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I. Introduction
In this paper we, interest in Backlund transformation[12], and its connection with some special
equations and their associatedsoliton theory.Under this transformation.an infinite family ofconstant curvature
surfaces can be produced from a given one.The notion of a differential equation for a function u(x,t) that
describes a pseudospherical surface (P.S.S.) was introduced in [1,6,7], where classifications for some equations

oftypes
oku ofu
Uy =Y (u, Uy, Upyy oo W) and u, =9y <u,ux - W)
Were obtained. Furthermorecharacterizations of equgtions with more than two independent variable;s of types
oku ok u ofu 0% u
Uyt =1/J(u,ux,... ....m,uy,...., W)'ut =1p<u,ux,... ....W,uy,...., W)

oku oku
andu, =y <u, Uy, ons 5 xk’uy’ SFPTk
A systematic procedure to determine linear problems associated to non-linear equations of the abovetypes was
also introduced in case of two independent variables.
In this work, we consider evolution equations for a function u(x, y, t) that describes an(n, &) 3-dim. P.S.P.
as given in [2,3,4] and we investigate an analogous method to derive Backlundtransformations and conservation
laws based on geometrical properties of these 3- dimensionalpseudo spherical planes in R>.

u, | are givenin [2,3,4].

I1. Local theory of constant negative curvature submanifolds of R?"~1
Let M be an n-dimensional Riemannian manifold with constant curvature K isometrically immersed in
M?"~1with constant curvature K,with K<K. Let e;, e,,...,e,,_;be a moving orthonormal frame on an open set
of M,so that at points of M,e,, e,, ..., e are tangents to M.Let w,be the dual orthonormal coframe and consider

w g defined by [2]
deA = Z (DAB eB
_ B
The structure equations of Mare
dO)A:ZU)B /\U)BA ) (DAB +(DBA:0 (1)
B

d(l)AB :Z(DAC /\U)CB _K(DA/\(DB Wlth 1 SA,B,CSZn_l (2)
C

Restricting these forms to M we have w, = 0,50 (1) giveswithn+1 < o,B,y< 2n—1and1 < I,],L <
nl

dwa=2wl/\wla=0 3)
I
J

from (2) we obtain, Gauss equation
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dwy = Z oy, Awy + Z Wig A Wgy — Kw; A w;(5)
L o
andCodazzi equation
doy, = Z Wiy A 0pe (6)
A

M has constant sectional curvature K if and only if
Q]] = d(,l)]] - Z U)IL A U)L] = _K (L)l A (L)] (7)
L

Zwm Ay = R — K) o Aw(8)
o
Also, equation (2) implies that[2]

dweg = Z Wey AWyg + Qg
Y

Wlth QO‘B = Z ('00(1 7AN ('OIB (9)
I

The forms Q5 give the normal curvature of M and I = ¥;(w;)? is its first fundamental form.

For our purpose in this paper, we write these equations when M is taken to be R® and M is a 3-dimensional
submanifold with constant sectional curvature K = —1(i.e. pseudo spherical 3-plane in R).

The equations take the forms[2]

dw; = w4 Ay + w5 A w3 )

dw; = —w, Awg + we A w3 |

dw; = —wg A w; — Wg A Wy }(10)
dw, = 0 A w,

dws = w1 A w3 |
dwg = w; A s )

where we have written

Wy = W12 Ws = W13, and

ws = wxaWith  w; = —w; ,i,j =123, w; =0
We shall recall here the definition of a differential equation to describe a pseudospherical surface, introduced in
[1] and modify it in order to suit our purposes here.
Definition 2.1
A differential equation E-for a real function u(x,y,t) describes a 3-dimensional pseudospherical plane in
R5(simply P.S.P.) if it is the necessary and sufficient condition for the existence of differentiable functions
fui-1 < a < 6andl <i < 3, depending on u and its derivatives, such that the 1-forms[2,3]

