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Abstract: This paper deals with the study of Ruban’s cosmological model in presence of bulk stress source in 

the framework of General theory of relativity. Exact solution of Einstein’s field equations are obtained by using 

a supplementary condition between metric potentials and curvature parameter k . The viscosity coefficient of 

bulk viscous fluid is assumed to be a simple power function of mass density whereas the coefficient of shear 

viscosity is consider as proportional to the scale of expansion in the model. The time dependent  -term is 

found to be positive and is a decreasing function of time.  Also some physical and geometrical properties of the 

model are discussed. 
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I. Introduction 

To study the evolution of universe many researchers have constructed cosmological models containing 

viscous fluids. The effect of viscosity plays a very important role in the early evolution of the universe. There 

are many circumstances during the evolution of the universe in which bulk viscosity could arise. The presence 

of viscosity in the fluid introduces many interesting features in the dynamics of homogeneous cosmological 

model. The roles played by the viscosity and the consequent dissipative mechanism in cosmology have been 

discussed by several authors. The heat represented by the large entropy per baryon the microwave background 

provides a useful clue to the early universe and a possible explanation for this huge entropy per baryon is that it 

was generated by physical dissipative processes acting at the beginning to the evolution of the universe.  These 

dissipative process may indeed be responsible for the smoothing out of initial anisotropies [1] Misner [2] 

suggested that the neutrino viscosity acting in the early era might have considerably reduced the present 

anisotropy of the black body radiation during the process of evolution. Many researchers [3-10] have shown 

interest to study bulk viscous cosmological model in general relativity.  Weinberger [11], Heller and Klimek 

[12], Misner [13] have studied the effect of viscosity on the evolution of cosmological models. Collins and 

Stewart [14] have studied the effect of viscosity on the formation of galaxies.  

In Einstein’s theory of gravity newtonian gravitational constant G  and cosmological constant Λ  are 

considered as fundamental constants. The gravitational constant G  plays the role of coupling constant between 

geometry of space and matter in Einstein’s field equations. Recent cosmological observations shows that an 

accelerating universe with variables &G , generalized Einstein’s theory of gravitation have been proposed by 

Lau[15]. The possibly of variables &G  in Einstein’s theory has also been studied by Dersarkissian [16].In 

an evolving universe, it appears natural to look at this constant as a function time. Dirac [17] and Dicke [18] 

have suggested a time-varying gravitational constant. The Large Number Hypothesis (LNH) proposed by Dirac 

[19] leads to a cosmology where G  varies with cosmic time. There have been many extensions of Einstein’s 

theory of gravitation, with time dependent G , in order to achieve a possible unification of gravitation and 

elementary particle physics. The cosmological model with variable G and Λ have been recently studied by 

several authors. Some of the recent discussions on the cosmological constant and on cosmology with a time 

varying cosmological constant by Ratra and Peebles[20], Sahni and Starobinsky [21], Peebles [22], J.P.Singh et 

al.  [23-24], M.K.Verma et al. [25] and Pradhan et al. [26]. 

Recently M.K.Verma and Shri Ram [27-28] studied spatially homogeneous bulk viscous fluid models 

with time dependent gravitational constant and cosmological term.  Anirudh Pradhan et al. [29] have constructed 

accelerating Bianchi type-I universe with time varying G and Λ-term in general relativity. Also Lima and Nobre 

[30-32] studied the spatially inhomogeneous solutions of the Einstein’s-Maxwell equations in the frame work of 

Ruban’s  metric. Recently Singh et al.[33]  have investigated anisotropic Bianchi type II viscous fluid  model 

with time dependent G and Λ. Bulk viscous anisotropic cosmological models with dynamical cosmological 

parameters G and Λ have been presented by Kotambkar et al.[34]  . Harpreet et.al.[35] have  investigated bulk 
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viscous Bianchi type- I cosmological models with time dependent Λ- term in self creation theory of gravitation. 

Very recently Mete et.al. [36-39] have studied various cosmological models in presence of bulk viscous fluid. 

In this paper we discussed Ruban’s cosmological model in presence of bulk stress source with time 

dependent  -term in the framework of general theory of relativity. This paper is organized as follows: In 

section-2 we have derive the field equations, section-3 deals with the solution of field equations in presence of 

viscous fluid. Some particular and special cases are discussed in Section-4 and Section-5.The last section 

contains concluding remark. 

 

II. The Metric And Field Equations 
Let us consider Ruban’s line element[20] 
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And  k  is the curvature parameter of the homogeneous  2-spaces t  and x constants. 

The functions Q and R are free and will be determined by the Einstein field equations (EFE) with cosmological 

constant. 
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iR  is the Ricci tensor; ij
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is the Ricci scalar; and 
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iT is the  energy momentum tensor of 

viscous fluid given by  
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Here  ,, p and    are the energy density, pressure, coefficient of shear and bulk viscosities respectively.The 

semicolon (;) indicates covariant differentiation. The shear and bulk viscosity and   are positive and may be 

either constant or function of time or energy such as  
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 where a and b are constant. iv   is the flow vector satisfying the relations 
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we choose the co ordinates to be commoving, so that 
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The field equations (3) for the metric (1) with matter distribution (4) yield 
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where the over head dot( .) at the symbol Q and R means time derivative. 

