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Unsteady Flow in a Double-Sided Symmetric Thin Liquid Films
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Abstract:In this paper, we considerthe unsteady flow within a double-sided symmetric thin liquid film with
negligible inertia. We apply the Navier-Stokes equations in two dimensional flows for incompressible fluid. The
similarity method is used in which the explicit time dependence can be isolated and thus the shape of the film
will depend on one variable only.The differential equation of the film thickness is obtained analytically and the
solution of equation thatrepresents the film thickness is obtained numerically by using Rung-Kutta method.
Keywords:Thin Liquid Films, Navier-Stokes equations, continuity equation.

. Introduction

This paper is concerned with a dynamical system in such a way that no solid boundaries exist.It is more
convened to assume that any solid boundaries which exist are at sufficient distance to produce or have no
significant direct mechanical effect on that part of the system which is under consideration that are imposed in
this work.The purpose of studying such liquid systems is to determine the global effect of varying the boundary
conditions at liquid surfaces, in cases where the physical relevance of these boundary conditions appears to be a
matter of doubt. However, in the case of motion in thin films, for instance, it has been suggested [1] that the
surfaces of the thin film behave more like inextensible solids rather than ordinary fluid surfaces. [2],considered
the thinning process of an inclined thin liquid film over a solid boundary with an inclination angle 6 to the
horizontal in gravity driven flow. They assumed that the fluid thickness is constant far behind the front and they
neglected the thickness of the film at the beginning of the motion.The drainage of thin liquid films on an
inclined solid surface is considered by [3], and the equation that governs the film thickness is obtained
analytically by using the similarity method.The dynamic rupture process of a thin liquid film on a cylinder is
investigated numerically; a nonlinear differential equation that describes the long-wave evolution of the
interface shape. The tendency of acceleration becomes more explicit in the case of large surface tension [4]. The
contact line induced instabilities for a thin film of fluid under destabilizing gravitational force in three
dimensional setting. The instabilities in the setting vary in the transverse direction. It is argued that the flow
pattern strongly depends on the inclination angle and the viscosity gradient [5]. A mathematical model is
constructed by [6] to describe a two dimensional flow for an inclined thin liquid films with an inclination angle
a to the horizontal under the action of gravity. An asymptotic analysis is employed by using the lubrication
approximation.

Il.  Formulation and Governing Equations

We consider the flow of a viscousliquid within ahorizontal double-sided symmetric thin liquid film
with zero shear stress on their bounding surfaces in two-dimensions.We take the Cartesian coordinates X and Y
in which the X-axis is the axis of symmetric, and the flowis predominantly in the Xdirection, and the Y-axis is
perpendicular to the plane of the film, as shown in Figure(1), and the equation of the bounding surfaces of the
film is given by = +H(X, T) .Let q = (U, V)denotes the fluid velocity, where U and V are the velocity
components of the velocity field qinX and Ydirections respectively.Here, it is assumed that two dimensional
incompressible flow governed by the Navier-Stokes equations of motion in X and Ydirections which are the
longitudinal and transverse momentum equations for unsteady flow which are given in differential form
respectively as follows:
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ploy+ U+ V] = -5+ u[5e + 5] @)
and
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whereT is the time,Pis the pressure, p is the dynamic viscosity of the liquid andp is the density of the liquid.

The continuity equation is given by:

au av

ax tay ©
In lubrication theory, the inertia terms can be neglected and the Navier-Stokes equations (1) and (2) become as
follows:
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apP a*u . a%u

=l “)
and

aP a%v | 9%V

o = i[5+ 5] ©)
For thin liquid films the slope of the boundary free surfaces is so small and thus

L (6)

Now, we consider the class of unsteady flows in which the asymptotic conditions as X - —oo are uniform and
thus, we assume that

HX)-H, UXY)-U, VXY)-0 @)
whereHand U > 0 are constants.