Wy =fzx1dx+fzx2dy+fa3dt (11)

satisfy the structure equations of a 3-plane of constant sectional curvature —1 in R® i.e. equations (10).
Definition 2.2
We shall define such 3-dimensional P.S.P to be a two-parameters 3-dimensional P.S.Pf3,= fi,;=1n and f;, =
f12=%, with n and & constant parameters. In Fact, one can see that whenu(x,y, t) is a generic solution of E, it
provides a metric defined on an open subset of R, whose sectional curvature is -1 and the lengths of the vector

i 9 and L satisfv |[2-[2> n2 |2]2s #2
fields axand P satisfy |6x| =7 '|ay| > &4.[2,3]

I11. Generalization of Bécklund's theorem
In this section, we define a pseudospherical geodesic congruence between two n-dimensional
submanifolds M and M’ of a space form M2"~1 with constant sectional curvature K. We prove a generalization
of Backlund's theorem,[12] for such submanifolds and the complete integrability of the differential ideal
associated to the existence of a pseudospherical congruence.
In what follows we need the notion of angles between two k-planes in a 2k-dimensional inner product
space.[10]

Definition 3.1

Let E;and E,be two k-planes in a 2k-dimensional inner product space(V,<,>)and m:V — E; the
orthogonal projection. Define a symmetric bilinear form on E, by (v,,v,) =< P(v;), P(v,) >. The k angles
between E; and E,are defined to be 6,,...., 8, where cos?0,... .cos*8, are the k-eigenvalues for the self-
adjoint operator A: E; — E, such that (v, v,) = < Avy, v, >.[10]
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Definition 3.2
Suppose the n angles between E; and E,are 64, ...,0,. Then it follows from the definition that there are
two orthonormal bases ey, ..., e,, and ey, ..., e5, Of V such that ey, ..., e, are eigenvectors of A with eigenvalues

c0s%0,,.....cos?8, respectively,e,, ..., e, form a base for E;, and
e; =cosB;e; +sinbe, ;1
€n4i—1 = —sSinb;e; + cosB;e, ;1

for1 < i <n.[9]

Definition 3.3

A geodesic congruence between two n-dimensional submanifolds M and M’ of a (2n-I)-dimensional
space form M is a diffeomorphism #: M — M’, such that for P € M and P’ = ¢(P), there exists a unique
geodesicy in M joining P and P’, whose tangent vectors at P and P’ are in T, M and T, M’ respectively.[10]

Definition 3.4

A geodesic congruence £: M - M' between two n-dimensional submanifolds of M is called pseudospherical if:
(1) the distance between P and P’ = £(P) on M, is a constant r, independent of P;

(2) the (n-1) angles between vpand v, are all equal to a constanté, independent, of P;

(3) the normal bundles v and v'are flat ;

(4) the bundle map I': v — v'given by the orthogonal projection commutes with the normal connections.[10]

Definition 3.5

For given geodesic congruence £:M — M', we remark that, the normal spaces v, and v, , at
corresponding points P and P’ are (n-1) dimensional and orthogonal to the plane determined by the position
vector X of M and the tangent vector of y at P. Therefore, vpand v,', lie in a (2n-2) dimensional vector space,
i.e. there are (n-1) angles between v, and vp'.[10]

Theorem 3.1

Suppose there is a pseudo-spherical congruence I: M — M of n-manifolds in R2"~! with distance r
between corresponding points and angle 8 # 0 between corresponding normals. Then both M and M' have
constant sectional curvature —sin?8/r?. [9]

Proof.
Since v’ is flat, we may choose an orthonormal frame e, 1, ... ... , e5,_1 Tor v’ such that the normal connection

wn+1 In+j—-1 "~ =0 (12)
Here and throughout this section, we shall agree on the index ranges

