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Abstract: Steady two dimensional MHD free convective boundary layer flow of an electrically conducting 

Newtonian nanofluid past an impulsively started infinite vertical plate is investigated numerically. Nanofluids 

are well-dispersed (metallic) nanoparticles at low-volume fractions in liquids. They may enhance the mixture’s 

properties among them, thermal conductivity over the base fluid values. A magnetic field can be used to control 

the motion of an electrically conducting fluid in micro-scale systems used for the transportation of fluids. The 

momentum and energy equations along with the boundary conditions are first converted into dimensionless 

form by dimensional analysis. The transformed equations are solved numerically using the Implicit Finite 

Difference method of order two. MATLAB software is used to obtain the solutions of the  tri-diagonal matrices. 

The effects of different controlling parameters, namely; Prandtl number, magnetic field number, Grashof 

number and Eckert number on temperature and velocity profiles are investigated. The numerical results for the 

velocity and temperature profiles are discussed and presented on tables and graphs. It is found that the fluid 

velocity increases with increase in the magnetic field and the Grashof number as temperature values also 

increase with increase of Prandtl number and Eckert number. 

Key words: Magnetohydrodynamics, Laminar, Newtonian heating, Boundary layer, Nanofluid. 
 

 

I. Introduction 
 A nanofluid is a dilute suspension of nanometer-sized particles and fibres dispersed in a liquid. 

Accordingly, their physical properties such as; velocity, density, thermal and electrical conductivities are 

superior as compared with those of the base fluids. The most important of the physical properties of nanofluids, 

is thermal conductivity owing to its many applications. 

The conventional fluids such as water, oil and ethylene glycol mixtures exhibit poor thermal 

conductivity and therefore are not very suitable for heat transfer. Their application as cooling tools can increase 

manufacturing and operating costs. To enhance the thermal conductivity of these fluids, nanoparticles are 

suspended in these liquids. Nanofluids are made of ultrafine nanoparticles of the order of <100nm suspended in 

a base fluid such as water or an organic solvent. Nanofluids are found to exhibit higher conductive, minimum 

clogging, boiling and convective heat transfer performances as compared to the conventional fluids as was 

observed by Alkharinia et al (2011). 

Nanotechnology has many potential applications such as in agriculture, pharmaceutical and biological 

censors. Potential forms of nanomaterials available for use in biotechnological applications include nanowires, 

nanofibres, nanomachines and nanostructures. Engineering applications for development of biomedical devices 

and procedures, an investigation by Kuznetsov and Hobson (2011). Industrial applications of nanofluids include 

electronics, automotives and nuclear energy. Despite significant progress on nanofluids, experimental findings 

have been relatively inconsistent at times controversial and present theories do not fully explain the mechanisms 

of the elevated thermal conductivity and convection heat transfer performance. This was observed by Keblinski 

et al (2008). 

MHD is the branch of science that studies the behavior of an electrically conducting fluid such as 

plasma or molten metal acted on by a magnetic field. It is the study of dynamics of electrically conducting 

fluids. The fundamental concept behind MHD is that Magnetic fields can induce currents in a moving 

conductive fluid which in turn generate forces on the fluid and the induced electric current changes the magnetic 
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field. The application of the magnetic field produces Lorentz forces which are able to transport liquid in the 

mixing processes as an active micro mixing technology method. 

MHD flow past a flat surface has many important technological and industrial applications such as 

micro MHD pumps, micro mixing of physiological samples and drug delivery as observed by Carpretto et al 

(2011). 

Transportation of conductive biological fluid in Microsystems may greatly benefit from the theoretical  

research in this area Yazdi et al (2011).  

 Newtonian heating is a situation where the heat is transported to a convective fluid via a bounding 

surface having finite heat capacity. These situations arise in several important engineering devices namely; heat 

exchanger where the conduction in the solid tube wall is influenced by the convection in the fluid past it Merkin 

et al (2012) and the conjugate heat transfer around fins where the conduction within the fin and the convection 

surrounding the fin must be analyzed simultaneously to obtain important design information. 

 

II. Objectives Of The Study 
2.1. General objectives 

To study MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian 

heating boundary condition.  