The spatial volume for the model (1) is given by 
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The scalar expansion , and shear scalar  are define by  
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III. Solution Of Field Equations 
The field equations (7)-(9) are system of three equations with seven unknowns parameters 

 ,,,,, pQR and  . For complete determinacy of the system, extra conditions are needed. First we assume 

a relation in metric potential as  

     
nxRQ )(

                                                                                                                         (13) 

 

and secondly we assume that the coefficient of shear viscosity is proportional to the scale of expansion,  

i.e.                                                      ,                                                                           (14) 

 

 where n  is constant. 

equation  (7) and (8) leads to 
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Condition (14) leads to 

  

















R

R

Q

Q
l

..

2    ,                                                                                                                 (16) 

 

where  l is proportionality constant. 

equation (15) together with (13) and (16) yield  
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From equation (21) we obtain 
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where   is the constant of integration.  

After a suitable transformation of co ordinates, the metric (1) reduces to the form 
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where TR   

The pressure and density for the model (23) are given by 
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For the specification of , we assume that the fluid obeys an equation of state of the form 
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 where )10(   is constant. 

Thus, given )(t we can solve for the cosmological parameters. In most of the investigations involving bulk 

viscosity is assumed to be a simple power function of the energy density (Pavon, [40]; Maartens,[41]; Zimdahl, 

[42] ) 
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where 0 and m are constant. If 1m equation (27) may correspond to a radiative fluid  
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3.1.Model I: When )(t is constant 

When 0m , equation (27) reduces to   0)(  t constant. Hence in this case equation (28) with the use of 

(25) and (26), leads to 
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Eliminating )(t between (25) and (29), we obtain
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3.2. Model II : When  )(t  

When 1m , equation (27) reduces to  0)( t , hence in this case equation (28) with the use of (25) and 

(26), leads to   
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Eliminating )(t between (25) and (31),we obtain

 



















 )1(220
)1(

)2()1(

1

aTTna

k
n




 

       







 












 



























 )1(222)1(2221

)12()122(1

)1(

)12(

)1( aaa T

n

T

k
K

T

an

Tan

kn

Tan

k
K



                 (32) 

 

From equations (30) and (32), we observe that when 0a  the  time dependent  -term is a decreasing function 

of time and approaches a small value in the present epoch. 

Some physical aspects of the models.  

With regards to the kinematical properties of the velocity vector 
iv in metric (23) the scalar expansion )( and 

shear scalar )( of the fluid are given by 
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IV. Particular Models 

If we set 2n  then the geometry of space time (23) reduces to the form                                           
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where  is an integrating constant. 

The pressure and density of the model (35) are given by 
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4.1.Model- I : When )(t is constant 

When 0m , equation (27) reduces to   0)(  t constant. Hence in this case equation (36) with the use of 

(37) and (26), leads to 
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Eliminating )(t between (37) and (38), we obtain 
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Eliminating )(t between (37) and (40),we obtain 
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From equations (39) and (41), we observe that the  time dependent  -term is a decreasing function of time and 

approaches a small value in the present epoch. 

 

Some physical aspects of the models.  

With regards to the kinematical properties of the velocity vector iv in metric (23) the scalar expansion 

)( and shear scalar )( of the fluid are given by 
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V. Special Models 

If we set 2n and 
32

1
l , equation (22) leads to 

 

dt
kR

RdR


 2
                                                                                                                  (44)  

 

 which on integration gives 

  bktR  22
   ,                                                                                                                 (45) 

 

where )(
1 2

1  b
k

b and 1b is an integrating constant, hence we obtain 

  
)( 2222 bktxRxQ   .                                                                                                 (46)  

 

Using the transformations 

YyXxbktT  ,,2
 

the metric (1) takes the form 
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The pressure and density for the model (47) are given by 
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and  
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5.1.Model -I :When )(t is constant 

When 0m , equation (27) reduces to   0)(  t constant. Hence in this case equation (48) with the use of 

(26) and (49), leads to 
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Eliminating )(t between (49) and (50), we obtain
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5.2. Model- II: When  )(t  

When 1m , equation (27) reduces to  0)( t , hence in this case equation (48)  

with the use of (26) and (49), leads to   
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Eliminating )(t between (51) and (52), we obtain 
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(53) 

 

From equations (51) and (53), we observe that the time dependent  -term is a decreasing function of time and 

approaches a small value in the present epoch. 

 

Some physical aspects of the models.  

With regards to the kinematical properties of the velocity vector 
iv in metric (23) the scalar expansion 

)( and shear scalar )( of the fluid are given by 
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VI. Conclusion 

In this paper, we have obtained Ruban’s cosmological model in the presence of bulk stress source with 

time dependent  -term. In all these models we observe that they do not approach isotropy for large value of 

time T .For simplicity fluid obey an equation of state of the form p and bulk viscosity is assume to be a 

simple power function of energy density given by 
mt  )( . 

The time dependent  -term in all models are decreasing function of time and they all approaches 

small positive value as time in progress(i.e. present epoch).It is observe that  is decreasing function of T  and 

approaches to zero as T  also in all models energy density and pressure tends to zero as T and 
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0



.The model is not isotropy for large value ofT .The model is expanding, shearing and non rotating and 

has no initial singularity for   𝑘 =  −1, 0, +1.  
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