2<i,j,k<n (13)
If we use condition (2) of the definition of a pseudo-spherical congruence, there is a local orthonormal frame
field ey,...,e,,_1 for M such that [9]

e,.i_1 = —sinfe, + cosfe,,;_ 1}( 5

e; = the unit direction of PP
andey,..., e, form an orthonormal frame for TM. Let ,

e = —éy,

e' = cos fe; + sin Oe, ;g }(15)
thene,..., e, forman orthonormal frame for TM'. Since I': v — v' commutes with the normal connections,
Fen+i—1 en+l 1 and wn-H 1n+j-1 "~ 0 we have

wn+i—1,n+j—1 =0 (16)
Suppose locally M is given by an immersion X: U — R?"~1, where U is an open subset of R", then M is
given by
X =X+re.. (@17)
Taking the differential of (17) gives [9]
dX' =dXx + rde;, ]

= w16 +Zwe +7‘Zw1le +7‘Z‘U1n+1 1€n+4i-1
(18)
|

= w€ +Z(w +rwh)e +rzw1n+1 1€n+i-1-

On the other hand, letting w;, ..., w, be the dual coframe of e,...,e,,we have
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dX' = wye; +Z w;e; , using(15) \|
, ! 5 (19)
= —wie; + Z w; (—cosBe; +sin 9en+i_1).J|
i
Comparing coefficients of e, ..., e,,_; in (18) and (19), we get
(Ul —_ _(Ul,
cos Ha); = w; +Twy;, ¢ (20)
sin 90); =TW1n4i-1.
This gives
w; + rw; =71 cotlwg g1 (21)
Using (12), (14) and (16), we have )
0= wn+i—l,n+j—1 \
= den+i—1' en+j—1 |
= d(—sinfe; + coste,,;_1).(—sinbe + cosbe, ;1) # (22)
= sin? de;. e —sinfcosO(de;.ey ;1 —de.epyiq) |
= Sil’lz 9(1)11 - Sil’l 9 (o{0 9(a)im+j_1 - wj,n+i—l)' J
Therefore we have

Wy = COte(wi,nH—l - wj,n+i—1)' (23)

In order to find the curvature, we compute the following 1-forms:

wllln+k_1 =dej.e,,,_;, using(14)and(15) )
= —sinfwyy, — cos Bw; ;1 ,using(21)
_ sinf
Ty Yl - (24)

Wiptk-1 = d€;.eyppq
= —sin6 cosOwy + cos? 0w, , ;1 +SIN? Owy 41, using(23)
= Winti-1-

Hence from equation (9) we have

Oy = _Z W1 k-1 NWOppyp—1, Using(24)

k
sin @ _
= Wi A Wy 4i-1,using(1)
k
sin @ _
=- W1 AW pyi-1) using(20)
T L (25)
sin @ , A
r2 1 i
Qy =- Z Wintk—1 N ppk—10 using(24)
i
== Z Wi pnti-1 N O ntj-1-
i J
Since v is flat and w,, ;1 n+j—1 = 0, We have
0= _dwn+i—1,n+j -1 USing(9)
= W1n4i-1 ND1ptj-1t ) Opnpiot ANOpptj-1-
k
So we have
Q1 = W1pgic1 A O1pgj—1, using(9)
sin@ (26)
= —— W, w;
rz Tt
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Therefore M' has constant sectional curvature —sin®8/r2. By symmetry, M also has constant sectional
curvature —sin?6/r%.[9]

Theorem 3.2

Suppose Mis a local n-submanifold with constant negative sectional curvature K = —sin?8/r?in
R?™~1 where r > 0 and fare constants. Let v{,...,v?, be an orthonormal base at P, consisting of principal
curvature vectors, and v, = X, ¢;v? a unit vector with ¢; # 0 for all 1 < i < n; then there exists a local n-
submanifold M" of R?"~!, and a pseudo-spherical congruence I: M — M'such that if Py = I(P,),we have

P,P" = rv,, and @ is the angle between the normal planes at PyandP'. [9]