 

2.1.1. Specific research objectives 

i). To investigate the effect of the rate of heat and mass transfer on Newtonian heating parameter. 

ii). To determine axial velocity. 

iii). To determine  fluid temperature 

 

III. Literature Review 
Studies on MHD free convective boundary-layer flow of nanofluids are very limited. Recent studies 

carried out by Chamkha  and Aly  (2011) on MHD free convective boundary-layer flow of a nanofluid along a 

permeable isothermal vertical plate in the presence of heat source or sink which presented non-linear solutions. 

Nourazar et al (2011) examined MHD forced convective flow of nanofluid over a horizontal stretching flat plate 

with variable magnetic field including the viscous dissipation. In addition, Zeesham et al (2012) investigated the 

MHD flow of third grade nanofluid between coaxial porous cylinders while Martin et al (2012) investigated 

MHD mixed convective flow of nanofluid over a stretching sheet. 

Natural convective flow of a nanofluid past a vertical plate under different boundary conditions has 

been investigated by several researchers. Ho et al (2008) studied natural convection flow of a nanofluid under 

various flow configurations. Niu et al (2012) investigated slip-flow and heat transfer of a non-Newtonian 

nanofluid in a microtube. Kuznetsov and Nield (2010) studied natural convective flow of a nanofluid past a 

vertical plate, Khan and Aziz (2011) used Buongiorno  (2006) model to investigate boundary layer flow of a 

nanofluid past a vertical surface with a constant heat flux. 

From the above cited research analysis of the free convective boundary layer flow of a nanofluid past a 

flat vertical plate with Newtonian heating boundary condition requires more investigation owing to the 

numerous applications as has been aforementioned, and this forms the basis of this study. 

 

IV. Geometry Of The Problem 
The current problem is that of two-dimensional steady laminar free convective boundary layer flowover a 

permeable flat vertical plate. The flow configuration and coordinate system below presents the geometry. 
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Figure 1. Flow configuration and coordinate system 

 

Figures i,ii, above represent momentum and thermal boundary layers. 

It is assumed that the surface of the plate is subject to Newtonian boundary heating condition (NH). 

A transverse magnetic field with variable strength 𝐁  𝐱    is applied parallel to the 𝐲  axis. 

It is assumed that the magnetic Reynolds number is small and hence the induced magnetic field can be 

neglected. The tangential and normal velocities of the fluid are respectively taken as 𝐮  and 𝐯 . The fluid 

temperature is denoted by T.  the Oberbeck – Boussinaq approximation is used. 

 

4.1   Governing Equations  

Various equations governing the flow problem will be derived, non-dimensionalized and solved using the 

Implicit Finite Difference method of order two. In order to describe the phenomenon mathematically the 

following assumptions are made; 

1. The magnetic Reynolds number is small and therefore the induced magnetic field can be neglected. 

2. The surface of the plate is subject to Newtonian heating boundary condition. 

In the MHD problem, conservation equations are solved. They include the conservation of mass, conservation of 

momentum and conservation of energy.  

 

4.1.1Equation of continuity 

This is derived from the law of conservation of mass which states that mass can neither be created nor destroyed 

and is expressed as; 
∂ρ

∂t
+ ∇ .  ρv = 0                         (1) 

 

4.1.2 Momentum equation 

This is derived from Newton’s second law of motion which states that the sum of resultant forces equal to the 

rate of change of momentum of the flow. 

Momentum equation in tensor form is given by: 
∂ui

∂t
+ uj

∂ui

∂xj
= −

1

ρ
 
∂pi

∂xi
+ v∇2ui + Fi           (2) 

 

4.1.3 The Lorentz force term  

This is the entire electromagnetic force on a charged particle q, given by; 

F = qE + qv × B  where q is the charged particle, E is the electric field by divergence it can be given as;  

F= 
(B.∇)B

μ o
 -∇(

B2

2μ0
)           (3) 

Where the first term on the right is magnetic tension force and the second term is the magnetic pressure force. 

 

4.1.4 Ideal Ohm’s law for plasma 

Neglecting Hall current, pressure gradient, inertial and resistive terms, it can be expressed as: 
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E + V x B =0             (4) 

 

4.1.5 Energy equation 

This is derived from the first law of thermodynamics which is the law of conservation of energy and 

states that the energy of an isolated system is constant; energy cannot be created nor destroyed but can be 

transformed from one form to another. 

