   1−𝑚 
 ,

𝑢6

 𝑢7   1−𝑚 
                                                                                                 8 𝑐   

Under condition   3   . 𝐸1  is locally asymptotically stable in the  𝑅+
4  . However, it is a saddle point otherwise . 

The Local stability analysis at 𝐸2 ∶  

The Jacobian matrix of system   2   at  𝐸2 can be written as :  𝐽 𝐸2 =   𝑏𝑖𝑗   
4×4

          where : 

 𝑏11 = −𝑢1 < 0  , 𝑏12 = 1 − 2 𝑦    , 𝑏13 = 0   , 𝑏14 = 0  , 𝑏21 = 𝑢1 > 0  ,  𝑏22 = −𝑢2 −  1 − 𝑚  𝑧  < 0  ,         
𝑏23 = − 1 − 𝑚 𝑦 < 0, 𝑏24 = − 1 − 𝑚 𝑦 < 0, 𝑏31 = 0, 𝑏32 = 𝑢4 1 − 𝑚 𝑦 > 0 ,                                               
𝑏33 = −𝑢3 + 𝑢4 1 − 𝑚 𝑦 ,𝑏34 = −𝑢5  𝑧 < 0 , 𝑏41 = 0, 𝑏42 = 0, 𝑏43 = 0, 𝑏44 = −𝑢6 + 𝑢7 1 − 𝑚 𝑦 − 𝑢8𝑧  . 

Then the characteristic equation of  𝐽 𝐸2  is given by : 

  𝜆3 + 𝐴 1  𝜆2 + 𝐴 2  𝜆 + 𝐴 3     −𝑢6 + 𝑢7   1 − 𝑚  𝑦 − 𝑢8 𝑧 − 𝜆   = 0    where , 

𝐴 1 = 1 + 𝑢1 −
𝑢3

𝑢4   1 − 𝑚 
    ,        

𝐴 2 =
𝑢1   𝑢4    𝑢2 − 1    1 − 𝑚 + 2 𝑢3   

𝑢4   1 − 𝑚 
+

  𝑢1 + 𝑢3      𝑢4    1 − 𝑢2     1 − 𝑚 − 𝑢3   

𝑢4   1 − 𝑚 
   ,                                   

𝐴 3 =
𝑢1  𝑢3    𝑢4   1 − 𝑚    1 − 𝑢2   − 𝑢3   

𝑢4   1 − 𝑚 
   .                                                                                                                 

So , either      −𝑢6 + 𝑢7   1 − 𝑚  𝑦 − 𝑢8  𝑧 − 𝜆 = 0                                                                                                9 𝑎   

Or            𝜆3 + 𝐴 1  𝜆2 + 𝐴 2  𝜆 + 𝐴 3 = 0                                                                                                                       9 𝑏   
Hence from equation   2.9 𝑎   we obtain that :   𝜆2𝑤 = −𝑢6 + 𝑢7   1 − 𝑚  𝑦 − 𝑢8  𝑧               
which is negative provided that :    𝑢7   1 − 𝑚  𝑦 < 𝑢6 + 𝑢8  𝑧                                                                              9 𝑐   
On the other hand by using Routh-Hawirtiz criterion equation   9 𝑏   has roots ( eigenvalues ) with negative real 

parts if and only if :  𝐴 1 > 0  ,  𝐴 3 > 0   𝑎𝑛𝑑    ∆ = 𝐴 1  𝐴 2 − 𝐴 3 > 0 .  Now direct computation gives that : 

∆ =
𝑢3    𝑢4   1 − 𝑚    𝑢2  𝑢3 + 𝑢1 1 + 𝑢1 + 𝑢4   1 − 𝑢2   1 − 𝑚   + 𝑢3

2   

𝑢4
2   1 − 𝑚 2

− 
𝑢3

2    𝑢1 + 2 𝑢4   1 − 𝑚   

𝑢4
2   1 − 𝑚 2

  

So ,  ∆ > 0 under the following condition : 

𝑢4   1 − 𝑚    𝑢2  𝑢3 + 𝑢1   1 + 𝑢1 + 𝑢4   1 − 𝑢2   1 − 𝑚   + 𝑢3
2 >  𝑢3    𝑢1 + 2 𝑢4   1 − 𝑚             10   

Now it is easy to verify that 𝐴 1 > 0 and 𝐴 3 > 0 under condition   4  .Then all the eigenvalues 𝜆2𝑥  , 𝜆2𝑦   and 𝜆2𝑧 

of equation   9 𝑏   have negative real parts. So, 𝐸2 is locally asymptotically stable if and only if conditions 
  9 𝑐   𝑎𝑛𝑑   10   are hold. However , it is a saddle point otherwise . 

The Local stability analysis at 𝐸3 ∶ 

The Jacobian matrix of system   2   at  𝐸3 can be written as :   𝐽 𝐸3 =   𝑐𝑖𝑗   
4×4

    where , 

𝑐11 = −𝑢1 < 0  , 𝑐12 = 1 − 2 𝑦   , 𝑐13 = 0  , 𝑐14 = 0  , 𝑐21 = 𝑢1 > 0 , 𝑐22 = −𝑢2 −  1 − 𝑚  𝑤 > 0  ,               
𝑐23 = − 1 − 𝑚  𝑦 > 0 , 𝑐24 = − 1 − 𝑚  𝑦 < 0 , 𝑐31 = 0 , 𝑐32 = 0 , 𝑐33 = −𝑢3 + 𝑢4   1 − 𝑚  𝑦 − 𝑢5  𝑤   ,    



Stability analysis of two predator-one stage-structured prey model incorporating a prey refuge 

DOI: 10.9790/5728-11324252                                  www.iosrjournals.org                                                46 | Page 

