
IOSR Journal of Mathematics (IOSR-JM)  
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 5 Ver. II (Sep. - Oct. 2015), PP 43-63 

www.iosrjournals.org 

DOI: 10.9790/5728-11524363                                 www.iosrjournals.org                                                 43 | Page 

 

Application of Pontryagin’s Maximum Principles and Runge-

Kutta Methods in Optimal Control Problems 
                                      

Oruh, B. I. And Agwu, E. U. 
1,2Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria 

 

Abstract: In this paper, we examine the application of Pontryagin’s maximum principles and Runge-Kutta 

methods in finding solutions to optimal control problems. We formulated optimal control problems from 

Geometry, Economics and physics. We employed the Pontryagin’s maximum principles in obtaining the 

analytical solutions to the optimal control problems. We further tested the numerical approach to these optimal 

control problems using Runge-Kutta methods. The results show that the Runge-Kutta method produced results 

that are comparable to analytic solutions. Therefore, we concluded that Runge-Kutta method gives error that is 

negligible.  

 

I. Introduction 
 There are choices available for decision making and the ability to pick the best, perfect and desirable 

way out of the possible alternatives or variables gives us the optimal control. [3], before commencing a search 

for such an optimal solution, the job must be well-defined; and must possessed the following features 

(i) The nature of the system to be controlled, 

(ii) The nature of the system constraints and possible alternatives,  

(iii) The task to be accomplished, 

(iv) The criteria for judging optimal performance.  

 The optimal control theory is very useful in the following fields, geometry, economics and physics. In 

geometry, it is interesting to see that by optimal control theory, the geometrical problems such as the problem of 

finding the shortest path from a given point A to another point B will be solved.   

Continuous  optimal  control  models  provide  a powerful  tool  for  understanding  the  behavior  of 

production/ inventory system where dynamic aspect plays an important role.  

Some optimal control problems that are non-linear do not have solutions analytically. In fact, mostly all 

problems arise from real life are non- linear. As a result, it is necessary to employ numerical methods to solve 

optimal control problems. There are so many numerical techniques to optimal control problems like [3], [7], 

[10], recently contributed to the theory of optimal control. [3] used modified gradient method while [7] 

compared the Forward Backward Sweep, the Shooter Method, and an Optimization Method using the MATLAB 

Optimization Tool Box whereas [10] compared Euler, Trapezoidal and Runge-Kutta using Forward Backward 

Sweep method (FBSM). Looking at the work done by [7] and [10], we find out that both of them were not 

interested to compare their numerical approximations with analytic solutions and were only interested on 

problems with final value of the adjoint variable. We intend to give attention to problems with initial value of 

the state and adjoint variables and then generate the numerical approximations of both the state and adjoint 

variables forward instead of forward- backward using Runge-Kutta approach. 

This work is concerned with the solution of the following three types of problems: 

(a) Shortest distance between two points. These type of problems are typically of the form: 

                                 Minimize 

0

1
2 2(1 )

T

t

u d t
                          1.1            

 

      subject to x u



  

       and 0 0
( ) , ( )x t x T fr e e  [5] 

(b) The cocoa problem. This particular problem is of the form: 

            Maximize     

2

2 2

0

( 2 )P u xu x d t                 1.2             
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            subject to         x u



    

                    and           (0 ) 1, (0 ) 0x u   

(c)  Pendulum problem: this type of problem requires the description of the mechanical system of a point mass 

m constrained by a light wire of length 𝑙 to swing in an arc. It is of the form:   

 

              Minimize           

2

1

2 21
(1 c o s )

2

t

t

S m l u m g l d t
 

   
 
                  1.3 

  subject to u



  

  and θ t1 =  θ1            θ(T) free.  

 

II. Preliminaries 
2.1.  Derivation Of Euler- Langrage Equation  

           Consider the functional  

                                             

2

1

'
[ ] ( , , )

t

t

S y F t y y d t    2.1.1     

                                 

2

1

[ ] ( , , )
t

t

W y F t y u d t                               2.1.1a 

 Where in equation   2.1.1   F  is a differentiable function of the three variables F =  t, y, y′   and 

F = F(t, y, u) in equation(2.1.1a). 

Suppose y t  is any curve passing through the two points P t1 , y1  and   Q t2 , y2 . 

 
 

 Let the original shape of the curve be y = y(t). Suppose there is a small variation due to certain 

disturbance, the curve changes shape to y* t  = y(t) +aq(t), where „a‟ is a small parameter,q(t) is an arbitrary 

function, y*(t) is the new curve, q(t1) = 0  and  q(t2) = 0  , implies no variation in  t. 
This means that 

                        y ∗ ′(t)  =  y ′(t) + aq′(t)  

 Let the new functional denoted as S*[ y] 
      

              =>    S∗[y]  =   F[ t, y + aq, y′ + aq′ 

t2

t1

  ]  dt                                      2.1.2              

 Also let the variation on S denoted as δs, 

=> δs = S∗ − S =   F  t, y + aq, y ′ +  aq′ − F t, y, y ′  dt      

t2

t1

   2.1.3 

 Since  t is fixed, it implies that  F varied in two variables y and y‟. We recall that Taylor series of two variables 

is given by: 
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F[t + k, y + l] =  F(t, y)  +   (k
∂

