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I.  Introduction

Queueing theory presents the concrete framework for design and analysis of practical applications.One
of the important characteristics of a queueing system in the service process,entities in the system may be served
individually or in batches.A large number of results in queueing theory is based on research on behavioural
problems. Many practical queueing systems especially those with feedback have been widely applied to real life
situations, such as the problem involving hospital emergency wards handling critical patients and unsatisfied
customers in public telephone booths of coin box type etc. In day today life, one encounters numerous examples
of queueing situations where all arriving customers require the main service and only some requires the
secondary service provided by the server. “A queueing model in which the arrivals and services are correlated is
known as interdependent queueing model. Takacs [6] considered a queue with feedback customers which has
applications in real life formulation of queue with feedback mechanism. Kalyanaraman and Renganathan [2]
have studied vacation queueing models with instantaneous Bernoulli feedback. In most of the research works,
the authors have considered that the arrival and service patterns are independent. But in many real life situations,
the arrival and service patterns are interdependent.Kalyanaraman and Sumathy [3] have studied a feedback
queue with multiple servers and batch service. Recently Rani and Srinivasan [5] have studied a multiserver loss
and delay interdependent queueing model with controllable arrival rates, no passing and feedback.Rani and
Srinivasan [4] have analyzed Geo/Geo/c/k Interdependent Queueing Model with Controllable Arrival Rates and
Feedback..Goswami and Gupta [1] have obtained the distribution of the number of customer served during a
busy period in a discrete time Geo/Geo/1 queue. Thiagarajan and Srinivasan [7] have analysed Geo/Geo/c/o
interdependent queueing model with controllable arrived rates and obtained the steady state probabilities and the
system characteristics when the joint distribution of inter-arrival and service time is a bivariate geometric
distribution. Although the literature of queueing theory deals largely with continuous time models, the
developments in the practical world of computers and communication are being more and more discrete time in
nature. With the rapid growth in the field of computer communications that has been considerable interest in the
discrete models. The discrete time models have got some interesting applications in the study of time sharing
computer systems, where messages from a collection of terminals are assigned by a variety of different
multiplexing methods of a central computer. In this Paper an Geo/Geo/1/k Interdependent queueing model with
controllable arrival rates and feedback is considered. In section Il, the description of the queueing model is
given stating the relevant postulates. In section Il the steady state equations are derived and the steady state
probabilities are obtained using recursive approach. In section IV the analytical expressions for various
characteristics of the queueing model are obtained. In section V the analytical results are numerically illustrated
and the effect of the nodal parameters on the system characteristics are studied and relevant conclusion is
presented.

I1.  Description Of The Model
Consider a single server finite capacity queueing system with controllable arrival rate and feedback.
Customers arrive at the service station one by one according to a bivariate Geometric stream with arrival rates
(Ao—€), (A—€) (>0). There is a single server who provides service to all the arriving customers. Service times are
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independent and identically distributed Bernoulli random variables with service rate (u-¢). After the completion
of each service, the customer can either join at the end of the queue with probability p or customers can leave
the system with probability g with p + g = 1. The customer both newly arrived and those who opted for feedback
are served in the order in which they join the tail of the original queue. It is assumed that there is no difference
between regular arrival and feedback arrival. The customers are served according to the first come first served
rule with following assumptions.

The arrival process {X1(t)} and the service completion process {X,(t)} of the system are correlated and
follow a bivariate bernoulli distribution is given by

P{X,(t)=x,, X, (t)=x,}

mm(xl x2) X1—] Xo—] 1-(X,—] 1-(x5—j)
D IS R [T R R A I M e T Y
j=0
X1, X2=0,1; A, u>0,i=0,1;0<e<min (A, w);n=0,12,..,r-1,r, r+1,...R-1, R, R+1,...,, k-1, k
with parameters Ao (A1), 1 and € as mean faster (slower) rate of arrivals, mean service rate and co-variance
between arrival and service processes respectively.