Theorem 3.3

Letf,;,1<a<6,1<i<3,bedifferentiable functions of variables x,y and t such that [5,8]
—fiiy T fiox T 0fs2 +$fo1 = Nf22 —$fs1 =0,
—fi1e + fizx T sz + fasfor —0f23 — fs1fz3 =0,
—fi2c + f13y T $fs3 + fazfor — fs2f3zs —$f3 =0,
—fo1y + fozx T ez ¥ 0f12 —$fer —$A1 =0,
—fare F fazx T ez ¥ 0f1z = ferfsz — fiifaz =0,
—fo2p F fa3y T $fe3 +Sf13 — ferf3s — fiafaz =0,
—fa1y = faox + firfso — fiofs1 — forfer + faife2 = 0,
—fare T [z + fazfor + fizfs1 — farfezs — finfsz =0,
—fa2e + fa3y + faafer + fizfsr — frafes — fi2fs3 = 0,
—fary T fazx + fi1foz — fizf1 =0,
—fare t fazx T fizfor — fufaz =0,
—faze *+ fazy + fisfor — fi2fo3 =0,
—fo1y * fsox N2 —$fi1 =0,
—fs1,e T fs3x T 0f13 — finfzz =0,
—fooe + fo3y +$fis — fiafss =0,
—fory * foo . N2 —$f21 =0,
—fer,e T fezx T Nfz3 — farf33 =0,
—foae t fozy +Sfo3 — f22f33 =0,

and

firfee — fizfor ¥ f1z = $fin +$fs1 —nfs2
+sing [2nfi; — 2§fir + firfs2 — fiafsr —Nfs2 = Efor — forfs2 + o fiz — finfoz + €fsa
+ Nf22 + fr2f51]
+cos [fiafs1 — firfso + 2nfiz — 28f11 + $for + farfs2 + firfor — farfiz = fs2
—Nfe2—faofs1 +§f511 =0,
fizfor — fiifas Mfiz — firfss + forfaz + fasfor = Nfss — for fas
+sing [2nfi3 — fi1fas + firfss — fisfsr —Nfas = Nfszs — forfas — farfss + for fis +11f33
+ fasfs1 — firfaz + Nfas + fazfo1 — fin fas]
+cos [fisfs1 — firfss + 2nfis — firfas + forfas + forfss — forfis —Nfas —1fs3
—MNfiz—fasfs1 + fasfin + 1fsz + fsifss — firfi31 = 0,
fizfor = Fi2fas + i3 — fiafss + Fozfas + fsofsz — oo faz — §fs3
+sing [2§fi3 — fiafas + fiafss — fisfso — §faz — $fs3 — farfas — faofss + faofiz + §fs3
+ fasfs2 — fashiz + fsfs2 — fasfrz +$fas]
+cos [fisfsy — fiafss + 28fi3 — fiafas + faofaz + farfs3 — forfis — $faz — §fs3
_ —$foz—fasfso + fasfiz +$fas + fsafzz — fizf33] = 0,
With fir=1=fu ;o frz =$ = faz
Then the following statements are valid.
1. The following system is completely integrable for ¢ ;
3¢, = far + fs1+ for — fir + (for — fa1) sing + (f31 + fo1) cos @
3¢y = far tfso + foo — fiz + (foz — f32) sing + (f; + f22) cos p » (28)
_ 3¢, = faz + foz + foz — fis + (faz — faz) sin + (fi3 + fo3) cos @
2. For any solution ¢ of(28) the 1- forms

r(27)
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01 = fi1dx + fi,dy + fizdt , and
0, = (f1 sing + f31 cos p)dx + (fy;, sing + f3, cosp)dy ¢ (29)
+(fy3 sin¢ + f33 cos p)dt
Avre closed one — forms
3. If f,;are analytic functions of parameters n and ¢ at zero, then the solution ¢(x, y, t,n, &) of (28) and the
one-forms (29) are also analytic in n and ¢ at zero.

