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Abstract: The classical linear stability analysis is used to analyze the effect of thermal radiation on the onset of 

Darcy electroconvection in a horizontal porous layer heated from below. The boundaries are assumed to be 

black bodies and the optical properties of the transparent dielectric fluid are independent of the wavelength of 

radiation. The principle of exchange of stabilities is shown to be valid. The critical values pertaining to the 

stationary instability are obtained by means of the higher order Galerkin method. It is found that basic 

temperature profile becomes exponential and symmetric as the radiative parameters increase and that the effect 

of thermal radiation is to delay the onset of Darcy electroconvection. 
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I. Introduction 
There exist situations in which thermal radiation is important even though the temperature may not be 

high. In fact, even under some of the most unexpected situations, the radiative heat transfer could account for a 

non-negligible amount of total heat transfer. Earlier works on heat transfer in Newtonian fluids paid attention to 

both convection and conduction but overlooked the effect of thermal radiation. 

The available literature barely delineates the part played by convection in a fluid combined with 

radiation. The formulation of heat transfer by conduction and convection leads to differential equations while 

that by radiation leads to integral equations. Thus the complexity involved in the solution of the integro-

differential equations resulting from the coupled convection and radiation problem warrants the use of several 

simplifying assumptions.  

Combined heat transfer processes such as convection-radiation play a significant role in several 

chemical processes involving combustion, drying, fluidization, MHD flows, and so forth. In general, the 

radiative process either occurs at the boundaries or as a term in the energy equation. In the latter case, the 

radiative term is usually approximated as a flux in such a way that the term corresponding to radiation in the 

heat transfer equation appears as a gradient term similar to Fourier’s conduction term. This method has found 

considerable favour among many researchers. Alternatively, radiation effects can be incorporated at the 

boundaries through appropriate assumptions. Free surface flows present a challenging problem to engineers as 

the combined convection-radiation at the boundaries has major applications in many industries. 

Goody [1] estimated the radiative transfer effects in the conventional natural convection problem with 

free boundaries using a variational method. He solved the problem for optically thin and optically thick cases 

and showed that there could be very large variations near the boundaries. Goody’s radiative transfer model has 

been extended and modified by subsequent investigators to take into account the effects of magnetic field, 

rotation and fluid non-grayness (Spiegel [2]; Murgai and Khosla [3]; Khosla and Murgai [4]; Christophorides 

and Davis [5]; Arpaci and Gozum [6]; Yang [7]; Bdeoui and Soufiani [8]).  

Larson [9] studied linear and nonlinear stability properties of Goody’s model analytically. When 

thermal diffusivity is zero, the energy method is used to rule out subcritical instabilities. When thermal 

diffusivity is nonzero, the energy method is used to find a critical threshold below which all infinitesimal and 

finite amplitude perturbations are stable.  

Shobha Devi et al. [10] studied the problem of Rayleigh-Bénard convection in an anisotropic porous 

medium in the presence of radiation. A linear stability analysis is performed and the Milne-Eddington 

approximation is employed for obtaining the initial static state. The Galerkin method is used to obtain the 

critical Rayleigh numbers. It is shown that radiation is to stabilize the system for both transparent and opaque 

media. It is found that opaque media releases heat for convection more slowly than transparent media and that 

the cell size gets affected by radiation only in the case of transparent media.  

Maruthamanikandan [11] analyzed the effect of radiative transfer on the onset of thermal convection in 

a ferromagnetic fluid layer bounded by two parallel plates and heated from below. The Milne-Eddington 

approximation is employed to convert radiative heat flux into thermal heat flux. It is found that radiation inhibits 
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the onset of convection in both transparent and opaque media. Furthermore, the opaque medium is shown to 

release heat for convection more slowly than the transparent medium. It is also shown that radiation affects the 

cell size at the onset of convection only in the case of transparent medium.  

Anwar et al. [12] studied the effects of thermal radiation and porous drag forces on the natural 

convection heat and mass transfer of a viscous, incompressible, gray, absorbing, emitting fluid flowing past an 

impulsively started moving vertical plate adjacent to a non-Darcian porous regime. The Rosseland diffusion 

approximation is employed to analyze the radiative heat flux and is appropriate for non-scattering media. 