Postulates of the model are
1. Probability that there is no arrival and no service completion during any interval of time t, when the system
is in faster rate of arrivals either with feedback or without feedback, is

(1-(ro—2)t) [1-{p(n—c)+a(u—e)}t]

2. Probability that there is no arrival and one service completion during any interval of time t, when the
system is in faster rate of arrivals either with feedback or without feedback, is

:(1—(%0 —S)t):H:{P(},l—8)+C](},L—8)}t]

3. Probability that there is one arrival and no services completion during any interval of time t, when the
system is in faster rate of arrivals either with feedback or without feedback, is

(=)t [1-{p(u—e) - a(u—e)}]

4. Probability that there is one arrival and one service completion during any interval of time t, when the
system is in faster rate of arrivals either with feedback or without feedback, is

0 —& t][{ p(n—e)t+q(p—e)t }J

5. Probablllty that there is no arrival and no service completion during any interval of time t, when the system
is in slower rate of arrivals either with feedback or without feedback, is

:(1—(7»1 —S)t):”:l—{p(},t—s)+Q(u—g)}t:|_

6. Probability that there is no arrival and one service completion during any interval of time t, when the
system is in slower rate of arrivals either with feedback or without feedback, is

(1-(—2)t) |[{p(n-g)+a(u—e)}t]

7. Probability that there is one arrival and no service completion during any interval of time t, when the
system is in slower rate of arrivals either with feedback or without feedback, is

[ )t [~ {p(1—c)+ (o)t

8. Probability that there is one arrival and one service completion during any interval of time t, when the
system is in slower rate of arrivals either with feedback or without feedback, is

(o)t () +alu-c)}t]

I1l.  Steady State Equations
We observe that only P,(0) exists when n = 0,1,2,..., r-1,r; both P,(0) and P,(1) exist when n = r+1, r+2, r+3,...,
R-1,...,R-1; only P,(1) exists when n=R, R+1, R+2, ... k, further P,(0) = P,(1) = 0if n > k.

1 1 1 1

Let p :—,p :—,q :—,p =
" he—e M—g 0 a(n-g)" " p(p-g)
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f_jo :1_90!51 =1-p,, ao =1-q, and 50 =1-p,

Then the stationary equations which are written through the matrix of densities are given by

poq0+popo] (0)=qu0 (0)

[ P00 +Pollo +PoPo |P;(0) =[ PoPo + oty | Py (0)+pytioP (0)

Do+ Polls + PoPo |Pa (0) =[ Polo +PoPs |Pr1(0)+PeloPr.s (0)
n=234,..,r-1

:quo+poao+poﬁo =[ o0 +PoPo |Pr1 (0) + PolloP,.. (0)
+ P_)l%Pr+1 (1)

[ Pollo + oo +PoPo [Py (0) =[ Po Uy +Po Po |Prs (0)+Po oy (0)

) n=r+l,r+2,.., R-2
 Po Qo +Polo +Po po] PR—l(O) = |:po Qo +Po po:| Pes (O)
P2 ao + F_’l Qo + 9150} P (1) = 51 do Pz (1)

:Pl ao + 131 Qo + Plﬁo] Pn (1) = [plao + 9150:| Pn—l (1) + 51%Pn+1 (1)
n=r+l, r+2, r+3,.., R-1

1 0o +Py0y +P1Po |Pr (1) =] Po Uy +PoPo |Pes(0)+] Pyl +piPo |Pe s (1)
+Pi0oPr 1 (1)
:51QO+plaO+p150:|Pn() |: EI +plf_)o]Pn—l(l)"'l;l%Pnu(l)
n=R+1, R+2, R+3,..., k-1
1 0o +Pyls +P1Po [P (1) =] pyGo +PoPs |Pes (1)

Let p(0) = q?ﬁ:i 20 p(1)= q’(‘;‘_i )

where p(O) (qo j is faster rate of arrival intensity and p(l) [20
0 1

From equation (1) we have

|:po ao + poﬁo:||5° (O) = [30 qoP; (O)

Pl(o){ﬂ+ 8050}3)(0)

Podo  Polo

P(0)=[R+S]R,(0)

_F_)o% 4S= popo

Polo Polo
Using the Result (12) in (2) we get

()
Q)

)

. (4)

.. (5)

.. (6)
(7

.. (8)

- (9)

.. (10)
. (1)