In tenser form it is given by; 

ρcv  
∂Q

∂t
+ Ui

∂Q

∂xi
 =

∂

∂xi
 K

∂Q

∂xi
 + μ(

∂uj

∂xi
+

∂ui

∂xj
)2        (5) 

 

4.2 Dimensional Analysis 

The dimension of any physical quantity is the combination of the basic physical dimensions that 

compose it. Some fundamental physical dimensions are length, mass, time and electrical charge. All other 

physical quantities can be expressed in terms of these fundamental dimensions. Dimensional analysis therefore 

checks relations among physical quantities by identifying their dimensions. 

It reduces complex physical problems to simpler forms to give a quantitative answer. Bridgman (1969) 

explains it as: “the principal use of dimensional analysis is to deduce from a study of the dimensions of the 

variables in any physical system, certain limitations on the form of any possible relationship between those 

variables. The method is of great generality and mathematical simplicity”. In this study, dimensional analysis 

has been used in the non-dimensionalization of the governing equations by first selecting certain characteristic 

quantities and then substituting them in the equations. 

 

4.2.1Finite Difference Method    
Implicit FD method of order two has been used to solve the PDE and involves the following steps: 

(i). Generate a grid, for example xi ,    tk , where we want to find an approximate solution. 

(ii). Substitute the derivatives in the PDEs with finite difference schemes. The PDEs then become linear 

algebraic equations. 

(iii). Solve the algebraic equations. 

In a finite difference grid to calculate the values at the mesh points, each nodal point is identified by a double 

index (i , j) that defines its location with respect to t and x as indicated below: 
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Figure 2. Grid points 

 

If we use the backward difference at time  tj+1 and a second-order central difference for the space derivative at 

position xi  (The Backward Time, Centered Space Method “BTCS”) we get the recurrence equation: 
ui,j+1 − ui,j

k
=

ui+1,j+1 − 2ui,j+1 + ui−1,j+1

h2
                                 

We obtain ui,j+1 from solving the linear equations: 

                1 + 2r ui,j+1 − rui−1,j+1 − rui+1,j+1 = ui,j    

                   where  r = k/h
2
  and 

∂u

∂t
=  

ui−1,j+1−2ui ,j+1+ui+1,j+1

h2     

The scheme is always numerically stable and convergent. 

 

4.2.2  Methodology 

In this study we have developed Implicit Crank Nicholson numerical scheme and used finite difference 

method to solve the momentum and energy equations. The method obtains a finite system of linear or nonlinear 

algebraic equations from the PDE by discretizing the given PDE and coming up with the numerical schemes 

analogues to the equation, in our case the momentum and energy equations. We have solved the equations 

subject to the given boundary conditions. Math lap software was used to generate solution values in this study.  

 

4.2.3 Discretisation Of Partial Derivatives 

The finite difference technique basically involves replacing the partial derivatives occurring in the 

partial differential equation as well as in the boundary and initial conditions by their corresponding finite 

difference approximations and then solving the resulting linear algebraic system of equations by a direct method 

or a standard iterative procedure. The numerical values of the dependent variable are obtained at the points of 

intersection of the parallel lines, called mesh points or nodal point.  

 

4.3 Mathematical Formulation 

Consider a two dimensional steady laminar free convective boundary layer flow of a nanofluid over a 

permeable flat vertical plate as shown in Fig. 1 (i), (ii) represent momentum and thermal boundary layers). The 
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ambient value of the temperature is denoted by T . It is assumed that the surface of the plate is subject to 

Newtonian heating boundary condition (NH). A transverse magnetic field with variable strength  B x   is 

applied parallel to the y   axis. It is assumed that the magnetic Reynolds number is small and hence the induced 

magnetic field can be neglected. The tangential and normal velocities of the fluid are respectively taken as u  

and  v . The fluid temperature is denoted byT . The Oberbeck–Boussinesq approximation is used. With these 

assumptions and the standard boundary layer assumptions, the governing equations can be written as (Aziz A, 

Khan WA (2012)) 

 

 

                      (6)           

 

            

 

 

 
2

2

2

1T T T C T T
u v

y y y y y T y
 



       
     

                                                              (7) 

subject to the boundary conditions( Narahari M, Dutta BK (2012)) 

0u    at 0y   

0u    T T as    y                        (8) 

where 
 

 
p

f

c

c





 is the ratio of nanoparticle heat capacity and the base fluid heat capacity, 

 
f

k

c



  is the 

thermal diffusivity of the fluid, f  is the density of the base fluid, , k   are viscosity, thermal conductivity  of 

the base fluid and  p is the density of the particles, g is the acceleration due to gravity, ou   is the 

variable electric conductivity σ0 is the constant electric conductivity,   1
2

2

OB
B x

x
 is the variable magnetic 

field, OB   is the constant magnetic field. x -axis is taken along the plate in the vertical upward direction, y -

axis is taken normal to the plate in the direction of the applied magnetic field,  u is the  velocity component in 

the x-directions and  t is dimensional time.  