𝑐34 = 0  , 𝑐41 = 0  , 𝑐42 = 𝑢7 1 − 𝑚  𝑤 > 0  , 𝑐43 = −𝑢8  𝑤 < 0  , 𝑐44 = −𝑢6 + 𝑢7   1 − 𝑚  𝑦   .                       
Then the characteristic equation of  𝐽 𝐸3  is given by : 
  𝜆3 + 𝐵1  𝜆2 + 𝐵2  𝜆 + 𝐵3      −𝑢3 + 𝑢4   1 − 𝑚  𝑦 − 𝑢5  𝑤 − 𝜆  = 0       where  

𝐵1 = 1 + 𝑢1 −
𝑢6

𝑢7   1 − 𝑚 
    ,                                                                                                                                              

𝐵2 =
𝑢1    𝑢7   𝑢2 − 1   1 − 𝑚 + 2 𝑢2   

𝑢7   1 − 𝑚 
 +  

  𝑢6 − 𝑢1      𝑢7   1 − 𝑢2   1 − 𝑚 − 𝑢6   

𝑢7   1 − 𝑚 
   ,                                    

𝐵3 =
𝑢1𝑢6    𝑢7 1 − 𝑢2  1 − 𝑚 − 𝑢6   

𝑢7   1 − 𝑚 
−

𝑢1 1 + 𝑢2    𝑢7 1 − 𝑚 − 2𝑢6   

𝑢7   1 − 𝑚 
  .                                                        

while   Δ = 𝐵1  𝐵2 − 𝐵3                                                                                                                                              

                 =
𝑢6𝑢7 1 − 𝑚  𝑢1 1 + 𝑢1 + 𝑢6 + 𝑢7 1 − 𝑢2  1 − 𝑚  

𝑢7
2   1 − 𝑚 2

−
𝑢6

2   𝑢1 + 𝑢7   2 + 𝑢1 − 𝑢2  1 − 𝑚  

𝑢7
2   1 − 𝑚 2

 

So , either        −𝑢3 + 𝑢4   1 − 𝑚  𝑦 − 𝑢5 𝑤 − 𝜆 = 0                                                                                       11 𝑎   
Or        𝜆3 + 𝐵1  𝜆2 + 𝐵2  𝜆 + 𝐵3 = 0                                                                                                                       11 𝑏   
 From equation   11 𝑎   we obtain that :  𝜆3𝑧 = −𝑢3 + 𝑢4   1 − 𝑚  𝑦 − 𝑢5  𝑤     which is negative provided that: 

              𝑢4   1 − 𝑚  𝑦 < 𝑢3 + 𝑢5  𝑤                                                                                                                           12   
On the other hand it is easy to verify that 𝐵1 > 0  and  𝐵3 > 0 under  condition   5   while  ∆ > 0 under the 

following condition : 

𝑢7 1 − 𝑚   𝑢1 1 + 𝑢1 + 𝑢6 + 𝑢7 1 − 𝑢2  1 − 𝑚   > 𝑢6   𝑢1 + 𝑢7 2 + 𝑢1 − 𝑢2  1 − 𝑚             13   
Then all the eigenvalues 𝜆3𝑥   , 𝜆3𝑦  and  𝜆3𝑤  of equation   11 𝑏   have negative real parts. So, 𝐸3 is locally 

asymptotically stable if and only if conditions   12   and   13  are hold. However , it is a saddle point otherwise. 

Theorem   2  : Assume that the positive equilibrium point 𝐸4 =   𝑥∗  , 𝑦∗ , 𝑧∗ , 𝑤∗  of system   2  exists 

in  𝐼𝑛𝑡𝑅+
4  . Then it is locally asymptotically stable provided that the following conditions hold :  

        𝑃12
2 <

4

3
 𝑃11  𝑃22                                                                                                                                             14 𝑎   

        𝑃23
2 <

2

3
 𝑃22  𝑃33                                                                                                                                             14 𝑏   

       𝑃24
2 <

2

3
 𝑃22  𝑃44                                                                                                                                              14 𝑐   

      𝑃33  𝑃44 < 𝑃34
2                                                                                                                                                   14 𝑑   

Proof : It is easy to verify that , the linearized system of system   2   can be written as : 
𝑑𝑋

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 𝐽 𝐸4  𝑅 ,  here  𝑋 =   𝑥 , 𝑦 , 𝑧 , 𝑤   𝑎𝑛𝑑 𝑅 =   𝑟1  , 𝑟2  , 𝑟3  , 𝑟4   𝑡     𝑤ℎ𝑒𝑟𝑒   𝑟1 = 𝑥1 − 𝑥1

∗ ,  

𝑟2 = 𝑥2 − 𝑥2
∗, 𝑟3 = 𝑥3 − 𝑥3

∗  𝑎𝑛𝑑   𝑟4 = 𝑥4 − 𝑥4
∗ .  Moreover ,  𝐽 𝐸4 =   𝑑𝑖𝑗   

4×4
     𝑤ℎ𝑒𝑟𝑒  

𝑑11 = −𝑢1 , 𝑑12 = 1 − 2𝑦∗, 𝑑13 = 0 , 𝑑14 = 0, 𝑑21 = 𝑢1 , 𝑑22 = −𝑢2 −  1 − 𝑚 𝑦∗ −  1 − 𝑚 𝑤∗, 
𝑑23 = − 1 − 𝑚  𝑦∗ , 𝑑24 = − 1 − 𝑚  𝑦∗ , 𝑑31 = 0  , 𝑑32 = 𝑢4   1 − 𝑚 𝑦∗,                                                                     
𝑑33 = −𝑢3 + 𝑢4   1 − 𝑚  𝑦∗ − 𝑢5  𝑤∗, 𝑑34 = −𝑢5  𝑧∗ , 𝑑41 = 0  , 𝑑42 = 𝑢7   1 − 𝑚  𝑤∗ , 𝑑43 = −𝑢8  𝑤∗ ,                 
𝑑44 = −𝑢6 + 𝑢7   1 − 𝑚  𝑦∗ − 𝑢8  𝑧∗  . 