Increasing Darcy number is seen to accelerate the flow; the converse is apparent for an increase in Forchheimer 

number. Thermal radiation is seen to reduce both velocity and temperature in the boundary layer. 

Shateyi et al. [13] sought to investigate the influence of a magnetic field on heat and mass transfer by 

mixed convection from vertical surfaces in the presence of Hall, radiation, Soret thermal diffusion, and Dufour 

diffusion-thermo effects. Similarity solutions were obtained using suitable transformations. The numerical 

results for some special cases were compared with the exact solution and were found to be in good agreement. 

Jafarunnisa et al. [14] analyzed the effect of chemical reaction and radiation absorption on unsteady 

convective heat and mass transfer flow of a viscous fluid through a porous medium in a vertical channel in the 

presence of heat generating sources. The nonlinear coupled governing equations are solved by a regular 

perturbation technique. The effect of chemical reaction and radiation absorption on all flow characteristics are 

discussed with the help of graphs.  

Most investigations of electroconvection in dielectric fluids consider only thermally conducting fluids, 

though it is of geophysical importance to understand the effects of radiative transfer on electrically induced 

convection. In this chapter we extend Goody’s model to take into account the electric force and porous medium. 

In fact, we study qualitatively the effect of thermal radiative transfer on the onset of electroconvection in a 

porous medium in the presence of a uniform vertical ac electric field. We also restrict our attention to the case in 

which the absorption coefficient of the fluid is the same at all wavelengths and is independent of the physical 

state (the so-called gray medium approximation). The equation of radiative transfer is developed in optically 

thin approximation and the effect of scattering is ignored.          

 

II. Mathematical formulation 
Consider a horizontal constant porosity layer of a dielectric fluid confined between two parallel infinite 

boundaries heated from below. In addition to a vertical temperature gradient, a vertical electric field is also 

applied across the layer. A Cartesian coordinate system is taken with the lower surface in the xy - plane and        

z - axis vertically upwards. The lower surface at 
2

d
z    and the upper surface at 

2

d
z   are maintained at 

constant temperatures oT  and 1T  respectively. The boundaries are assumed to be perfect conductors of heat 

and the fluid between the boundaries absorbs and emits thermal radiation. We treat the two boundaries as black 

bodies. The absorption coefficient of the fluid is assumed to be the same at all wavelengths and to be 

independent of the physical state. Moreover, it is assumed that local thermal equilibrium exists between the 

solid matrix and the saturated fluid.  

 
Figure 1: Configuration of the problem. 

 

The system of equations describing the problem at hand is the following 

 

0q 
 
                                                                           (1) 
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M q T κ T
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
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
                                                       (3) 

 

 1o oT TT                                                                   (4) 

 

where  , ,q u v w  is the fluid velocity, t  is the time, p  is the pressure, P  is the dielectric polarization, E  is 

the electric field,   is the fluid density, o   is the density at a reference temperature at oT T , g  is the 

acceleration due to gravity, f  is the effective fluid viscosity, ε  is the porosity, k  is the permeability of the 

porous medium,   is the effective thermal diffusivity, M is the ratio of heat capacities, T  is the thermal 

expansion coefficient, T  is the temperature, G  is the rate of radiative heating per unit volume, sr  is the heat 

content of the fluid per unit volume,   is the vector differential operator and  , ,x y z  are the spatial 

coordinates.    

The relevant Maxwell equations are  

 1P Eo r                                                                   (5) 

  0Eo r                                                                    (6) 

0E     or  E                                                             (7) 

where o  
is the electric permittivity, r  is the relative permittivity or dielectric constant and   is the electric 

potential. The dielectric constant is assumed to be a linear function of temperature in the form  

 o
e T Tr r o                                                                (8) 

where  0e  is the dielectric permittivity and 1
o
r    with   being the electric susceptibility.  

 

The equation of radiative heat transfer is  

 
( )

( )
dI s

K P I sa B
ds

                                                          (9) 

 

where ( )I s
 
 is the intensity of radiation along the direction of the vector s , ds  is an infinitesimal displacement 

in the s  direction, K a  is the absorption coefficient of the fluid and PB  is the Planck black-body intensity. The 

radiative heating rate is given by 

 
( )dI s

G d s
ds

                                                       (10) 

where the integral is taken over the solid angle 4  and s  is the element of solid angle.  