 

4.3.1 Nondimensionalization 

Consider the steady free convective flow of a radiating viscous incompressible and electrical conducting 

nanofluid past an impulsively started infinite vertical plate with Newtonian heating.  

The x ‐axis is taken along the plate in the vertical upward direction and the y ‐axis is normal to the plate in the 

direction of the applied magnetic field. Initially, the plate and the fluid assumed the same temperature  T  at 

the time 0t  . At time 0t  , the plate is given an impulsive motion in the vertical upward direction against 

gravitational field with a velocity  OU  . The rate of heat transfer from the surface is assumed to vary directly to 

the local surface temperature T. As the plate is considered infinite in x ‐direction, all the physical variables are 

function of y and t only. Then, the fully developed flow of a gas is governed by the following set of equations 

under the usual Boussinesq's approximation: 

        

22

2
( ) oUu u

g T T
t y


 




 
   

 
                                             

                                       (9)

 

         

22

2p
T T u

C
t yy

  
   

   
   

                                             

                                            (10) 

 

         

2

2

2 21

f

f f f O

p u u u
u v

x y y y

C g T T g C C B x u

 

       

    
   

    

       
 
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with the following initial and boundary conditions 

   0U  , T T  for all y. 0t   OU U   at   y= 0                                                                   (11) 

where U is a velocity component in x ‐directions, ρ is the density, g is the acceleration due to gravity, T 

is the temperature of the fluid, Cp is the specific heat at constant pressure, β is the coefficient of thermal 

expansion, κ is the thermal conductivity and σ is the electrical conductivity, ν is the kinematic viscosity, μ is the 

viscosity of the fluid, Bo is the strength of the magnetic field. The equation of continuity is identically satisfied. 

In the optically thin limit, the fluid does not absorb its own emitted radiation which implies that there is 

no self‐absorption but rather the fluid absorbs radiation emitted by the boundaries. Introducing the following 

dimensionless quantities; 

                           

2

, ,
O

U tU yU
U t y

U  
                                                                            

(12)

 

Equations (3.1) and (3.2) respectively become 

             

 
2

2

2 O
u u

G g T T M U
t y

   
 

                                                   (13)

              

22

2

1

Pr
c

U
E

t y yy

  

     
     

                                                                                            (14) 

Where 
 

 
p

f

c

c





 is the ratio of nanoparticle heat capacity and the base fluid heat capacity, Pr

pC 


  is 

prandtl number, 

2

2
o

o

B
M

U




  is the magnetic field parameter, 

2
o

c

p

U
E

C T

  is the Eckert number,  

3
o

g T

G
U

 




 is the Grashof number and

T T

T







  

The initial and boundary conditions (8) in dimensionless forms becomes 

  0, 0, 0, 0t U y   

   

 0, 1, 1,t U       for all y                                                          (15) 

 

4.3.2 Numerical Technique  

To solve the unsteady non‐linear coupled partial differential equations (13) and (14) under the initial 

and boundary conditions (15), an implicit finite difference method of Crank Nicolson type is used. The finite 

difference equations corresponding to equations (13) and (14) are discretized using Nicolson method as follows: 

 

2
1

2

2 2

1, 1 , 1 1, 1 1, 2, 1 , , 1,

2

, 1 , , 1 ,

U U U
U U

t t

U U
M G

i j i j i j Ui j U Ui j i j i j i j

i j i j i j i j 

  
  


    

    
    

      

         

 

             (16) 

 

21

Pr

2
, 1 , , 1 , , 1 , 1 ,

2

U U
E

t ty

i j i j i j i j i j i j i j
c

         
    
     

   
                                (17) 

4.4 Results And Discussion 

4.4.1 Momentum Equation 

The equation
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 
2

2

2 O
u u

G g T T M U
t y

   
 

       
                           (18) 