Now consider the following positive definite function :    𝑉 =
𝑟1

2

2
+

𝑟2
2

2
+

𝑟3
2

2
+

𝑟4
2

2
 . It is clearly that 𝑉 ∶ 𝑅+

4 ⟶

𝑅  and is a  𝐶1  positive definite function. Now by differentiating  𝑉 with respect to time  𝑡 and doing some 

algebraic manipulation gives that : 
𝑑𝑉

𝑑𝑡
= −𝑃11  𝑟1

2 + 𝑃12  𝑟1  𝑟2 − 𝑃22  𝑟2
2 + 𝑃23  𝑟2  𝑟3 + 𝑃24  𝑟2  𝑟4 − 𝑃33  𝑟3

2 + 𝑃34   𝑟3  𝑟4 − 𝑃44  𝑟4
2   where , 

 𝑃11 = 𝑢1  , 𝑃12 = 𝑢2 + 1 − 2 𝑦∗, 𝑃22 = 𝑢2 +  1 − 𝑚  𝑧∗ +  1 − 𝑚  𝑤∗, 𝑃23 =  1 − 𝑚   𝑢4  𝑧∗ − 𝑦  ∗  ,  
  𝑃24 =  1 − 𝑚   𝑢7  𝑤∗ − 𝑦∗   , 𝑃33 = 𝑢3 − 𝑢4   1 − 𝑚  𝑦∗ + 𝑢5  𝑤∗ , 𝑃34 = −𝑢5  𝑧∗ − 𝑢8  𝑤∗ ,                      

         𝑃44 = 𝑢6 − 𝑢7   1 − 𝑚  𝑦∗ + 𝑢8  𝑧∗ .      
Now it is easy to verify that the above set of conditions guarantee the quadratic terms give below : 

𝑑𝑉

𝑑𝑡
≤ −  𝑃11   𝑟1 −

 𝑃22

 3
 𝑟2 

2

−  
 𝑃22

 3
 𝑟2 −

 𝑃33

 2
 𝑟3 

2

−  
 𝑃22

 3
 𝑟2 −

 𝑃44

 2
 𝑟4 

2

−  
 𝑃33

 2
 𝑟3 +

 𝑃44

 2
 𝑟4 

2

 

So ,  
𝑑𝑉

𝑑𝑡
  is negative definite , and hence  𝑉 is a Lyapunov function .Thus , 𝐸4  is locally asymptotically stable and 

the proof is complete . 

 

V. Global stability analysis 
In this section the global stability analysis for the equilibrium points, which are locally asymptotically 

stable, of system   2   is studied analytically with the help of  Lyapunov method as shown in the following 
theorems .  
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Theorem   3  : Assume that the equilibrium point 𝐸0 =   0 ,0 ,0 ,0   of system    2   is locally asymptotically 

stable in the 𝑅+
4  . Then the equilibrium point 𝐸0 of system   2   is globally asymptotically stable . 

Proof: Consider the following function :    𝑉1  𝑥 , 𝑦 , 𝑧 , 𝑤  = 𝑐1  𝑥 + 𝑐2  𝑦 + 𝑐3  𝑧 + 𝑐4  𝑤  , where  

𝑐1  , 𝑐2  , 𝑐3  𝑎𝑛𝑑 𝑐4 are positive constants to be determine .Clearly 𝑉1: 𝑅+
4 → 𝑅 is a 𝐶1 positive definite function. 

Now by differentiating  𝑉1 with respect to time t and doing some algebraic manipulation , gives that :  

          
𝑑𝑉1

𝑑𝑡
= 𝑐1  𝑦 1 − 𝑦 + 𝑢1 𝑐2 − 𝑐1 𝑥 − 𝑐2 𝑢2𝑦 +  𝑐3  𝑢4 − 𝑐2  1 − 𝑚 𝑦𝑧 − 𝑐2  𝑢2  𝑦      

+ 𝑐4  𝑢7 − 𝑐2  1 − 𝑚 𝑦𝑤 − 𝑐3  𝑢3  𝑧 − 𝑐4  𝑢6  𝑤 −  𝑐3  𝑢5 + 𝑐4  𝑢8  𝑤 𝑧  .                                

By choosing   𝑐1 = 𝑐2 = 1 ,  𝑐3 =
1

𝑢4
 , 𝑐4 =

1

𝑢7
  we get :  

𝑑𝑉1

𝑑𝑡
≤ −   𝑢2 − 1   𝑦  . Then we obtain that  

𝑑𝑉1

𝑑𝑡
 is 

negative definite and hence 𝑉1 is a Lyapunov function. Thus 𝐸0 is globally asymptotically stable and the proof is 

complete . 