Proof:
With respect to point 1. , it follows from the Frobenius theorem. and from (27) and (28) . straight forward
computations show that (27) implies.

d)xy d)yx ; ¢xt ¢tx ) ¢ t ¢ty .
point 2. , can be proved by showing that the systems (27) and (28) imply that exterior differentiation of the
forms o, and o, in (29) is zero, which is the case.
In order to prove point 3. , we suppose that functions f,;are analytic functions of parameters n and . Each
equation of (28) can be considered as an ordinary differential equation whose right — hand side is an analytic
functions of (¢,n,&), where the solutions of ¢(x,y,t,n, &) of this equation exist as defined by point 1. It
follows from the theory of ordinary differential equations, [11], on the dependence of solutions up on
parameters, that ¢ (x, y, t,n, &) is an analytic functions of  and &, for n and & in an appropriate neighborhood of
zero. This completes the proof of the theorem.[5,8]

IV. Derivation of Backlund transformations and conservation laws for evolution equations in
higher dimensions
In this section, we extend the results obtained in[5], by introducing a new method to derive an infinite
set of conservation laws for equations that describes a P.S.P., based on a geometrical property of these planes.
So, firstly. We consider M and M" as sub manifolds of R?"~1 of dimn, and I: M — M be a pseudospherical
geodesic congruence between M and M, then there eX|st local orthonormal

forms[8,9]e; , €5, e e, €y €1, e €ppg ANd s, €5 V€r s e e , €51 for RZ"=1 with
€1,€2 ) e e, forMande;, e2 ...... ,e, for M’ such that
e; = cosfe; +sinfe, ; , , 2<i<n
e,'m-_1 = —sinfe; +cosbe, ;1 , (30)

Are verified, see [10], and e; = —e; , where e;at P € M is the unit vector tangent to the geodesic from P to
=1(P)
In the special case, when n = 2, relations (30) become [1] ,
e; = cosfe; + sinfe,
e, = —sinfe; + cos 962}( 3D
Where, it is considered that all the (n-1) angles are the same and equal to 6
In our case of evolution equations of three variables, M and M 3- dimensional Riemannian sub manifolds of
R%e; ,ep .. , esande; , ey, ...... , es are two different erthonormal frames with e1 ,e2 ,e3 tangents to M
and e; , e, , e; tangents to M. While w, , w, ) W3, W17 , W13 ,wyzand Wy , Wy , W3 , W, W3 , Wy, are the dual
coframes and connections forms on M and M’ respectively. For 2 < i < 3(n = 3), one can write the following
relations, with a pseudo spherical line congruence I: M - M ,
ei =—e
e, = cosfe, + sinfe; (32)
e; = —sinfe, + cosfe;
From the relations (32), we have
w; = —a)'l
w, = cosBw, + sinfw; ¢ (33)
w; = —sinBw, + cos Hws
And
w; = —w;
w; = cosBw, — sinBw; ¢ (34)
w3 = sinBw, + cosBw;,
Now, consider a differential equation (E) for u(x, y, t) which describes a two parameters 3-dim.
P.S.P. with associated 1 — forms.
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w; = fi1dx + fi,dy + fi3dt;

Wy = fr1dx + frody + fr3dt;

w3 =ndx + &Edy + f33dt;

Wy = wyy =ndx + &dy + fi3dt;

ws = w3 = fsdx + f5,dy + fs3dt;

We = Wy3 = fer1dx + for, dy + fezdt.
Where f,;, are functions of u(x, y, t) and its derivatives (observe that we are denoting w,, ws and wfor
w5, wy3 and w,5 respectively, which are the classical notation for the connection forms). We have the
following[8]

]
' (35)
J

Proposition 4.1
Let E be a differential equation which describes a two parameters 3- dim P.S.P. with associated 1- forms (35) .
Then, for each solution uof E, the system of equations for ¢ (x, y, t).[8]
Wy, —de + wy =0,
w3 —do + wy = 0,7 (36)
wy3 —dp + w; =0
Are completely integrable. Moreover, for each solution uof E, and corresponding solution ¢ of (36). the forms
01 = fidx + fi,dy + fizdt, }
0, = (fy1 sing + f31 cos p)dx + (fy, sing + f3, cos p)dy + (f3 sing + f33 cos p)dt
Are closed forms.