Where M and G are the magnetic field and  Grashof numbers respectively. The equation is

 

solved subject to the 

boundary conditions 0,0Ui   and 0,0i   for all i except i=0, and
  

 
00, 1 2, 1U Un n          

00, 1U n 
                                                                                     (19)

 

 

4.4.2 Implicit Crank Nicholson Numerical Scheme 

 We develop Implicit Crank Nicholson numerical scheme and discretize equation (18) as follows; 

 

21, 1 , 1 1, 1
1, 1 ,

22

, 1 , , 1 ,

2 2

1, 2 , 1,
U U Ui j i j i j UU Ui j i j

t t

U Ui j i j i j i j
M G

i j U Ui j i j

 

         
    

     
    

   

   

                    (20) 

                                                    
0.05t y   

 
Taking i=1, j=1, 2, 3……our y=i and t=j, M=0.1 and G=2, we get the matrix equation 

                 

1,12.9975 1 0 0 0 0 2

2,11 2.9975 1 0 0 0 0

0 1 2.9975 1 0 0 03,1

0 0 1 2.9975 1 0 04,1

0 0 0 1 2.9975 1 0
5,1

0 0 0 0 1 2.9975 0
6,1

U

U

U

U

U

U

 
    

     
    
                
      
         

 

                 M=0.2, we get 

                              

1,12.95 1 0 0 0 0 2

2,11 2.95 1 0 0 0 0

0 1 2.95 1 0 0 03,1

0 0 1 2.95 1 0 04,1

0 0 0 1 2.95 1 0
5,1

0 0 0 0 1 2.95 0
6,1

U

U

U

U

U

U

 
    

     
    
                
      
         

 

               

M=0.3, we get   



Magnetohydrodynamic Free Convective Boundary Layer Flow of a Nanofluid past an ….. 

DOI: 10.9790/5728-11335365                                      www.iosrjournals.org                                            61 | Page 

                      

1,12.925 1 0 0 0 0 2

2,11 2.925 1 0 0 0 0

0 1 2.925 1 0 0 03,1

0 0 1 2.925 1 0 04,1

0 0 0 1 2.925 1 0
5,1

0 0 0 0 1 2.925 0
6,1

U

U

U

U

U

U

 
    

     
    
                
      
         

 

These values of ,i jU  for M=0.1, 0.2, 0.3, 0.4 and 0.6 are presented in the table below.  

Table 1; Values of ,i jU  for varying Magnetic field numbers at constant Gr=2 

 M = 0.1    M = 0.2 M = 0.4 M = 0.6 

H = 0.00 0.3823904 0.3907334 0.7999887 0.8195906 

H = 0.01 0.1462153 0.1526635 0.3199673 0.3358333 

H = 0.02 0.05588998 0.05962389 0.1279165 0.1375344 

H = 0.03 0.0213149 0.0232270 0.05099042 0.05613971 

H = 0.04 0.0080014 0.0088977 0.01995577 0.02246377 

H = 0.05 0.002669 0.003015515 0.006881298 0.007882023 

 

 
Figure 3: Graph of velocity against plate vertical height at varying magnetic field number 

 

The figure depicts an increase of velocity profile for increasing magnetic field number, while it 

decreases along the plate. This is because the presence of a magnetic field introduces Lorentz force which slows 

down the motion of an electrically conducting fluid along the plate. 

Taking i=1, j=1, 2, 3……our y=i and t=j, M=0.1, Gr=2, and we get the matrix equation 
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1,12.9975 1 0 0 0 0 2

2,11 2.9975 1 0 0 0 0

0 1 2.9975 1 0 0 03,1

0 0 1 2.9975 1 0 04,1

0 0 0 1 2.9975 1 0
5,1

0 0 0 0 1 2.9975 0
6,1

U

U

U

U

U

U

 
    

     
    
                
      
         

 

Similarly if Grashof number is varied as Gr= 4 and 6, the values of ,i jU   are presented in the table below.  