Theorem   4  ∶Assume that the equilibrium point 𝐸1 =   𝑥  , 𝑦  ,0 ,0  of system   2   is locally asymptotically 

stable in the 𝐼𝑛𝑡 𝑅+
2  , Then  𝐸1  is globally asymptotically stable on any region  Ω1 ⊂ 𝐼𝑛𝑡 𝑅+

2    that satisfies the 
following conditions : 

1

𝑥
−

 𝑦 + 𝑦  

𝑥 
+

𝑢1

 1 − 𝑚  𝑦 𝑦 
≤ 2  

𝑢1

 1 − 𝑚  𝑥 𝑦 𝑦 
                                                                                         15 𝑎   

𝑦 + 𝑦 

𝑥 
<

1

𝑥
+

𝑢1

 1 − 𝑚  𝑦 𝑦 
                                                                                                                                    15 𝑏   

𝑦2 𝑥 − 𝑥  2

𝑥 𝑥 
<    

 1 − 𝑦 𝑦

𝑥 𝑥 
 𝑥 − 𝑥  −  

𝑢1  𝑥 

 1 − 𝑚  𝑦 𝑦 2
  𝑦 − 𝑦   

2

                                                             15 𝑐   

Proof: Consider the following function : 

𝑉2  𝑥 , 𝑦 , 𝑧 , 𝑤  = 𝑐1  𝑥 − 𝑥 − 𝑥  ln
𝑥

𝑥 
 + 𝑐2  𝑦 − 𝑦 − 𝑦  ln

𝑦

𝑦 
 + 𝑐3  𝑧 + 𝑐4  𝑤                   

where  𝑐1  , 𝑐2  , 𝑐3  𝑎𝑛𝑑 𝑐4 are positive constants to be determine .Clearly 𝑉2: 𝑅+
4 → 𝑅 is a 𝐶1 positive definite 

function. Now by differentiating 𝑉2 with respect to time t and doing some algebraic manipulation , gives that : 

   
𝑑𝑉2

𝑑𝑡
= −𝑐1

 𝑥 − 𝑥  2  𝑦 

𝑥 𝑥 
+  

𝑐1

𝑥
−

𝑐1 𝑦 + 𝑦  

𝑥 
+

𝑐2𝑢1

𝑦
  𝑥 − 𝑥   𝑦 − 𝑦  − 𝑐1  

𝑦 

𝑥 𝑥 
  𝑥 − 𝑥  2−𝑐2  

𝑢1  𝑥 

𝑦 𝑦 
 𝑦 − 𝑦  2 

+𝑐2

𝑢1

𝑦
 𝑥 − 𝑥   𝑦 − 𝑦  − 𝑐2   1 − 𝑚  𝑦 − 𝑦  𝑧 − 𝑐2 1 − 𝑚  𝑦 − 𝑦   𝑤 − 𝑐3 𝑢3  𝑧           

                        +𝑐3  𝑢4   1 − 𝑚  𝑦 − 𝑐4  𝑢6  𝑤 + 𝑐4  𝑢7   1 − 𝑚  𝑦 𝑤 −   𝑐3  𝑢5 + 𝑐4  𝑢8    𝑤 𝑧 .                      

By choosing  𝑐1 = 1 , 𝑐2 =
1

 1−𝑚 𝑦 
 , 𝑐3 =

1

𝑢3
 , 𝑐4 =

1

𝑢6
  we get : 

 
𝑑𝑉2

𝑑𝑡
≤ −  

𝑦 

𝑥 𝑥 
  𝑥 − 𝑥  −  

𝑢1𝑥 

 1 − 𝑚  𝑦 𝑦 2
 𝑦 − 𝑦   

2

+
𝑦2 𝑥 − 𝑥  2

𝑥 𝑥 
−   

𝑢3 − 𝑢4   1 − 𝑚  𝑦 

𝑢3  𝑦 
  𝑦 𝑧    

      −   
𝑢6 − 𝑢7   1 − 𝑚  𝑦 

𝑢6  𝑦 
  𝑦 𝑤                                                                                                          

So , according to condition   8 𝑐   we obtain that :  
𝑑𝑉2

𝑑𝑡
≤ −  

𝑦 

𝑥𝑥 
  𝑥 − 𝑥  −  

𝑢1𝑥 

 1−𝑚 𝑦𝑦 2
 𝑦 − 𝑦   

2

+
𝑦2   𝑥−𝑥  2

𝑥 𝑥 
  . 

However, conditions   15 𝑎    𝑎𝑛𝑑   15 𝑏   guarantee the completeness of the quadratic term 

between  𝑥 𝑎𝑛𝑑 𝑦 . So, if condition   15 𝑐   holds then we obtain that  
𝑑𝑉2

𝑑𝑡
  is negative definite on the 

region  Ω1  and hence 𝑉2 is a Lyapunov function defined on the region  Ω1  . Thus 𝐸1 is globally asymptotically 

stable on the region  Ω1  and the proof is complete . 

Theorem   5  : Assume that the equilibrium point 𝐸2 =   𝑥  , 𝑦  , 𝑧  ,0   of system   2   is locally asymptotically 

stable in  𝐼𝑛𝑡𝑅+
3  . Then  𝐸2 is globally asymptotically stable on any region  Ω2 ⊂ 𝐼𝑛𝑡 𝑅+

3   that satisfied the 
following conditions : 

1

𝑥
+

𝑢1

𝑦
−

 𝑦 + 𝑦  

𝑥 
≤ 2  

𝑢1

𝑥 𝑦
                                                                                                                                16 𝑎   

𝑦 + 𝑦 

𝑥 
<

1

𝑥
+

𝑢1

𝑦
                                                                                                                                                      16 𝑏   

𝑦2   𝑥 − 𝑥  2

𝑥 𝑥 
<      

𝑦 

𝑥 𝑥 
  𝑥 − 𝑥  −   

𝑢1  𝑥 

 𝑦 𝑦 
  𝑦 − 𝑦   

2

                                                                                   16 𝑐   
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In addition that the following condition holds :  
𝑢5  𝑧 

𝑢4
+  1 − 𝑚  𝑦 <

𝑢6

𝑢7
                                                          16 𝑑   

Proof: Consider the following function : 