Proof
It follows from (33) that u is a solution of E iff.w;, — d¢ + w; = Oi.e.,

Wiy — d(p + Slln ¢w2 + cos ¢(,U3 = 0,} (37)
w13 — dd) + Wy = 0
w3 —do + cos ¢w;, +sin pws = 0,} (38)
Wy3 — dd) + w1 = 0

andw;, —d¢ + w; = 0(39)
Are completely integrable for¢. In this case:
wq ;and sin pw, + cos pws (40)
Are closed forms. Hence, inserting (35) into (37) we obtain equations.
(M — ¢y + fr1sind +ncose)dx + (§ — ¢, + fop sing +§ cosp)dy + (fa3 — P, + fo3 sSing + fr3 cos ¢p)dt
=0
3¢, = far + for + for — fur + (fa1 — fa1) sing + (fz1 + f21) cos p, (41)
Are closed forms. Hence, inserting (35) into (38) we obtain equations.
(fs1 = @x + fr1 cos g —nsinp)dx + (fs; — ¢, + fo cOs P
—&sing)dy + (fsz3 — ¢¢ + f3 cos@p — frz sing)dt = 0
3¢y =far +fso + for — fiz + (frz — fzz2) sing + (f32 + fr2) cos @, (42)
Avre closed forms. Hence, inserting (35) into (39) we obtain equations.
(for = & = finddx + (foo = by = fia)dy + (fes — b = fiz)dt = 0
3¢ = fas + foz + fo3 — fis + (fo3 — fz3) sind + (fz3 + fo3) cosp (43)
Whose integrabilty condition is E. also, inserting (35) into (40), One can obtain the closed forms (29).
Now, we note that whenever E does not involve the parameters n, ¢ the closed forms (29) may provide an
infinite number of conservation laws.[8]
Also, under certain conditions, equations (28) may provide Backlund transformations for E and as we know
from theorem (3.3), the conditions
¢xy = ¢yx ; but = Prx ; ¢yt = ¢ty
are valid as the complete integrabilty condition for (28). As conservation laws are common features of
mathematical physics, where they describe the conservation of fundamental physical quantities, it is worth
studying them in this geometric study. Before giving the method for deriving conservation laws for evolution
equations that describes 2 — parameters 3-dim. P.S.P., we consider the following:

Definition4.1
We suppose a system of the form
u, = S[u](44)
In the system, when a functional J[(x, y, t)] satisfies.
dj[U(x,y,t)]/dt = 0, (45)
The functional is said to be an integral of equation (44). and
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0 0 0

Bt T[u(x! y! t)] + ax Q [u(x, Y; t)] + ay R[u(x' Y' t)] - 0(4’6)
Where usually each of T{u(x, y, t)], Q[u(x, y, t)] and R[u(x, y, t)]do not involve derivatives with respect to t,
is called a conservation law. In particular, if we are to apply this idea to an evolution equations for u(x, y, t),
then T, Q and R may depend Upon x, ¥, t, u, Uy, Uy, Uy, Uyy 5 wov - ,but not onu,. [8]
If we assume the function u(x, y, t) and its derlvatlves with respect to x and y go to zero sufficiently fast as
lx| = o0, |y| - o,i.e.,if T,Q, and R, are integrable on (—o, ), so that Q — constant as |x| — o, R —
constant as |y| — oo, then equation (46) can be integrated to yield.

d
Ef f Tdxdy =0 ,i.ef f Tlu(x,y,t)] dxdy = J(u) =Constant

The method to derive conservation laws for evolution equations that describe, spherical surfaces (P.S.S.) is
introduced by Cavalcante and Tenenblatin [5], for the case of two independent variables.

In this work, we will give a method with argument analogue to that considered in [5,8] to derive conservation
laws for evolution equations that describe 2 — parameters 3-dim. P.S.P. This integrated method is based on
geometrical properties of these planes.

