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I. Introduction 

Let F be the )(qGF , the Galois field with q elements. An ],[ kn linear code over )(qGF is a 

k dimensional subspace of 
nF , the space of all n tuples with components from F . Since a linear code is a 

vector sub-space it can be given by a basis. The matrix whose rows are the basis vectors is called a generator 

matrix. For an acquaintance with coding theory at a basic level the reader may please consult ]3,2,1[ .  

A very important concept in coding is the weight of a vector v . By definition, this is the number of non-zero 

components v  has and is denoted by ).(vwt  The minimum weight of a code, denoted by ,d is the weight of a 

non-zero vector of smallest weight in the code. A 

 well-known theorem says that if d is the minimum weight of a code C , then C  can correct 






 


2

1d
t  or 

fewer errors, and conversely. An ],[ kn linear code with minimum weight d  is often called an ],,[ dkn code.  

 

Two linear codes over )(qGF are called equivalent if one can be obtained from the other by a combination of 

operations of the following types. 

(a) permutation of the positions of the code; 

(b) multiplication of the symbols appearing in a fixed position by a non-zero scalar. 

It is well known [2] that two nk   matrices generate equivalent linear ],[ kn codes over )(qGF if one matrix 

can be obtained from the other by a sequence of operations of the following types. 
(1) permutation of the rows; 

(2) multiplication of a row by a non-zero scalar; 

(3) addition of a scalar multiple of one row to another; 

(4) permutation of the columns; 

(5) multiplication of any column by a non-zero scalar. 

It is also worth knowing [2] that if G is a generator matrix of an ],[ kn code, then by performing operations of 

types (1), (2), (3), (4) and (5), G can be transformed to standard form 

]|[ AI k , 

where kI is the kk  identity matrix, A is the )( knk  matrix  

 

II. Existence of a [5, 3] Error Correcting Linear Code over )(qGF  if 4q  

We begin with an existence theorem. 

 

Theorem (2.1). Let )(qGF be a field of order q where 4q . Then there do always exist an one error 

correcting ]3,5[ code over )(qGF .  

Proof. Let  
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be a generator matrix of a ]3,5[ code over )(qGF , 4q where )(qGFaij   for each i and 

,j ,31  i 21  j and 0ija . 

One then obtains the following equivalence diagram where ir and ic denote the 
thi row and 

thi column 

respectively. 
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Since 4q , exist nonzero )(, qGFyx  such that x,1 and y are all distinct. Then no two columns of the 

parity check matrix 
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are dependent and exist 3  columns of H  
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which are dependent. Hence by a well known theorem [2] the minimum weight of the code generated by G or 

M is .3 ■ 

Thus there exists an one error correcting ]3,5[  linear code over )7(GF . 

 

III. Equivalence of One Error Correcting ]3,5[  Linear Codes over )7(GF  

Let  
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be the generator matrix of a ]3,5[  linear code over )7(GF . If the code is to be error correcting, the 

minimum weight d should be at least 3 . Hence 0ija for each i and ,j ,31  i 21  j . Then as in 

Theorem (2.1) above, M can be shown to be equivalent to  
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Notice that x  in G  above can’t be 1 , as in that case the first two rows of G if subtracted will produce 

a codeword of weight 2  and the code generated by G will not be error-correcting. On the other hand x  and y  

can’t be same, as then the last two rows of G if subtracted will give a codeword of weight 2 . Moreover the 

diagram below 
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Shows that the codes generated by 

A









0

0

1

0

1

0

1

0

0

1

1

1









y

x

1

and B









0

0

1

0

1

0

1

0

0

1

1

1









x

y

1

 

are equivalent. Thus from among the36 possible choices for 
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producing ten in-equivalent codes.  

Next we will show that contrary to our expectation the codes generated by 21,GG ,..., 10G are all equivalent.  
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The diagram below shows a few cases of equivalence: 
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Now we will show that 321 ,, GGG and 4G are equivalent.  
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Thus we have obtained the following theorem. 

 

Theorem(3.1) An 1 error correcting ]3,5[ code over )7(GF is equivalent to the code with the following 

generator matrix 1G where 
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IV. Weight Distribution of a [5, 3] Linear Code over GF(7) 
We begin with the following theorem [3]. 

 

Theorem (4.1) Let C be a ],,[ dkn MDS code over )(qGF with 1 knd . Then 
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Applying this theorem on a [5,3,3] code C we obtain, ,10 A 021  AA , 
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It is well-known [1] that if C is an MDS code, so is 
C . Hence the minimum distance of 

C is 

4125  . Then by Theorem (3.1) above, ,10 A 0321  AAA , 
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Thus we have the following theorem. 

 

Theorem(4.2). A ]3,3,5[  code C over )7(GF has the following weight distribution. 

 

    Weight   Number of Words 

0    1  

3    60 

4    120 

5    162 

 

On the other hand, a ]4,2,5[ code 
C has the following weight distribution. 

   Weight   Number of Words 

0    1  

4    30 

5    18 
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