𝑉3  𝑥 , 𝑦 , 𝑧 , 𝑤  = 𝑐1   𝑥 − 𝑥 − 𝑥  ln
𝑥

𝑥 
  + 𝑐2   𝑦 − 𝑦 − 𝑦  ln

𝑦

𝑦 
  +  𝑐3   𝑧 − 𝑧 − 𝑧  ln

𝑧

𝑧 
  + 𝑐4 𝑤 

where  𝑐1  , 𝑐2  , 𝑐3  𝑎𝑛𝑑 𝑐4 are positive constants to be determine .Clearly 𝑉3: 𝑅+
4 → 𝑅 is a 𝐶1 positive definite 

function. Now by differentiating 𝑉3 with respect to time t and doing some algebraic manipulation , gives that : 

𝑑𝑉3

𝑑𝑡
= −𝑐1

 𝑥 − 𝑥  2

𝑥
+  

𝑐1

𝑥
−

𝑐1 𝑦 + 𝑦  

𝑥 
+

𝑐2𝑢1

𝑦
  𝑥 − 𝑥   𝑦 − 𝑦  + 𝑐1

𝑦2

𝑥𝑥 
 𝑥 − 𝑥  2 − 𝑐2

𝑢1𝑥 

𝑦 𝑦 
 𝑦 − 𝑦  2   

−𝑐2 1 − 𝑚  𝑦 − 𝑦   𝑧 − 𝑧  − 𝑐2 1 − 𝑚  𝑦 − 𝑦   𝑤 + 𝑐3  𝑢4 1 − 𝑚  𝑦 − 𝑦   𝑧 − 𝑧        
−𝑐3  𝑢5   𝑧 − 𝑧   𝑤 − 𝑐4  𝑢6  𝑤 + 𝑐4  𝑢7   1 − 𝑚  𝑦 𝑤 − 𝑐4  𝑢8  𝑤 𝑧  .                                         

By choosing  𝑐1 = 1 , 𝑐2 = 1 , 𝑐3 =
1

𝑢4
 , 𝑐4 =

1

𝑢7
  we get : 

𝑑𝑉3

𝑑𝑡
≤ −   

𝑦 

𝑥 𝑥 
  𝑥 − 𝑥  −   

𝑢1  𝑥 

𝑦 𝑦 
  

2

+
𝑦2

𝑥 𝑥 
  𝑥 − 𝑥  2   −    

𝑢6

𝑢7

−
𝑢5𝑧 

𝑢4

−  1 − 𝑚  𝑦    𝑤            

Now, according to condition   16 𝑑   we obtain that :  
𝑑𝑉3

𝑑𝑡
≤ −   

𝑦 

𝑥 𝑥 
  𝑥 − 𝑥  −   

𝑢1  𝑥 

𝑦 𝑦 
  

2

+
𝑦2

𝑥 𝑥 
  𝑥 − 𝑥  2 . 

However, conditions    16 𝑎   𝑎𝑛𝑑   16 𝑏   guarantee the completeness of the quadratic term 

between  𝑥 𝑎𝑛𝑑 𝑦 .  So, if condition   16 𝑐   holds . Therefore ,  
𝑑𝑉3

𝑑𝑡
 is negative on the region  Ω2   and hence 𝑉3 is 

a Lyapunov function defined on the region  Ω2  . Thus 𝐸2 is globally asymptotically stable and the proof is 

complete . 

Theorem   6  : Assume that the equilibrium point 𝐸3 =   𝑥  , 𝑦  ,0 , 𝑤    of system   2   is locally asymptotically 

stable in 𝐼𝑛𝑡 𝑅+
3  .Then  𝐸3  is globally asymptotically stable on any region Ω3 ⊂ 𝐼𝑛𝑡 𝑅+

3 that satisfies the 

following conditions : 

1

𝑥
−

 𝑦 + 𝑦  

𝑥 
+

𝑢1

𝑦
≤ 2  

𝑢1

𝑥 𝑦
                                                                                                                                17 𝑎   

𝑦 + 𝑦 

𝑥 
<

1

𝑥
+

𝑢1

𝑦
                                                                                                                                                      17 𝑏   

 
𝑦2

𝑥 𝑥 
  𝑥 − 𝑥  2 <     

𝑦 

𝑥 𝑥 
  𝑥 − 𝑥  −   

𝑢1  𝑥 

𝑦 𝑦 2
  𝑦 − 𝑦    

2

                                                                                17 𝑐   

In addition that the following condition holds :   
𝑢8

𝑢7
 𝑤 +  1 − 𝑚  𝑦 <

𝑢3

𝑢4
                                                       17 𝑑   

Proof: Consider the following function : 

 𝑉4  𝑥 , 𝑦 , 𝑧 , 𝑤  = 𝑐1  𝑥 − 𝑥 − 𝑥 ln 
𝑥

𝑥 
 + 𝑐2  𝑦 − 𝑦 − 𝑦 ln 

𝑦

𝑦 
 + 𝑐3 𝑧 + 𝑐4  𝑤 − 𝑤 − 𝑤 ln 

𝑤

𝑤 
    

where  𝑐1  , 𝑐2  , 𝑐3  𝑎𝑛𝑑 𝑐4 are positive constants to be determine .Clearly 𝑉4: 𝑅+
4 → 𝑅 is a 𝐶1 positive definite 

function. Now by differentiating 𝑉4 with respect to time t and doing some algebraic manipulation , gives that : 