.. (12)

j is slower rate of arrivals intensity
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P,(0)= {‘—’Oq" 1+ 8o | EOpO}pl(o){EO_M F_’oqo}po(o)
Podo  Polo  Poo Podo  Polo

=[[1+R +S][R+S]-[R +S]]P,(0)

P,(0)=[R+S] P, (0) .. (13)
From the equations (12), (13) and (3) we get

PM(O){BO% L 0ul Bopo}p (o){eﬂwoﬁ}p 0

Podo  Polo  Poo ' Poldo Polo
P,..(0)=[1+R +S]P, (0)-[R +S]P, ,(0) . (14)
Using the result (12), (13) and (14) we recursively derive
P;(0)=(R+S)"P,(0)
P,(0)=(R+S)"P,(0)

P,(0)=(R+S) ,(0)

and hence P,(0) = (R+S)"Py(0),n =3, 4,5,...r-1, r ... (15)
From equation (4) we get

P, (0) _ |:80% n Boqo n Eo Po } P (0) _ |:80_q0 + BO_pO:| P, (0) _ & P. (1)
Poldo  Polo  Polo Poldo  Polo Po
—[1+R+S]P, (0)-[R+S]P,,(0)-£2P, (1)
0
P..(0)=[R+S]""P,(0)-L£LP (1) .. (16)

0
Using the results (13), (15) and (16) in (5) we recursively derive

Pt (0) {90% +£0h Do ﬂa (o>{—‘3°q° +Lobo pﬂpﬂ(m

Podo  Podo  Polo Podo  Polo
P..(0)=[1+R+S]P,(0)-[R+S]P,,(0) .. (17)
From the equation (17) we get recursively

2 (0)=(R+5) R, (0)-[1+ R 451222,

P2 (0)=[R+S] P, (0)[1+(R+8)+(R +S)2]§—:PH1(1)

.Pnl(o) =[R+3]" Po(o)—[1+(R +9)+(R+S)* +(R+S) +..
+(R +S)n_r_2}épr+l(1)

0

P, (0):[R +S]n Po(o)_[l-l-(R +S)+(R +S)2 +(R +S)3+...
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+(R+ s)”"‘l}i P, (1)

Po
and hence
' 1-(R+S)"" |p
P (0)=[R+S]'P,(0)-| ———— &P (1
,(0)=[R+S] R,(0) [HM) ]po (D)
n=r+l, r+2, r+3,.,R-1 ... (18)

Using the result (18) in (6) we get

Polo , PoPy poao poBo
1+ =—+= P, (0)=|=—+= P.,(0
{ Polo poqo:| i 1( ) {poqo poq0:| i 2( )

. [1-(R+8)7 | g
[1+R+S]{(R+S) 20 g Bep, (1) =[R+S]{(R+5)"*R,(0)

0

[R5, (1)}

1-(R+S)

Po

. 1-(R+S)"" p,
[R +S] Po (O) - mg_opm (1)

L (1)= (R +S)R+rr (1-(R +§)) Po
(R+S) —(R+S)" ps

P, (0) .. (19)

From equation (7) we get

P, (1) _ |:81QO n El% n P Po :| P (1)
Podo  Pdo P10

Pr+2 (1) = [1+ T+ U] Pr+l (1) (20)
where szl—qo and U — PiPo
P1do P1do

Using the results (19) and (20) in (8) we get
)| 20280 BB o |25, B g
Pdy Py Pl Plo  P:o
P...(1)=[1+T+U]P,(1)-[T+U]P, (1) - (21)
From equation (21) we recursively derive

P.(1) :[1+(T+ U)+(T+ U)2i|Pr+1(1)

Pa(1)=[ L+ (T+U)+(T+U) +(T+U) [P, (1)
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-, (1)= [1+(T+ U)+(T+UY +(T+UY ..+ (T+ U)R"‘S]Pm(l)

(D)= [1+ T+U)+(T+UY +(T+U) +..+(T+ U)R_r_Z}PM(l)
H(THU)+(T+U) o (T+U) 7 [P (Y)

=1+
[ G e

n=r+l,r+2,...R-2, R-1,R

(1)