  

Table 2: Velocity(x, t) values for varying Grashof numbers at constant Magnetic field number M=0.1 
 Gr = 2    Gr = 4    Gr = 6 

H = 0.00 0.7647873 0.7814751 0.790609 

H = 0.01 0.2924497 0.3053517 0.3125313 

H = 0.02 0.1118309 0.1193124 0.123545 

H = 0.03 0.04276337 0.04661974 0.048837779 

H = 0.04 0.0163523 0.01821589 0.01930556 

H = 0.05 0.00625266 0.007117133 0.007630975 

H = 0.06 0.002390044 0.0022779651 0.003015041 

H = 0.07 0.009114968 0.0010828337 0.00118802 

H = 0.08 0.0003421678 0.0004147187 0.0004599166 

H = 0.09 0.000114151 0.00014058 0.0001572365 

 

 
Figure 4: Graph of velocity against plate vertical height at varying Grashof numbers 

 

Figure 4 shows an increase in velocity profile as the Grashof number increases at constant magnetic number and 

a decrease of velocity as the height of plate increases. This is because an increase in Grashof number has the 

tendency to increase the buoyancy effect which gives rise to an increase in the flow. 
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4.4.3 Energy Equation 

The energy equation

                        

22

2

1

Pr
c

U
E

t y yy

  

     
     

                                             (21) 

We develop Implicit Crank Nicholson numerical scheme and discretize equation (21) as follows; 

 

21

Pr

2
, 1 , , 1 , , 1 , 1 ,

2

U U
E

t ty

i j i j i j i j i j i j i j
c

         
    
     

   

                                      

(22)
 

Taking i=1, j=0, 1, 2, 3……our y=i and Ec=2, t=j,  and  PR=0.71  

 

The equation (21) is

 

solved subject to the boundary conditions
     

0, 0, 0, 0

0, 1, 1,

t U y

t U y





   

           
 

0.05t y   
 

We get the matrix equation 

                

1,12.035 1 0 0 0 0 0.07

2,11.035 2.035 1 0 0 0 0

0 1.035 2.035 1 0 0 03,1

0 0 1.035 2.035 1 0 04,1

0 0 0 1.035 2.035 1 0
5,1

0 0 0 0 1.035 2.035 0
6,1

U

U

U

U

U

U

 
    

     
    
                
      
         

 

Table 3: Temperature,  ,x t  values for varying Pr numbers at constant  Ec=2 

 P r= 0.71    Pr = 0.5 Pr = 0.4    Pr = 0.2 

H = 0.00 
5.893902

210  4.234904
210  3.394071

210  1.700106
210  

H = 0.01 
4.994091

210  3.554506
210  2.856023

210  1.434214
210  

H = 0.02 
4.062786

210  2.878272
210  2.307214

210  1.1760176
210  

H = 0.03 
3.098885

210  2.185133
210  1.747429

210  8.819835
310  

H = 0.04 
2.101248

210  1.474665
210  1.176449

210  5.909095
310  

H = 0.05 
1.068694

210  7.464353
310  5.940483

310  2.969924
310  

 

 
Figure 5: Graph of Temperature against plate vertical height at varying Prandtl numbers 

for all y 
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From figure 5, it is evident that the temperature increases as the Prandtl number increases at constant Eckert 

number and a decrease in temperature as the plate height increases. Higher Prandtl number gives rise to increase 

heat transfer rates. 

 

Table 4: Temperature,  ,x t  values for varying Eckert numbers at constant Pr=0.2 

 Ec = 4    Ec = 6    Ec = 8 

H = 0.00 
3.400212

210  5.100318
210  6.800424

210  

H = 0.01 
2.868429

210  4.302643
210  5.736857

210  

H = 0.02 
2.34035

210  3.5105227
210  4.680703

210  

H = 0.03 
1.763967

210  2.64595
310  3.527934

210  

H = 0.04 
1.181819

210  1.772729
210  2.363638

210  

H = 0.05 
5.938493

310  8.90774
310  1.187699

210  

 
Figure 6: Graph of Temperature against plate vertical height at varying Eckert numbers 

Figure 6 reveals a temperature increase with increase in Eckert number at constant Prandtl number 

while at the same time a decrease in temperature is evident as the height of the plate increases. Eckert number is 

the ratio of Kinetic energy of the flow to the boundary layer enthalpy difference that is viscous dissipation 

whose effect on the flow field is increased energy yielding greater fluid temperature. 

