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Abstract: In this paper, we investigate that for each p, 1 == p < ©2, space ", equipped with the normed
topology, is both (i) B-reflexive, and (ii) inductively reflexive. We also discuss that the locally convex spaces {°
[%(tM] , where 1= p=. &2 and 1/p + 1/q =1, are semi-reflexive ( and so polar semi-reflexive) and the locally

convex space €* [5(Co)] is inductively semi-reflexive.
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I.  Introduction
Semi-reflexivity and reflexivity are well known properties in locally convex spaces. There are other
types of reflexivity, namely, polar semi-reflexivity and polar reflexivity in [1], inductive semi-reflexivity and
inductive reflexivity introduced by I.A. Berezanskij [2] and B-semireflexivity, B-reflexivity in [3]. The notions
of p-completeness and p-reflexivity introduced by Kalman Brauner [4] are nothing but polar semi-reflexivity
and polar reflexivity, respectively. In this paper we discuss these reflexivities in sequence spaces. For a locally

convex space E[T], which we always consider Hausdorff, the dual is denoted by E’. The strong dual of E[T] is

E'[t(E)] and the bidual of E[T] is E"=(E'[t,(E)])’. We follow the notion of Kothe [1] for notations and
terminology, unless specifically mentioned.

A locally convex space E[1] is called semi-reflexive if E =E"”. A semi-reflexive locally convex space
E[r] is called reflexive provided t=1,(E').

Let t° be the topology on E’ of uniform convergence over the class of t-precompact sets (in E). We
have 1° = 1,(E). The topology on (E'[ t°])’ of uniform convergence over the class of t° -precompact subsets of

E'[ t°] is denoted as 1°° .

1.1. Definition (Kéthe [1]): A locally convex space E[7] is called polar semi-reflexive if E = (E'[ t°])". Polar
semi-reflexive space E[] is called polar reflexive if =1 i.e. (z°°.
Consider a locally convex space E[t] and a base {U,: a = I} of t-neighborhoods of 0 consisting of

closed absolutely convex neighborhoods. Let U°, be the polar of U, in E’and E',, be the linear subspace of E’
spanned by U°, equipped with the norm topology with U, as unit ball. Let E' [t"] be the inductive limit of the
system { E',,} and the embeddings: E',, — E’. Note that t" is the finest locally convex topology on E' making
all embeddings: E'y, — E’ continuous. Starting from the locally convex space E’[t"], the topology ™= (t")" is
defined on (E’[t"] )". The topology t* constructed this way is due to [2].

1.2. Definition (Berezanskii [2]): If (E'[t"])’ =E, then E[1] is called inductively semi-reflexive. If, in addition,
7= ()", then E[1] is called inductively reflexive.

Following P.K. Raman [3], we define that an absolutely convex bounded subset B of the dual E’ of a
I.c. space E[r] is called reflective if the span E'g is a reflexive Banach space with B as unit ball. The class of all
reflective sets is denoted by ® . The topology on E of uniform convergence over the saturated class of sets
generated by ® s called the reflective topology of E and is denoted by 1, . The polars of the sets of ® i.e. the
class{Ko : K € ® } forms a base of neighborhoods of the origin o for E[z,].

1.3. Definition (Raman [3]): If a locally convex space E[1] is barreled and E[] = the completion of Eft,], then
E[r] is said to be B-semireflexive if E = E[] algebraically.

If, in addition, T = t,, we say that E[t] is B-reflexive.

Let us denote

£* = The set of all bounded sequences x={&} of real or complex numbers.
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¢ = The set of all convergent sequences x={£,} of real or complex numbers.
Co = The set of all sequences x={¢,} of real or complex numbers which are convergent to O.
¢ = The set of all sequences x={£} of real or complex numbers with Zf:l & oo,

" 1<p < oo =  The set of all sequences x={&,} of real or complex numbers for which
2=y | &P converges.

If a bounded sequence x={£}is considered as a coordinate vector x=(£,), then the coordinate-wise
addition and scalar multiplication i.e. for all x= {£,}, y={m\}€ € and @ EK , x+y = {{,+ 1} and ax =
={a&,}, define a vector space structure on ¢* (and on ¢, ¢, €7 ,1= p << o2, as well). Such vector spaces are
known as sequence spaces. In subspace relationship, we have (* © ¢, © ¢ < (”. The (usual) norm on ¢ is |l
Il.. which is defined by Il x |l. =sup 1 & 1. On ¢° 1= p =0 c@, the norm || Il, is given by is |l x I, =
(Xiy | €P)™. In particular, on £*, the norm |l ll; is given by is Il x ll; = X3=, | £,1 and on ¢?, the

norm Il Il is given by is Il x Il = ( Zi=q | &%) *2.

1.4. Following facts are well known:
(i) Each of £, ¢, and c,, equipped with the normll Il.., is a (B)-space.

(ii) €°,1= p <X ©2,with the norm || x ||, are (B)-spaces.

1.5. Further, we have the following dual relationships between £, ¢, and ¢, ¢*and €° 1= p= Co;
(LY =0" : (co)'=10*; (c) = 1" and for each p, 1< p<< @0, (¢°)' = % where, 1/p + 1/q =1. For details of these
results see [1], §14,7& 8.