Now from the conservation of mass and since the free surface is a stream line, the material or the substantial

derivative% = 0 must be vanished on Y = H(X, T)and thus, we have

DF dF dF dF

whereF(X,Y,T) = Y- H(X,T) 9)
From equations (8) and (9), we obtain

oH 0H

o + Uﬁ -V=0 (10)

Now, by integrating the continuity equation (3), with respect to Y, we get V = —Yz—z , on the surface of the
filmY = H(X, T), we have

V= —H& (11)
By substituting equation (11) into equation (10), we obtain

MivZinZoo (12)
aT X X

At the surface of the free film, we have the following boundary conditions. The conditions on normal and
tangential stress at the surface of the film however, they require further analysis. To apply these, we require the
Cartesian components of the unit normal vectorand the unit tangent vector, which are given respectively by

1

oH o212 1

n,=—-t,=—— |14+ (= ] |
x y

ax (ax)1 | (13)

m=te= 1+ (@]

and the curvature, for the free surface is given by
3

an; _ 0%H oH\?%] 2
=S G (14)
Also, we require the Cartesian components of Stokes’ formula for the stress, which are given by

Po = —P + zug—g}

av . du
av
pYY = —P + ZHH_Y
I11.  Dimensional Analysis

To express the Navier-Stokes equations, the equation of continuity and the associated boundary conditions into
non-dimensional form, we now introduce the following non-dimensional variable as follows [7],

kex Y H U
= -, y==, h=:, u==
H H 31 0
HP elT
VEgP =g = (16)

Where H and Uare the characteristics. The Capillary number is defined as

e=t0 (17)
Also the Reynolds number is defined as
ke=22 (18)

n
where€ and k are non-dimensional constants.
Substituting equation (17) into equation (18), we obtain
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fi
k= "H—Z (19)
By using the dimensionless variables given by equation (16), into equations (3)-(5), the continuity equation
gives
kUeadu , Ue Bv
andthe Navier-Stoke equation in x and y directions respectively give
ke3odp _ [k2€?2U0%u , U 9%u
== e (21)
€?sdp _ [K2e3Ua%v | €Ua?v
o =t [t (22)

The variables in (7) in non-dimensional formbecome

h(—0) =1, u(—oo,y) =1, v(—o0,y) =0 (23)
Now, equation (12) in non-dimensional is given by

€eUH ah keUH ah keUH

AHfte?tsmpIHlfymg equatlon}s1 (20)0(22) and (24), and by using equations (17)-(19), respectively, we obtain o
k— 5 =0 (25)
% =e? [k 2 -1 2] (26)
Z; [0y K et 2] @7)
— + ku— + kh— (28)

Also equatlons (13) (15) in non- dlmen5|onal form become

n, =—ty=—keh’[1+k2 ezh ]
(29)
n, =t =[1+K € h
on; _ 2 22
a—Xi_Th [1+k € h] (30)
and
ZG
Py = £ [ p+ Zk—
av
Py = € aX]I (31)
Pyy = ? [—p + 25 J
The Laplace condition on normal stress at the surface thereforegives
n,n, P, +n,n,P, +nn,Py +n,np, = Z:‘ (32)
By substituting equations (29)-(31) into the above equation, we obtain
1
142 € n?|p, +2k[1 - K? €2 1”| [6] + 2kh' [—+ ke?2| =—k?n'[1+K2 €2 n’]? (33)
S

where the subscript s denotes values at the surface of the film y=h. The condition on tangential stressand by
using equations (29) and (16),we obtain

12 22 2] [ou 20V _ o2 22 2
[1 keh”ay+keax]s 2keh[ ]+2keh =0 (34)
Substituting the continuity equation (25) into the above equatlon, we obtain

1,2 22 w2 [ou 20V 42 =2 3 [0u]
[1-K2en Hay+ke ax]s 4K2 € h[ax]s_o (35)
Now, substituting equation (35) into equation (33), we obtain
ps + 2k [i:izez: “ —1 =0 (36)

s [1+k2 e’

IV.  Similarity Method
We assumed through this work that the film thickness is constant at x — —ooand this assumption is true
since the fluid thins out there and so we apply the similarity method to see how this process evolves in time. For
self-similar solution, we assume that
h(x,t) = h; (t)H; () @37
Where ) is the self-similar variable:
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X

n=— (38)
This r#w(e)thod is to isolate the explicit time dependence and then the shape of the film will depend on the variable
n only.