.. (22)
Using the result (22) in (9) we get

Pen(1)=(1+T+U)P, (1)—(T+U)P,, (1)—[%1—2;+%1—$j P..(0)

T[] e ]
- 1—(T+ U) Pra (1) 1—(T+U) Pr+1(1)
_(0‘. +B.)PR—1(O)
Pra(l)= 1—1 (T(: l:)u) P (D)= (o +B)Pes(0) 23
where o = quo and B :80_50
Po P,

From the equations (19), (23) and (10) we get

()= ["1% ‘-’1q°+91p°}a(1){’31—q°+‘31—p°}n1<1>

Pldo Plo Pl Pl Pl
P..(1)=[1+(T+U) P, (1)-[T+U]P_ (1) - (24)
Using the results (22), (23) and (24) we recursively derive
Paso (1) = (1+T+U)Pes ()= (T+U)P: (1)
[1-(T+U)"™] o
=(1+T+U) T U) P..(1)— (o +B)Pes(0)

(T+U)|1=(T+U)""|
- 1-(T+U) ()

1-(T+U)™"

(T U) P (D= (1+ T+ U)(c +B) P, (0)

[1-(T+U)]

T 0) Pr+1(1)—(oc'+B')[l+(T+U) (T+U)}PR1(O)

Pria (1) =
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[l_l(j(;l:)u) ] Ps(D)=(a +B)| 1+(T+U)+(T+U) +(T+U) [Py, (0):

[1—(T+ U)k’”} .>[1—(T+ u)k’“]

Pes(1)= 1-(T+U) Pra (1)_(()(. P 1-(T+U) P (0)

P (1) =

and hence

P o ) P o LA S

1-(T+U) 1-(T+U) - @)
From the equations (18), (19) and (25) we get
1 (T+U)" (atep )| 2-(T+U) " |5,
P.(1)= (T — = |P..(2)
—(T+U) R+S ) 1-(T+U) p,
n=R+1, R+2,... k-1, k ... (26)

where P..1(1) is given by equation (19).

IV.  Characteristics Of The Model
The following system characteristics are considered and their analytical results are derived in this section.
1. The probability P(0) that the system is in faster rate of arrivals either with feedback or without feedback.
2. The probability P(1) that the system is in slower rate of arrivals either with feedback or without feedback.
3. The probability Py(0) that the system is empty
4

Expected number of customers in the system LS0 , When the system is in faster rate of arrivals either with

feedback or without feedback.
5. Expected number of customers in the system le , When the system is in slower rate of arrivals either with

feedback or without feedback.
6. Expected waiting time of the customer in the system WSs, when the system is in faster (slower) rate of
arrivals either with feedback or without feedback.
The probability that the system is in faster rate of arrivals either with feedback or without feedback is,

zipn (0)+ 3 P, (0) e

n=r+1

From the equations (15), (18), (19) and (27) we get

P(0)= 3 (R+5)'Ry(0)+ 3| (R+S) F’O(O)—[l_(R +S)R_r]im(l)

n=0 n=r+1 1_(R +S) Po

1-(R+8)™ +(R+5)r+1[ -(R+8)"" |
“T(R+5) () _(R+9) P (0)

[ (R+ S)R_HJ

1-(R+5)

[1-(R+8)™+(R+8)" ~(R+5)" |

e (0

1
1-(R+5)

(R-r-1)-(R+S)
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Po

focey Tt Mo
[1-(R+5)]

R-r-1
Ref o (R-r-3)[1-(R+S)]-| R+s)(1-(R+$)" [ | _ 0
1-(R+8) ° [1-(R+S)T o
R+r
P(0)=| s RS (o) e
1-(R+S) (R+S)' —(R+9)
The probability that the system is in slower rate of arrivals either with feedback or without feedback is
R k
=Y P.(1)+ > P(1) - (29)
n=r+1 n=R+1

Using the results (19), (22), (26) in (28) we get

P(l)zi[l—muf} 2{ (T+U)" (‘“BJ[ l<T+u> Jpl]m)

St 1-(T+U) Pra = —(T+U) R+S —(T+U) p,
2 [1-(T+U)" | [1-(T+u)”
{Z ~(T+U) +Z[ 1-(T+U)

o +p )| 1-(T+YU) |5

{R+SJ[ 1-(T+U) %]}P“”(l)