𝑑𝑉4

𝑑𝑡
= −𝑐1  

 𝑥 − 𝑥  2  𝑦 

𝑥 𝑥 
+  

𝑐1

𝑥
−

𝑐1 𝑦 + 𝑦  

𝑥 
+

𝑐2𝑢1

𝑦
  𝑥 − 𝑥   𝑦 − 𝑦  + 𝑐1

𝑦2

𝑥 𝑥 
 𝑥 − 𝑥  2 − 𝑐2

𝑢1𝑥 

𝑦 𝑦 
 𝑦 − 𝑦  2 

−𝑐2 1 − 𝑚  𝑦 − 𝑦  𝑧 − 𝑐2 1 − 𝑚   𝑦 − 𝑦   𝑤 − 𝑤  − 𝑐3  𝑢3  𝑧 + 𝑐3  𝑢4   1 − 𝑚  𝑦 𝑧        
  −𝑐3𝑢5  𝑤 𝑧 + 𝑐4  𝑢7   1 − 𝑚  𝑦 − 𝑦   𝑤 − 𝑤  − 𝑐4  𝑢8   𝑤 − 𝑤   𝑧 .                                           

By choosing   𝑐1 = 1  , 𝑐2 = 1 , 𝑐3 =
1

𝑢4
  , 𝑐4 =

1

𝑢7
   we get : 

𝑑𝑉4

𝑑𝑡
≤ −   

 𝑦 

𝑥 𝑥 
  𝑥 − 𝑥  −  

𝑢1  𝑥 

 1 − 𝑚  𝑦 𝑦 2
  𝑦 − 𝑦    

2

−    
𝑢3

𝑢4

−  1 − 𝑚  𝑦 −
𝑢8

𝑢7

 𝑤    𝑧 +
𝑦2

𝑥 𝑥 
  𝑥 − 𝑥  2 

Now, according to condition   17 𝑑   we obtain that :  
𝑑𝑉4

𝑑𝑡
≤ −  

 𝑦 

𝑥 𝑥 
 𝑥 − 𝑥  −  

𝑢1𝑥 

 1−𝑚 𝑦𝑦 2
 𝑦 − 𝑦   

2

+

𝑦2

𝑥 𝑥 
 𝑥 − 𝑥  2 . However ,conditions   17 𝑎   𝑎𝑛𝑑   17 𝑏    guarantee the completeness of the quadratic term 

between  𝑥 𝑎𝑛𝑑 𝑦  .So, if condition   17 𝑐   holds then we obtain that  
𝑑𝑉4

𝑑𝑡
  is negative definite on the 

region  Ω3  and hence 𝑉4 is a Lyapunov function defined on the region  Ω3  . Thus 𝐸3 is globally asymptotically 

stable on the region  Ω3   and the proof is complete . 
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Theorem   7  : Assume that the equilibrium point  𝐸4 =   𝑥∗ , 𝑦∗, 𝑧∗ , 𝑤∗   of system   2   is locally 

asymptotically stable in the 𝑅+
4  . Then  𝐸4  is globally asymptotically stable on any region  Ω4 ⊂ 𝐼𝑛𝑡 𝑅+

4   that 
satisfies the following conditions : 

1

𝑥
−

 𝑦 + 𝑦∗ 

𝑥∗
+

𝑢1

𝑦
≤ 2  

𝑢1

𝑥 𝑦
                                                                                                                              18 𝑎   

𝑦 + 𝑦∗

𝑥∗
<

1

𝑥
+

𝑢1

𝑦
                                                                                                                                                    18 𝑏   

 
𝑦2

𝑥 𝑥∗
 𝑥 − 𝑥∗ 2 +   1 +

𝑢8

𝑢7

    𝑤 𝑧∗ + 𝑤∗𝑧  < 𝛽       𝑤ℎ𝑒𝑟𝑒                                                                       18 𝑐   

𝛽 =     
𝑦∗

𝑥 𝑥∗
  𝑥 − 𝑥∗ −   

𝑢1  𝑥∗

𝑦 𝑦∗
  𝑦 − 𝑦∗   

2

                                          

Proof: Consider the following function : 

𝑉5  𝑥 , 𝑦 , 𝑧 , 𝑤  = 𝑐1  𝑥 − 𝑥4 − 𝑥4  ln
𝑥

𝑥4

 + 𝑐2  𝑦 − 𝑦4 − 𝑦4  ln
𝑦

𝑦4

 + 𝑐3  𝑧 − 𝑧4 − 𝑧4  ln
𝑧

𝑧4

      

+ 𝑐4  𝑤 − 𝑤4 − 𝑤4  ln
𝑤

𝑤4  
   

where  𝑐1  , 𝑐2  , 𝑐3  𝑎𝑛𝑑 𝑐4 are positive constants to be determine .Clearly 𝑉5: 𝑅+
4 → 𝑅 is a 𝐶1 positive definite 

function. Now by differentiating 𝑉5 with respect to time t and doing some algebraic manipulation , gives that :  

 
𝑑𝑉5

𝑑𝑡
= −𝑐1

𝑦∗

𝑥 𝑥∗
 𝑥 − 𝑥∗ 2 +  

𝑐1

𝑥
−

𝑐1 𝑦 + 𝑦∗ 

𝑥∗
+

𝑐2𝑢1

𝑦
  𝑥 − 𝑥∗  𝑦 − 𝑦∗ − 𝑐2  

𝑢1  𝑥∗

𝑦 𝑦∗
  𝑦 − 𝑦∗ 2                               

           +
𝑐1  𝑦2

𝑥 𝑥∗
  𝑥 − 𝑥∗ 2 −   𝑐4  𝑢8 + 𝑐3  𝑢4     𝑤 − 𝑤∗   𝑧 − 𝑧∗ +    𝑐4  𝑢7 − 𝑐2    1 − 𝑚  𝑦 − 𝑦∗  𝑤 − 𝑤∗  

              +   𝑐3  𝑢4 − 𝑐2     1 − 𝑚   𝑦 − 𝑦∗   𝑧 − 𝑧∗                        

By choosing  𝑐1 = 𝑐2 = 1 , 𝑐3 =
1

𝑢4
  , 𝑐4 =

1

𝑢7
  we get : 