Now let

hy () = D(t)°

and (39)

x (0 = A(t)*

Where D and A are the self-similar exponents and 6 anda are constants.

V. Perturbation Method
We now develop formal expansions as follows
u=ug +€? u; +e* ug + e i
v=vy+€lv, +e* v, + ... ,
p=po+€%p, +€* ps+ ... ,
h=hy+€2 hy +€* hy + ... |
where the functional coefficients of €2",n = 0,1,2,3,4, ... ... , are independent of €. Further, we assert that all
these coefficients are bounded functions with bounded derivatives of all order with respect to x and yand this
assertion leads to a self-consistent and non-trivial solution for the shape of the film. We proceed as follows

(40)

a) The zero-order problem

It is a simple matter to see that the zero- order problem, obtained by setting €= 0, in all the preceding
equations, is degenerated in the sense that a solution exists for every arbitrary assigned function and we obtain
u=uy, V=V, p Po and h=h, (41)

For k=1, we get H = = and this ensures the balance between viscous forces and surface tension forces and then

H can be determined from the physical parameters for each liquid. Then, for other values of k, we can proceed in
a similar way.
Now from equation (28) and using equations (37), (38)and (41), we obtain

D3t~H, () — Dat®~ 1na— +ug 210" “aHl + DtPH, () 32 = 0 (42)
The fourth term is incomparable with the other terms and |t is so small for high viscosity ofliquid since the
velocity u, is small, thus its derivative becomes very small and we neglect it. Thus, equation (42) isreduced to
give

D3t™ Hy () — Dot I 5 4 g 7 = 0 (43)

By equating the exponents of t in equation (43), we get
0—1=0%—a

or

a = land, we can choose 6 = 1for the balance of equation (43).
and thus equation (43) is reduced to give

AH
U t) = — g + An (44)

on
Now from continuity equation (25) and equations (37), (38) and (41), we obtain
dvg _ Hlﬂzl

oy
on
Integrating equation (45), with respect to y, we obtain

62H1

1752
vo(n, 1) = — (aff)z y +f(n,1) (46)

t —_—

on
Since the film is symmetric, we have v,(n,t) = 0 aty = 0 ,thereforf(n,t) = 0 and equation (46) on the surface
film (y = hy) become

(45)

-
Wm0 =~ (47)
on
From equations (36), (37), (38) and (41), we obtain
Dgl;' 2H 12l;
_on~
Po(n, 1) = ——5—— —20 (48)
()
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b) The second-order problem
It is a simple matter to see that the second- order problem, obtained by setting €*= 0, in all the preceding
equations, is degenerate in the sense that a solution exists for every arbitrary assigned function and we obtain

u=uy+€®u,, v=vy+€%v, p=py+€%®p, and h=h,+€?h, (49)
Now substituting equations (44),(47) and (48) into equation (49), we obtain
AH
u(n,t) = _Ell + An +€2 u, (50)
on
pH 221
vt = - — - +€l v, (51)
ey
and
&{zl 2 1&12l
p(n,Y = ——5—— W +€% p (52)
t —
on
Now, by substituting equations (50) and (52), into equation (26), we obtain
2
0% D%l 3’3;?“1 3H1%*3l +6H1(%*2l) 53)
2 T 7 A3z oHy 2 3
ay At At? 6_1]1 A2 (";*_nl) A2 (";_nl)
Integration equation (53), with respect to y, we get
a
5=y D + 60 (54)
8314 a2Hq 8314 9211\
D 3H 6H
At - At2 (a_nl) At2 (a_nl)

andG(n, t) is an arbitrary function of integration. Since u, must be an even function of yin a symmetric film,
then

% =0 wherey=20 (55)
Thus
G(n,)=0
and

3 2 3 25 .\2
duy f( t) DBB_:% 366_:21 3]-[136_:31 + 6H1(03_:21> (56)
- =yimy =y|— - -

On the surface s, the equations (56), becomes

1731-11 HZHl
Do 357

du 9 9 3Hlaai-l3l 6H1(T2_
5] — i o |2 S ol
s

— — ) 57
TR @y ey ©7

ay.