 

V. Conclusion 
A mathematical model has been presented for the steady two dimensional MHD free convective 

boundary layer flow of an electrically conducting Newtonian nanofluid over an impulsively started vertical 

plate. The governing boundary layer equations have been transformed into non-dimensional form and solved 

using the implicit finite difference method of Crank Nicolson type. It has been shown that the fluid velocity 

values increase across tables 1 and 2 with an increase in magnetic field  and Grashof  numbers as confirmed 

from figures 3 and 4 while temperature values   increase with increase in Prandtl and Eckert numbers as shown 

in tables 3 and 4 as well as the graphs in figures 5 and 6. These results indicate that the magnetic field, Eckert, 

Prandtl and Grashof numbers have significant influences on velocity and temperature fields. 

Further work is recommended to improve on the results so far obtained. This may be done by;  

(i) Considering the effect of other parameters such as the nano-particle volume fraction,Nusselt number and 

Buoyancy. 

(ii) Using another method of solution other than the FD method. 

 

References 
[1]. Akharinia A, Abdolzadeh M, Laur R. (2011): critical investigation of heat transfer enhancement using nanofluids in micro-channels 

with slip and non-slip flow regimes. Journal of applications of thermal engineering  31: 556-565. 

[2]. Aziz A, Khan WA (2012) Natural convective boundary layer flow of a nanofluid 
[3]. Boungiorno J. (2006) Convective transport in nanofluids. Journal of heat transfer 128: 240-250.  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 Plate vertical height

T
e
m

p
e
ra

tu
re

 p
ro

fi
le

Graph of Temperature versus plate height with varying Eckert numbers

Ec=4

Ec=6

Ec=8



Magnetohydrodynamic Free Convective Boundary Layer Flow of a Nanofluid past an ….. 

DOI: 10.9790/5728-11335365                                      www.iosrjournals.org                                            65 | Page 

[4]. Capretto L, Cheng W, Hill M, Zhang X (2011): Micromixing within microfluidic devices. Top Current Chemistry 304:27-68. 

[5]. Chamkhal A.J and Aly A.M (2011): MHD free convection flow of a nanofluid past a vertical plate in the presence of heat 

generation or absorption effects. Chemical Engineering 198: 425-441. 
[6]. Choi S.U.S (2009): nanofluids: From vision to reality through research. Journal of heat transfer 131: 1-9 

[7]. Ho C,H, Chen M.W, Li Z.W (2008): numerical simulation of natural convection of nanofluid in a square enclosure: effects due to 

uncertainties of viscosity and thermal conductivity. International Journal of heat mass transfer 47: 4506-4516 
[8]. Keblinski P,Prasher R, Eapen J (2008): Thermal conductance of nanofluids. Journal of Nanope Res 10: 1089-1097. 

[9]. Khan W.A, Aziz A. (2011): Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux. 

International Journal of Thermal Science 50(7): 1207-1214. 
[10]. Kuznetsov A.V (2011): Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth. Euro 

Journal of Mec B/Fluids 30: 156-165. 

[11]. Matin M.H, Nohari M.R and Jahangiri P (2012): Entropy analysis in mixed convection MHD flow of nanofluid over a non-linear 
stretching sheet. Journal of Thermal Science and Technology 7:1. 

[12]. Merkin J.H, Nazar R and Pop I (2012):The development of forced convection heat transfer near a forward stagnation point with 

Newtonian heating. Journal of Engineering Math 74: 53-60. 
[13]. Narahari M, Dutta BK (2012) Effects of thermal radiation and mass diffusion on free convection flow near a vertical plate with 

Newtonian heating. Chem Eng Comm 199: 628–643. 

[14]. Niu J,Fu C, and Tan W (2012): Slip Flow and Heat Transfer of a non Newtonian Nanofluid in a Microtube. PLoS ONE 7(5): 37274. 
[15]. Nourazar S.S, Matin M.Hand Simiari M (2011):The HPM applied to MHD nanofluid flow over a horizontal stretching plate. 

Journal of Applied Math, 10: 1155. 

[16]. past a convectively heated vertical plate. Int J of Therm Sci 52: 83–90. 
[17]. Yazdi M.H, Abdullah S, Hashim S and Sopian K(2011): slip MHD liquid flow and heat transfer over non-linear permeable 

stretching surface with chemical reaction. International Journal of heat mass transfer 54: 3214-3225. 

[18]. Zeeshan A, Ellahil R, Siddiqui A.M,Rahman H.U (2012): An investigation of porosity and magnetohydrodynamic flow of non-
Newtonian nanofluid in coaxial cylinders. International Journal of Physical Science 7(9): 1353-1361. 