 
𝑑𝑉5

𝑑𝑡
≤ −    

 𝑦∗

𝑥 𝑥∗
  𝑥 − 𝑥∗ −   

𝑢1  𝑥∗

𝑦 𝑦∗
  𝑦 − 𝑦∗   

2

+
𝑦2

𝑥 𝑥∗
 𝑥 − 𝑥∗ 2 +

1

𝑢7

   𝑢7 + 𝑢8      𝑤 𝑧∗ + 𝑤∗𝑧   

However, conditions   18 𝑎   𝑎𝑛𝑑   18 𝑏   guarantee the completeness of the quadratic term 

between  𝑥 𝑎𝑛𝑑 𝑦 . So , if condition   18 𝑐   holds then we obtain that  
𝑑𝑉5

𝑑𝑡
  is negative definite on the region  Ω4 

and hence 𝑉5 is a Lyapunov function defined on the region  Ω4  . Thus 𝐸4 is globally asymptotically stable on the 

region  Ω4   and the proof is complete . 

 

VI. Numerical simulation 
In this section the dynamical behavior of system   2   is studied numerically for different sets of 

parameters and different sets of initial points. The objectives of this study are : first investigate the effect of 

varying the value of each parameter on the dynamical behavior of system   2   and second confirm our obtained 
analytical results. It is observed that , for the following set of hypothetical parameters that satisfies stability 

conditions of the positive equilibrium point, system   2   has a globally asymptotically stable positive 

equilibrium point as shown in Fig.   1   . 
                            𝑢1 = 0.1  , 𝑢2 = 0.1  , 𝑢3 = 0.1  , 𝑢4 = 0.8  , 𝑢5 = 0.2   

                                      𝑢6 = 0.1  , 𝑢7 = 0.8  , 𝑢8 = 0.2  , 𝑚 = 0.8                                             19     
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Fig.   𝟏  : Time series of the solution of system   2  that started from  four different initial 

points  0.4 , 0.5 , 0.6 , 0.7  ,  0.7 ,0.8 , 0.4 , 0.5  ,  0.2 , 0.3 , 0.4, 0.5  and  0.7 , 0.2 , 0.4 , 0.2  for the data given 

by Eq.   2.19   .  𝑎  trajectories of 𝑥 as a function of time,  𝑏  trajectories of 𝑦 as a function of time,  𝑐  

trajectories of 𝑧 as a function of time,  𝑑  trajectories of 𝑤 as a function of time . 

 

Clearly, Fig.   1    shows that system   2    has a globally asymptotically stable as the solution of 

system   2   approaches asymptotically to the  positive equilibrium point 𝐸4 =  1.39 , 0.83 , 0.17 , 0.17   
starting from four different initial points and this is confirming our obtained analytical results..Now in order to 

discuss the effect of the parameters values of system   2   on the dynamical behavior of the system, the system is 

solved numerically for the data given in Eq.   19   with varying one parameter at each time. It is observed that 

for the data as given in Eq.   19    with 0.1 ≤ 𝑢1 ≤ 0.9 , the solution of system   2   approaches asymptotically 

to the positive equilibrium point as shown in Fig.   2   . 

 
Fig.   𝟐  : Time series of the solution of system   2   for the data given by Eq.   19   which approaches 

to  1.39 ,0.83 ,0.17 ,0.17  in the interior of  𝑅+
4  . 

 

By varying the parameter 𝑢2 and keeping the rest of parameters values as in Eq.   19   , it is observed that for 

 0.2 ≤ 𝑢2 ≤ 0.4  the solution of system   2   approaches asymptotically to a positive equilibrium point 𝐸4 , 

while for  0.5 ≤ 𝑢2 ≤ 0.9 the solution of system   2   approaches asymptotically to 𝐸1 =   𝑥  , 𝑦  , 0 , 0   in the 

interior of the positive quadrant of  𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 as shown in Fig   3  . 

 
Fig.  𝟑  : Times series of the solution of system   2   for the data given by Eq.   19   which approaches 

to  1.97 , 0.28 , 0 , 0  in the interior of the positive quadrant of  𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒. 
 

On the other hand varying the parameter 𝑢3 keeping the rest of parameters values as in Eq.   19   ,it is 
observed that for 0.2 ≤ 𝑢3 ≤ 0.9 system   2   approaches asymptotically to 𝐸1 =   𝑥  , 𝑦  , 0 , 0   in the interior of 

the positive quadrant of  𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 .Moreover ,varying the parameter 𝑢4 and keeping the rest of parameters 

values as in Eq.   19   , it is observed that for 0.1 ≤ 𝑢4 ≤ 0.4 the solution of system   2   approaches 

asymptotically to 𝐸1 =   𝑥  , 𝑦  ,0 , 0   in the interior of the positive quadrant of 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 , while for 0.5 ≤
𝑢4 ≤ 0.9 the solution of system   2   approaches asymptotically to a positive equilibrium point  𝐸4 .For the 

parameter 0.1 ≤ 𝑢5 ≤ 0.9 and keeping the rest of parameters values as in Eq.   19   showed that the solution of 

system   2   approaches asymptotically to  a positive equilibrium point  𝐸4 .Moreover ,for the parameters values 

given in Eq.  19  with0.2 ≤ 𝑢6 ≤ 0.9 the solution of system   2   approaches asymptotically to a positive 

equilibrium point  𝐸4  . For the parameters values given in Eq.   19   with 0.1 ≤ 𝑢7 ≤ 0.9 the solution of system 
  2   approaches asymptotically to a positive equilibrium point 𝐸4  . For the parameter 0.1 ≤ 𝑢8 ≤ 0.9 and 

keeping the rest of parameters values as in Eq.   19   showed that the solution of system   2   approaches 
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asymptotically to a positive equilibrium point  𝐸4  .For the parameters value given in Eq.   19   and varying the 

parameter 𝑚 in the rang 0.1 ≤ 𝑚 ≤ 0.9   showed that the solution of system   2   approaches asymptotically to 

a positive equilibrium point  𝐸4 .For the parameters values given in Eq.   19   with   𝑢4 = 0.9  , 𝑢5 = 0.1  , 𝑢7 =
0.1  𝑎𝑛𝑑  𝑢8 = 0.8 ,the solution of system   2   approaches asymptotically to 𝐸2 =   𝑥  , 𝑦  , 𝑧  , 0   in the interior 

of the positive quadrant of  𝑥𝑦𝑧 − 𝑝𝑙𝑎𝑛𝑒  as shown in Fig.   4   . 