1.6. It is observed that (co)"= (£*)'= €” therefore ¢, is not reflexive. Similarly ¢*and ¢” are also nonreflexive.
However for each p, 1= p= 22, (€)' = £9, where, 1/p + 1/q =1, and so, (¢")” = (£%’ = (P and therefore each ("
is a reflexive (B)-space.

In this paper, we discuss polar reflexivity, B-reflexivity, Inductive reflexivity on these sequence spaces
considered with their normed topologies, and sometimes with weak or Mackey topology.

Il.  Results
We know that (F)-spaces are always polar reflexive ([1], §23,9(5)). So each of the (B)-spaces £, ¢,

and ¢, (equipped with the norm|l Il.,) and ¢ ,1= p << ©@ (equipped with the norm |l ll,) is polar reflexive.
Let 1, be the usual normed topology on the (B)- space €°, 1 < p =< @0, with respect to the norm || [l,
given by Il x ll, = ( Z=4 | £4P)™. Now we have the following assertion:

2.1. Theorem: For each p, 1 << p =< 0, the locally convex space ("[t,] is both (i) B-reflexive, and (ii)

inductively reflexive.

Proof: (i) It is already known that (°[ty] is a reflexive (B)-space (see 1.6). So its strong dual £ [1,(")] , where

1/p + 1/q =1, is also a reflexive (B)-space. Thus (°[1,] is a reflexive and its strong dual is bornological. Hence,

by [3], theorem 17, £°[t,] is B-semireflexive. Further, the fact that £°[1,] is a reflexive (B)-space implies that for

the unit ball S of €°[t,] , the polar S° in the dual €% is a reflective set. Hence the reflective topology t, on (" is

finer than the normed topology T, and consequently we have 1, = 1, . Hence €°[1,] is B-reflexive.

(i) Since B-semireflexivity implies inductive semi-reflexivity ([5], theorem 2.4), €°[t,] is inductively semi-

reflexive. Further, €°[t,] is a (B)-space and so it is bornolgical. A locally convex space which is inductively

semi-reflexive and bornological is inductively reflexive ([2], theorem 1.7]. Hence £"[1,] is inductively reflexive.
In particular, for p = 2, we have

2.2. Corollary: The (B)-space ¢* is both B-reflexive and inductively reflexive.
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2.3. Theorem: The locally convex space £° [t5(£%)] , where 1=2 p=2 ©2 and 1/p + 1/q =1, is semi-reflexive.

Proof: Consider the locally convex space €° [t5(£%)]. Its dual is £7 . On this dual, the strong topology t,(€")] is
nothing but the usual normed topology tq. Therefore, (£ [t,(€7)])" = (€% [1q]) = €°. It means €° [1,(€%)] is semi-
reflexive.

2.4. Corollary: ¢° [ts(£9], where 1=2 p=< 02 and 1/p + 1/q =1, is polar semi-reflexive.
Proof: It follows from the fact that every semi-reflexive locally convex space is polar semi-reflexive ([1],
823,9(3)).

For p = 2, we obtain

2.5. Corollary: The locally convex space £ [t4(€)] is semi-reflexive.

Though the (B)-space (*(with the norm topology) is nonreflexive, but if we consider the space ' with the
Mackey topology or the weak topology, then it holds some reflexivities as asserted in the following two
theorems-

2.6. Theorem: The locally convex space £* [t (Co)] is inductively semi-reflexive.

Proof: Consider the locally convex space L' [1,(Co)]. Its dual is c,. On this dual, the topology (t(Co))* is nothing
but the usual normed topology and therefore, ( ¢,o[(ti(Co))*)’ = (o)’ = €.

Hence 0" [t(Co)] is inductively semi-reflexive.

2.7. Corollary: The locally convex space {* [1x(Co)] is semi-reflexive.
Proof: Inductively semi-reflexive locally convex space is always semi-reflexive, by ([2], (1.6)).

2.8. Theorem: The locally convex space £ [t4(co)] is semi-reflexive.

Proof: Consider the locally convex space €' [t4(Co)]. We have (¢ [15(Co)])’ = co. On this dual, the strong
topology t,(£") is its norm topology. Therefore, (co[t,(€%) 1)’ = €' (see 1.5). Hence €*[ts(Co)] is semi-reflexive.
Using the fact that semi-reflexivity implies polar semi-reflexivity, we have

2.9. Corollary: The locally convex space ' [15(Co)] is polar semi-reflexive.

1. Conclusion
Each of the sequence space (°, 1< p=<< ©2 | (and , in particular, £°) is both B-reflexive and inductively

reflexive. On the other hand, on the dual ¢, of ¢*[ts(co)], the polar topology (ts(c,))° of uniform convergence on
T5(Co)-precompact subsets of ¢* is the usual normed topology. Now, in co, the set S =[1, %, ..., 1/n, ...} 18
precompact for the normed topology and so (t4(Co))°- precompact. But S is not finite dimensional. It implies that
the topology (t(co))® of uniform convergence on t4(cg)°-precompact subsets of ¢, is strictly finer than t4(co).
Therefore, £ [14(Co)] can’t be polar reflexive.
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