 

The basic state is quiescent and is described by 

 

 

 

 

0,0,0 , ( ) , ( ) , ( ) ,

0,0, ( ) , (0, 0, ( )) ,

( ) , ( ) ,

q q p p z z T T zb b b b

E E E z P P P zb b b b

z z G G zr rb b b

 

   

    

   

  







                      (11) 

where the subscript b denotes the basic state. The quiescent basic state has a solution in the form  
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  0p g P Eb b b b                                                      (12) 

 

 1 e zrb                                                                (13) 

 

 

 

1o

1

E
Eb

e z



 




 
                                                             (14) 

 

 1oP Eb rb b                                                               (15) 

where 
dTb

dz
    and oE  root mean square value of the electric field at the lower surface. In the quiescent 

basic state, the equation of radiative transfer (9) takes the form 

 

  3

dI
K P Ia B

dz
                                                          (16) 

where 3  is the directional cosine of s  in the z-direction. Equation (16) is suggestive of the fact that the 

intensity of radiation is increased by emission and decreased by absorption. 

 

The energy equation (3) in the basic state becomes 

   

2

0
2

G d Tb b

s dzr

  .                                                     (17) 

 

     Equation (17) indicates that the heat transfer in the basic state is essentially by conduction and radiation.       

If Fz  is the z-component of the radiative heat flux, then we may write 

     
dFz

Gb
dz

                                                            (18) 

and we may write Eq. (17) in the integrated form 

 1F s Cz r                                            (19) 

where 1C  is the constant of integration.  

 

     Iterative solutions of one-dimensional radiative equilibrium problems all show that remarkably accurate 

results can be obtained by assuming a simple form for the angular distribution of radiative intensity.       

Assuming the Milne-Eddington approximation, and using the radiative heat transfer equation (16), the 

differential equation associated with the heat flux Fz  can be obtained in the form (Goody, [1]) 

      

2 2
2

12 1*

d Fz
F Cz

dz

 



  


                                                   (20)  

 where           
42 2 2

* , 3 1 ,
3

z Qr
z K da

d K sa r


  


    ,     

4 3
o

s
Q Tr




       and                                                 

 s  is the Stefan-Boltzmann constant. 

 

     Solving Eq. (20) using the following dimensionless radiative boundary conditions 
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2 at * 1 2
*

2 at * 1 2
*
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K F d za z

d z
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  
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

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                                              (21) 

we obtain the solution in the form   

   * cosh *1 2f z L z L





                                        (22) 

where       

    

   
1

2 1
3 3 sinh cosh1 2 22

L
   




   
 
  

                          

and 

   11
3 3 sinh cosh2 2 22

L
L  


  

 
  

 

 

and   is the mean value of   throughout the medium. The radiative boundary conditions (21) are obtained 

using the fact that the molecular conduction ensures continuity of temperature at the two surfaces. It is worth 

mentioning that ( *)f z  tends to unity if either   or   tends to zero independently. Moreover, if   and   are 

both greater than unity, the variation of the basic state temperature is exponential. In other words, the basic state 

temperature is no longer linear if the radiation effect is accounted for. In what follows we study the stability of 

the quiescent state within the framework of the linear theory. 

 

2.1 Stability Analysis 

Let the components of the perturbed physical quantities be  

 

 ' ', ', ' , ', ', ',

', ', ' , ', '

q q q u v w p p p T T Tb b b b

E E E P P P G G Gb b r rb r b b

  

     

        

         





              (23) 

 

where the primes indicate infinitesimally small perturbations. Substituting (23) into the governing equations, 

neglecting the nonlinear terms, incorporating the quiescent state solutions and eliminating the pressure term 

gives the following equations       

   
 

2 2
2 2 2 2 2o o o

' ' ' ' 'o 1 o o 1 1
1

e Ef
w g T w e E TT
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 
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         (24) 

 

                             
2T G

M w T
t sr

 
 

    


                                                      (25) 

 

'2
(1 ) ' 0o

T
e E

z
 


   


                                                    (26) 

where 

2 2
2
1 2 2

x y

 
  