Here, we suppose the functions f,; to be analytic in each of n and & seperatly, and describe the solutions ¢ of
(28) as a power series of n andé . In addition, from relations (29) we obtain a sequence of closed one — forms.
S0, we suppose

Fu Gyt ) = ) Wy (OO0 + gou 0 08 (47)
And the solution ¢ of (28) may have the form =
PGy L) = Y G ON + (06 (48)
i=0

For fixed , y, t , we consider functions of n and & respectively as follows:

C(,§) = cos¢ = cos IZ(‘l’iﬂi + lpifi)l (49)
i=0

SM,¢) = sin¢g = sin IZ(‘l’iﬂi + lpifi)l (50)
From relations (49) and (50), we have =
€(0,0) = cos(¢, + wo);}
5(0,0) = sin(¢y + o)

TC(O )= 1 lr_lr—ad“C
dnr 8)=— =Dt — al dn®

_«(51)

r—1

=1y

a=0

r—ad*C
an —(0,8)¢,_, ,forr=>1

R ] Z e (10, (52
&S 0,0) = 1'§r_“dac 0 for 7> 1

dfr 77: (r ) — a' dfa (77' )Ipr —a ;101 T =2

Finally, we define the following functions of x,y,t:

Gt = (1) T 0.~ 05, )Zl_f’a(o )
1= (0, 1) G (0,6) + (0 + 1) T 0.0,
=(hir+h§r+h3— hi) + L, r=
Foy = (Rl + B, + )+Z =62 B Z =13
= = 5l 00— a5+ 0SS )
dz< g
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. i—a di—a
L[ru = (QZT g3r) fl a (77! 0) + (92r +g3r) fl a (TI; O);
Fy = (93 + g3 + 94 — 93) * L
q-1
qT_(g4r+gSr+g()r_glr)+z_Goslpq S+Z(q S)' r , r=23

Where each of «, i, p, g is hon- negative integer such thati > a:p,q =4 ,andr = 1,2,3.

It is easy to see that the functions ‘G and'L% depend above depend on ¢, ¢1, ..., p;_,. Whears the functions
'G% and 'L depend on Yy, Py, c s iy

Also, the functions (F;,, F3,.)and (F,,) depend ongand ¢y, ¢, ... ... , ¢, 1, respectively, but the functions
(Fy,, F3,)and (F,,) depend on 1y and ¥;,,, ... ..., P,_1, respectively.

Under the above notation, we obtain the following corollary.

Corollary 4.1

Suppose f,; (x,y,t,1n,¢é), 1<a <6, 1<i<3,bedifferentiable functions of x, y, t, analyticatn = 0,& =0
that satisfy(27). Then, in view of the above notation, the following statements hold.

(i) The solution ¢ of (28) is analyticatn = 0,& = 0 ; ¢, andy, are determined by.

And, for 1 > i, ¢;andy; are recursively determined by the system

(ii) For any such solution ¢, equation(48) and any integer i = 0

Are closed one- forms.
The proof of the corollary follows with somehow straight forward calculations from equations (48) — (54) and
equations (28) with the introduced notations.
Now, if we consider a non-linear evolution equation for u(x, y, t)which describes a 3—dim.
P.S.P., then there exist functions f,;, 1 < a <6 , 1 <i < 3, depending on u(x, y,t) and its derivatives, such
that, for any solution u of the evolution equation, f,; satisfy (27). So, it follows from theorem (3) that equations
(28) are completely integrablefor . If we consider f,; to be analytic functions of parameters n, £ then we can
find that the solutions ¢ of (28) and the 1-forms given by (29), are analytic in n, & where their coefficients
¢; ,; and B¢, as functions of u, are determined by (55) — (59). The ciosed 1-forms B' provide a sequence of
conservation laws for the evolution equation, with equations given by.

L

Q = Z ! (G + 68 +'G§Y)
L P 1 ’
~ (i—a)!

Z o (G 68,

with
Qix+R,+T1y=0, i=20
For Bécklund transformations of the equation E which describes P.S.P., we remark that the angle ¢ of a
pseudospherical line congruence is determined by the system of equations (28). If we suppose that (28) is
equivalent to a system of the form:
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Then given a solution u of E the system (28) is integrable and ¢is a solution of (62), then u defined by the
equation (61) will be a solution forE. However, it still needs more work to be done.

V. Conclusion

In this paper, we generalized Backlund transformations and conservation laws for evolution equations in higher
dimensions.
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