-

From equations (35), (50) and (51), we have

2 3 2\ 2
0“H1 H 0°H1 ZHl(aaHl)

duy 55 153 n
) _py, |2 - . (58)
[6y s Atalnl At(a;—nl) At(a;—nl)
Thus equations (57) and (58), give the following differential equation
aH1\3 93H; 2 (9H1)% 0%H, apy OH193Hy oo (9%H1\? _
D(an) S+ 9A (0n) Tt AATH, LI 8A Hl(anz) =0 (59)

Equation (59), is the governing equation for the thickness of a symmetric double-sided film for unsteady flow.
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VI.  Figures And Tables
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Fig. (1), cross- section of a horizontal symmetric thin liquid film.
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Fig. (2): Solution curves of equation (59) in (n, H;) —plane for different values of constants--D = 0.5, =D =
0.75,...D=1,for A=0.5and A = 1, respectively.
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Fig. (3): Solution curves of equation (59) in (n, H;) —plane for different values of constants--A = 0.5, -A =
0.75,...A=1,forD = 0.5and D = 1, respectively.
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Fig. (4): Solution curves of equation (59) in (x, h) —plane for different valuesof time--t = 0.25, =t = 0.5,...t =
0.75and for constants A = 0.5and D = —1.

The following table represents the viscosity, density and surface tension for some liquids.

Liquid u P G H
Water 0.0113 0.998 72.97 1.75 x 10~
Mercury 0.0155 13.55 510.76 347 x 1078
Linseed oil 0.4309 0.94 33.57 5.88 x 103
Olive oil 0.8379 0.91 33.56 2.29 x 1072
Glycerin 14.9 1.26 62.75 2.8079
Carbon Tetrachloride 0.00974 1.59 26.27 2.27 x 107

— _ 2
Table(1): Value of Hwhere H = ‘;—6
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Fig. (5): Solution curves of equation (59) in (X, H)-plane for different values of time--t = 0.25, ...t = 0.5,
—-t=0.75, —t = 1land for constants A =0.5and D = —1.
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Fig. (6): Solution curves of equation (59) in (X, H)-planve formercuryor different values of time--t = 0.001,
...t =0.005,— -t =0.01,~-t = 0.05 and for constants A = 0.5and D = —1.
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Fig. (7)Solution curves of equation (59) in (X, H) —plane for —Carbon tetrachloride,...water,--mercury and
fort = 0.5 and t = 1respectively and for constants A = 0.5,and D = —1 .
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Fig. (8) Solution curves of equation (59) in (X, H) —plane for...Olive oil, —=Linseed oil and for time t = 0.5 and
t = 1respectively,and for constants A = 0.5, andD = —1..

VIl.  Conclusion

The flow within the horizontal double-sided symmetric thin liquid film with zero shear stress in two
dimensional coordinates with negligible inertia is considered. The similarity and perturbation methods are used
to obtain a non-linear differential equation that governs such flow for unsteady state in dimensionless form. The
solution curves Fig.(2) of the non-linear deferential equation shows that as the constant A increases, the film
thickness decreases, for any value of the constant D, the thickness increases as the constant A increases in
(m, Hy)-plane as shown in Fig.(3). Fig(4) shows that the film thickness decreases as the time increasesfor all
liquid films in (x, h)-plane.For all liquids namely (water, Linseed oil, Olive oil, glycerin and Carbon
tetrachloride)the thickness decreases as the time increases as shown in figs. (5) and (6) in(X, H)-plane.. However,
in case of mercury and for large values of time the film will be raptured and this is because of the very small
value of H. For fixed time the film thickness for mercury is less than that of water and less than that of Carbon
tetrachloride. It is worth mentioning here that from continuum mechanics the inertia term may not be neglected
in the case of glycerin.
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