1 (T+U)[1-(T+U)"" |
{m{“‘”‘ 1-(T+U) }

(T+U) ™ [1-(T+ U)kRJ}

*m{(”‘)‘ 1-(T+0)

o (o +p L (T+U)[1-(T+u)”‘]
‘E_O(R+8J1—<T+u>{(k‘m‘ (=0T HPM“)
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+ Po

[1-(T+U)T

(T+ U){m(l—(n U)k_R)é—(l—(T+ U)k‘r)}

+

(R +8)" (1-(R +S))Q
(R+S) (R +S)R Py

P (0)

and hence

P@):{ A + (T+U)B }CR«O) ... (30)

1-(T+U) [1-(T+U)T

WhereA=(k_r)-(k-R)%&
9 Py

B =(Oéigj(l—(T+ u)k‘R)g—:—(l—(n u))

R+ Po
(R+S)™"(1-(R +s))pl

R
(R+S) —(R+S)
The probability [Po(0)] that the system is empty can be calculated from the normalizing condition
P(0)+P(1)=1 .. (31)
From equations (28), (30) and (31) we get

F’o(O)—ll(l  (R=N)(R+8)™ +{ A, (T+U)B]2}C]

R+S) (R+S) -(R+S)" |1-(T+U) [1-(T+U)
.. (32)
Expected number of customers in the system LSO , When the system is in faster rate of arrivals either
with feedback or without feedback, is

r R-1
Ls, =>.nP,(0)+ > nP,(0) .. (33)
n=0

n=r+1

Using the results (15), (18), (19) in equation (33) we get

r R-1 —(R+S)"" | =
L :HZ:(;n(R +s)’ Po(o)+n§1n{(R +s)" Po(o)—[llf?m;) ]g—zpm(l)]

_(R4S)[1-(r+D)(R+8) +r(R+)™ | {r<R+s)”l[1—<R+s>R”]

- 2 0(0)+
[1-(R+3)] 1-(R+S)

(R+8)"[1-(R-1)(R+8)" " +(R-r-1)(R+5)""]

[1-(R+s)]

+

P (0)
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) (Rr><R+r1)_{r<R+s>(1—<R+s)R”)
2(1-(R-9)) [1-(R+S)T
(R+S)|[1-(R-1)(R+S)""" +(R-r-1)(R +S)RS]} Py

[1-(R+S)]
F(R +5)-R(R+8)" ~(R-1)(R+5)""]
[1-(R+S)]
+{r[R +S]-R[R+S]"" N (R +S)[1—(R +s)R"}

1-(R+S) [1—(R +s)]2

+

(R+1)(R —r—l)} (R+S)™ ]PO(O)

2 (R+S) -(R +S)R

D E(R+S)*"
L, =[ + ( ) - }PO(O) .. (34)

[1-(R+S)] (R+S) —(R+S)
where D =(R+S)-R(R+S)" —(R-1)(R+S)
- _T[R+S]-R[R+s]"" (R +S)(1-(R+S)"") (R+r)(R-r-1)

- 1-(R+S) [1—(R+S)]2 2

Expected number of customers in the system le , when the system is in slower rate of arrivals either

R+1

with feedback or without feedback is
R-1 k
Ls = D nP,(1)+> nP (1) . (35)
n=r+1 n=R

From the equations (19), (22), (26) and (34) we get

R-1 |:l—(T+U)n_r} K 1_(-|-_|_U)”‘r
lezn_z,;ln 1-(T+U) P”l(l)“LnZgn[ 1-(T+U)
o +p ) 1-(T+U)" |5
_(R+Sj 1-(T+U) E_JP”(D
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op [1-(THUNT] ﬂ
- n = Pr+1(1)
‘= R+S 1-(T+U) p,

(R-r-1)(R +r)+{1+(al+gj§1}(k—R)(k—R 1)

R+S Jp,

B 2(1-(T+U))