 

. Since Eq. (25) is an integro-differential equation, we adopt the approximation which 

is valid when the fluid medium is optically thin (known as transparent approximation). For the transparent 

approximation (Goody, [1]), the relation becomes 

 

2 2
41 1G' Q K T'r a    .                                       (27) 
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     Equation (25), corresponding to the transparent approximation, after making use of (27), becomes 

 

    42 2 2 2 2
1 1 1 1

Q Kr a
M T w T T

t sr


 


          


.                  (28) 

     We next make Eqs. (24), (26) and (28) dimensionless using the following transformations  

 

 
   
1' '* * * * * * *

, ', , , , , , ,
2 2

o

d w x y z t T
w x y z t T

eE d d d d dM d


 

  




    

 
 

  
 
 
 

         (29) 

 

where the quantities with asterisks are dimensionless. Eqs. (24), (26) and (28), using (29), can be written (after 

dropping the asterisks)         

 

     1 2 2 2 2
1 1w w R L T L

Va t z


 
        

 
                            (30) 

 

     
2

2 2 2 2 2
1 1 1 1

1
T f z w T T

t

 




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                               (31) 

 

2
0

T

z



  


                                                                 (32) 

where 

2

o

df
Va

k

 

 
  is the Vadasz number, 

2
o g kdT

R

f

  

 
  is the Darcy-Rayleigh number, 

 
 

2
o o

1

eE d k
L

f

  

  



 is the Darcy-Roberts number for the radiative heat transfer, 

4

3

Qr

K sa r





  is the 

conduction-radiation parameter, 3 (1 )λ K d ψa   is the absorptivity parameter and                                      

( )f z  is given in Eq. (22). 

 

The boundary conditions are  

          
0w T

z


  

    
at   0, 1z  .                                    (33) 

 

We use the normal mode solution for the dependent variables in the form 

  

     , , ( ), ( ), ( ) exp ( )w T W z z z i lx my t                                   (34) 

 

where l  and m  are the  dimensionless wave numbers in the x  and y  directions respectively and   is the 

growth rate. 

 

2.2 Stationary Instability 

Substituting (34) into Eqs. (30) - (32), we arrive at the following equations for stationary instability 

(characterized by 0  ) 
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0D W R L L D                                               (35) 

 

2
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1

D f z W
 

 


   


 
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                                          (36) 

 

 2 2
0D D                                                     (37) 

where 
d

D
dz

  and 
2 2

l m   is the overall horizontal wavenumber. 

 

In view of (34), the boundary conditions take the form 

 

10 at
2

W D z                                                     (38) 

2.3 Oscillatory Instability 

We now examine the validity of the principle of exchange of stabilities (PES) for the problem under 

consideration by the Galerkin method. It should be noted that PES has been shown to be valid for the Rayleigh-

Bénard problem of dielectric fluids in the absence of chemical reaction (Turnbull, [15]).      

 

     Substituting (34) into Eqs. (30) - (32), we arrive at the following equations  

     2 2 2 2 2 2
0D W R L D W L D

Va


                                 (39) 

 

2
2 2

( ) 0
1

f z W D
 

  


    


 
 
  

                                          (40) 

                           

 2 2
0D D     .                                                    (41) 

 

     Multiplying equations (39) - (41) by ,W   and   respectively, integrating the resulting equations with 

respect z between the limits 1 2z   and 1 2z  , taking ( ) ( )1 1W z A W z , ( ) ( )1 1z B z   and 

( ) ( )1 1z C z   (in which ,1 1W   and 1  are trial functions) leads to the following system of equations                                                          

 1 01 1 2 1 3 1P A R L P B L P C
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
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 
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2
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1
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                                     (43)                           

 

07 1 8 1P C P B                                                          (44) 

where   
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Here the inner product is defined as 
1 2

1 2f g f g dz


  . Assuming i   with 
 
being the frequency of 

oscillations, the criterion for the existence of the unique solution of the system of equations (42) - (44) leads to 

the expression            1 2R R i R 
 

where  

                  

2
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2
1

2 4 5
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
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
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 . 