 
Fig.   𝟒  : Time series of the solution of system   2   for the data given by Eq.   19   with 𝑢4 = 0.9 , 𝑢5 =
0.1 , 𝑢7 = 0.1 𝑎𝑛𝑑 𝑢8 = 0.8 which approaches asymptotically to  2.44 , 0.57 , 1.63 , 0.01  in the interior of the 

positive quadrant of 𝑥𝑦𝑧 − 𝑠𝑝𝑎𝑐𝑒. 
Moreover , for the parameters values given in Eq.   19   with  𝑢4 = 0.1 , 𝑢5 = 0.8 ,  𝑢6 = 0.01 the solution of 

system   2   approaches asymptotically to 𝐸3 =   𝑥  , 𝑦  , 0 , 𝑤    in the interior of the positive quadrant of  𝑥𝑦𝑤 −
𝑠𝑝𝑎𝑐𝑒 as shown in Fig.   5  . 

                                                                  
Fig.  𝟓  : Time series of the solution of system   2   for the data given by Eq.   19   with 𝑢4 = 0.1 , 𝑢5 =
0.8 , 𝑢6 = 0.01  ,which approaches asymptotically to  1.26 , 0.86 , 0 , 0.23  in the interior of the positive 

quadrant of  𝑥𝑦𝑤 − 𝑠𝑝𝑎𝑐𝑒. 
Finally, the dynamical behavior at the vanishing equilibrium point 𝐸0 =   0 ,0 ,0 ,0   is investigated by choosing 

𝑢2 = 2 and keeping other parameters fixed as given in Eq.   19   , and then the solution of system   2   is drawn 

in   Fig.   6  . 

                                                                 
Fig.  6  : Time series of the solution of system   2   for the data given by Eq.   19   with  𝑢2 = 2, which 

approaches to  0 , 0 , 0 , 0  . 

Obviously, Fig.   6   shows clearly the convergence of the solution of system   2   to the vanishing equilibrium 

point 𝐸0 =   0 ,0 ,0 ,0   when the parameters increase up to a specific values . clearly the used valued in 

Fig.   6   satisfy the stability condition of the vanishing equilibrium point . 

 

VII. Conclusion and discussion 

In this chapter ,we have considered a prey-predator system incorporating a stage structure of prey with 

refuge . It is assumed that the predator species prey upon the prey according to Lotka-Voltera type of functional 

response. The existence, uniqueness and boundedness of the solution of the system are discussed. The existence 

of all possible equilibrium points is studied. The local and global dynamical behaviors of the system are studied 

analytically as well as numerically. Finally to understand the effect of varying each parameter on the global 

dynamics of system   2   has been solved numerically for a biological feasible set of hypothetical parameters 

values and the following results are obtained : 

1 . For the set of hypothetical parameters values given in Eq.   19   , the system   2   approaches asymptotically 
to global stable positive equilibrium point . 
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2 . It is observed that the system   2   has no effect on the dynamical behavior for the data given in 

Eq.  19  with varying the parameter value  𝑢1  and the system still approaches to positive equilibrium point. 

3 . As  the  natural  death  rate  of  mature  prey  𝑢2   increasing  in  the  range 0.2 < 𝑢2 < 0.4  and keeping other 

parameters fixed as in Eq.   19   , then again the solution of system   2   approaches asymptotically to the 

positive equilibrium point .However ,increasing  𝑢2  in the range  0.5 < 𝑢2 < 0.9  will cause extinction in the 

predators and the solution of system   2    approaches asymptotically to  𝐸1 =   𝑥  , 𝑦  , 0 , 0   .  
4 . As the first predator natural death rate  𝑢3  increasing keeping the rest of parameters as in Eq.   19   , then 

again the solution of system   2    approaches asymptotically to  𝐸1 =   𝑥  , 𝑦  , 0 , 0   . It is observed that the 

natural death rate  𝑢6  of the second predator has the same effect as  𝑢1  . 
5 . As the predation rate  𝑢4  increasing in the range  0.1 ≤ 𝑢4 ≤ 0.7   causes extinction in the predators and the 

solution of system   2   approaches asymptotically to  𝐸1 =   𝑥  , 𝑦  , 0 , 0   . However increasing  𝑢4  in the 

range  0.5 ≤ 𝑢4 ≤ 0.9  then again the solution of system   2   approaches asymptotically to the positive 

equilibrium point . 

6 . As the competition rate  𝑢5  increasing keeping the rest of parameters as in Eq.   19   , then again the solution 

of system   2   approaches asymptotically to the positive equilibrium point . It is observed that the competition 

rate  𝑢8  and the number of preys inside refuge 𝑚 have the same effect as  𝑢1   . 
7 . As the predation rate  𝑢7  increasing in the range  0.1 ≤ 𝑢7 ≤ 0.9  and keeping the rest of parameters as in 

Eq.  19  , then again the solution of system   2   approaches asymptotically to the positive equilibrium point . 
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