_k{(T+ u)< +[Oéigj(T+ U)legﬂ—Hr + R[‘éigjgz}(n u)}
' [1-(T+U)T

{(T +U) (OI'E\;:[;)(T + U)k‘R”g’j {1+ (‘;:gjgﬂa +U) |

' [1-(T+U)T Frall)
) {2(1—(; u)) " [1_(TG+ u)J’ ' [1—(TH+ U)ﬂpr+1 (1)
Ls = {2(1—('Fr +U)) " [1—(TG+ u)T " [1—(TH+ U)]g}P”1 ) -0

where Py.1(1) is given by (19)

F:(R—r—1)(R+r)+{1+(°é+gj§}(k—R)(k—R+1)

+ Po

G= k{(T +U) (%J(T + u)kmig—j —Hr +R (%)%}(T + U)}
H= {(TJr u)"™ +£°Fi+§j(T+ u)k‘R‘l&}{l{%j&}(n U)

+ Po Po

Expected number of customers in the system Ls, when the system is in faster (slower) rate of arrivals
either with feedback or without feedback, is

Ly=Lg +Lg ..(37)
Using the results (34) and (36) in (37) we get
D E(R+S)"" F
2 + r R +
[1-(R+S)] (R+S) -(R+S)" |2(1-(T+U))

Ls=
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- G - H
[1-(T+U)] [1-(T+U)T

where Py(0) is given by (32)
Using Little’s formula, the expected waiting time of the customers in the system Ws when the system is
in faster and slower rate of arrivals either with feedback or without feedback is given by

W, :%, where 7. = (2, —£)P(0) + (A, —£)P(1) - @)

P, (0) .. (38)

Note
This model includes the certain models as particular cases For example, when po=pqg, p1=p1,
p=0=1, 1= c and k—oo, this model reduces to Geo/Geo/c/« interdependent queueing model
with controllable arrival rates which was discussed by Thiagarajan and Srinivasan, when
ho=A1=A, k—o0, p=g=1 and &=0, this model reduces to the conventional Geo/Geo/1/cc model
discussed by Hunter (1983)

V.  Numerical Illustrations
For various values of Aq, A1, g, € K whiler, R are fixed values, computed and tabulated the values of Py(0), P(0)

and P(1) by taking P =( = 1

2
Table 1
4 8 15 6 5 5 1.0 0.497529660 0.986767159 0.013232573
4 8 20 8 6 5 05 0.616116034 0.999974808 0.000017692
4 8 15 6 5 5 0.5 0.419303234 0.939226648 0.060773350
4 8 15 7 5 5 0.5 0.554479100 0.999999927 0.000342617
4 8 15 5 4 4 05 0.570596976 0.995856393 0.000999999
4 8 20 5 4 5 0.5 0.305198362 0.964795991 0.035204006
4 8 15 8 6 6 05 0.455121423 0.972050156 0.027949841

For various values of Aq, A1, W, € k while r, R are fixed values, computed and tabulated the values of

1
LSO,LSI, L and Ws by taking p=0 = —.

2
Table 2

r R K Xo Xl 3 € LSO le Ls Ws
4 | 8 15 6 5 | 5| 10 0.883309494 0.558968576 1.44227807 0.289221119
4 | 8 20 8 6 | 5| 05 0.612664316 0.074227168 0.686891484 0.09158665
4 | 8 15 6 5 | 5| 05 0.832481928 1.101296424 1.933778352 0.355524503
4 | 8 15 5 4 | 4| 05 0.717485471 0.185390031 0.902875502 0.201316597
4 | 8 15 8 6 | 5| 05 0.616257980 0.010429804 0.627055602 0.083623012
4 | 8 15 8 6 | 6 | 05 0.928934438 0.313281134 1.242215572 0.166872992

VI. Conclusion

It is observed from the Table 1 and Table 2 that
i When the mean dependence rate increases and the other parameters are kept fixed, Ls and W decrease
(either with feedback or without feedback).
ii. When the arrival rates and service rates increases and the other parameters are kept fixed, Ls and W5
increases (either with feedback or wither feedback).
iii.  When the system size and arrival rates increases and the other parameters are kept fixed, Ls and Ws
decrease (either with feedback or without feedback).
iv. When the service rate increases and the other parameters are kept fixed, Ls and Ws increase.
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