 

As the Rayleigh number R  is real, we must have 02R  . Clearly 0  . This means that the PES is 

valid for the present problem and the possibility of existence of oscillatory instability is ruled out. Hence the 

stationary instability is the preferred mode.    

                             

2.4 Method of Solution  

The system comprising Eqs. (35) - (37) and the homogeneous boundary conditions (38) is an 

eigenvalue problem, with R  being the eigenvalue. An approximate solution of the foregoing eigenvalue 

problem can be arrived at by means of the Galerkin method. To this end, we let   

 

 , ,W A W B Ci i i i i i                                                     (45) 

 

where ,A Bi i  
and Ci  

are constants and the basis functions Wi , i  and i  are represented by the power series 

satisfying the respective boundary conditions. Application of the Galerkin method yields   

 

0

0

0

D A E B F Cji i ji i ji i

G A H Bji i ji i

K B L Cji i ji i

  

 

 







                                                     (46) 

where    

 

2 2
D W D W W Wji j i j i  ,      2

E R L Wji j i   ,  

2
F L W Dji j i   ,     G f z Wji j i , 

2
2 2

1
H Dji j i j i j i

 
      


  


, 

 

  ,
2 2

K D L Dji j i ji j i j i          . 

 

The trial functions chosen are  cos 2 1W i zi i     and  sin 2 1i zi   . On applying the 

Galerkin method to the system (46) of equations, we would obtain the critical Rayleigh number and the 

corresponding critical wavenumber. 
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III. Figures 

 
Figure 2: Basic temperature profiles for different      Figure 3: Basic temperature profiles for                                                                                  

values of the conduction-radiation parameter  .                      different Values of the absorptivity parameter  . 

 

 

Figure 4: Plot of cR  as a function of L for                    Figure 5: Plot of cR  as a function of L for 

different values of  .                                                  different values of  . 

 

 

Figure 6: Plot of c  as a function of L for                            Figure 7: Plot of c  as a function of L for 

different values of  .                                     different values of  . 

 

IV. Results and Conclusion 
The effect of thermal radiation on the onset of Darcy electroconvection in an absorbing and emitting 

dielectric fluid layer in the presence of a vertical ac electric field is studied. The principle of exchange of 

stabilities is shown to be valid by means of the single term Galerkin method. The critical values concerning 
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stationary instability are obtained using the higher order Galerkin method. As to the values of radiative 

parameters   and  , large radiative effects are more likely if a gas rather than a liquid is used as a fluid. In 

view of this, large values of   and   have been overlooked in this work. 

In order to understand the results of the problem better, we examine the basic state temperature 

distribution which sheds some light on the effect of radiative heat transfer on the stability of the system. Figs.2 

and 3 are plots of z versus ( )f z  for different values of   and   respectively. We notice that the basic state 

temperature profile turns out to be exponential and nonlinear as   and   increase and it is symmetric about the 

line z = 0. This  symmetry  of the basic temperature  profiles is  largely responsible  for the  stabilizing effect of 

both  and  .    

The variation of Rc  with L for different values of   and   is portrayed in Figs. 4 and 5 respectively. 

The parameter   signifies the temperature in the equilibrium state, while   is the characteristic of absorption 

coefficient and distance between the horizontal planes. The stabilizing influence of   and   is evident from 

Figs. 4 and 5. This is due to the fact that radiative transfer tends to damp out any motions which may arise due 

to the heat transfer from hotter to colder parts of the dielectric fluid. As a result, the effect of thermal radiation is 

to inhibit Darcy electroconvection. Further, Figs. 6 and 7 show that c  increases with increase in L, 
 
and  . 

Thus convection cell size gets smaller with an increase in L,   and  . In the limiting case of 0L   , one 

obtains the classical values of c   and 
2

4Rc   (Nield and Bejan, [16]).  

Thus, it may be concluded that basic temperature profiles tend to be nonlinear and symmetric with 

respect to the variations in the radiative parameters   and  . This symmetry is largely responsible for the 

stabilizing effect of both   and  ; the effect of electric forces and thermal radiation is to contract the 

convection cell size at the onset of convection and in the presence of radiation effect, stationary mode of 

instability is preferred to the oscillatory mode. 

The model finds applications in solar energy collection systems, porous combustors and also in the design of 

high temperature chemical process systems. 
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