∂t
    +   l

∂

∂y
 )(F(t, y)  +    (k

∂

∂t
 +  l

∂

∂y
 )2 

F(t, y)

2!
 + …    

Taking the first order variation, equation ( 2.1.3) becomes                                                 

 

δs =  a  (q
∂F

∂y
+ q′

∂F

∂y ′
)dt

t2

t1

                                                                     2.1.4                  

                 Where,       k = aq, l = aq′  

[4].For S[y] to be stationary (maximum or minimum),  
ds

da
∣a=0= 0 

 We recall that, 

                

              lim
a⟶0

∂s

∂a
=

ds

da
∣a=0= 0 

                                                 

=>     q
∂F

∂t
+ q′

∂F

∂y′
 dt = 0

t2

t1

 

                       

=>  q
∂F

∂y
dt

t2

t1

+  q′
∂F

∂y′
dt = 0

t2

t1

 

  Integrating the second integral by part we have,  

                         

 q
∂F

∂y
dt

t2

t1

+ q
∂F

∂y ′
−  q

d

 dt
 
∂F

∂y ′
 dt = 0

t2

t1

 

 Thus,           

                        
∂F

∂y
−

d

 dt
 
∂F

∂y ′
  q(t)dt

t2

t1 

= 0                                                                                             2.1.5 

 Since q(t) is an arbitrary function, the equation can only be satisfied if 

        

                            
∂F

∂y
−

d

 dt
 
∂F

∂y ′
  dt = 0

t2

t1 

                                                                                                       2.1.6 

 Differentiating both sides equation (2.1.6)  becomes      

                                                                                                                                

                             0
F d F

y d t
y



 
 

  
 
    2.1.7       

 

If F = F t, y, u ,  then (2.1.7) becomes     

                                   0
F d F

u d t
u



  
  

 
 

                                                          2 .1 .8  

Equations  2.1.7 and (2.1.8)  are known as Euler-Lagrange equations. 

 

2.2. Pontryagin’s Maximum Principle (Pmp) 
 This is a powerful method for the computation of optimal controls. It gives the fundamental necessary 

conditions for a controlled trajectory ( , )x u  to be optimal. For the solution of optimal control problems, the 

principal method resolves a set of necessary conditions that an optimal control and the consistent state equation 

must satisfy. The necessary conditions are derived from Hamiltonian, 𝐻, which is define as  
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                       0 0
( , , , , ) ( , , ) ( , , )H t x u f t x u g t x u      

Pontryagin’s maximum principle states that: let 
* *

( , )x u  be a controlled trajectory defined over the interval 

0
[ , ]t T with 

*
u  piecewise continuous. If 

* *
( , )x u  is optimal, then there exist a constant 

0
0  and the adjoint 

( )t  such that the following conditions are satisfied 

* *

0 0
( , , , , ) ( , , , , )H t x u H t x u     for all t [0, T] 

 

0
H

u




                               (Optimality condition)

 

H
x



 



                             (State equation) 

H

x


 
 


                           (Adjoint equation)               (2.2.1) 

                      
( )T free                          (Transversality condition). [5]. 

 

2.3. Derivation Of Pontryagin’s Maximum Principle  

 Consider the basic optimal control problem of the form 

                                              

0

( ) ( ( ) , ( ) , )

T

t

J u f x t u t t d t 
                   

2 .3 .1  

subject to                           

                                                  ( ) ( ( ) , ( ) , ) ,
i i

x t g x t u t t




       

1, 2 , ...,i n
    

2 .3 .2

 where we wish to find the optimal control vector u  that minimizes equation ( 2 .3 .1) .  

In (2.3.1), there are three variables: time t , the state variable , x  and the control variable u . We now introduce 

a new variable, known as adjoint variable and denoted by  (t). Like the Lagrange multiplier, the adjoint 

variable is the shadow price of the state variable. The adjoint variable is introduced into the optimal control 

problem by a Hamiltonian function, 
0 0

( , , , , ) ( , , ) ( ) ( , , )H t x u f t x u t g t x u     . Where H  denotes 

the Hamiltonian and is a function of five variables 
0

, , , ,t x u   . 

[11], for the ith  constraint equation in ( 2 .3 .1) we form an augmented functional 
*

J as  

                                                
*

10

( )

T n

i i i

i

J f g x d t





 
   

 
                     2 .3 .3  

   where the integrand          

                                           
1

( )

n

i i i

i

F f g x





                                      2 .3 .3a  

The Hamiltonian functional, H  is defined as 
 

                                               
1

n

i i

i

H f g



                                             2 .3 .4  

such that  

                                           
*

10

T n

i i

i

J H x d t





 
  

 
                                     2 .3 .5  

Now the new integrand ( , , )F F x u t  becomes 
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1

n

ii

i

F H x





                                                2 .3 .6  

We recall Euler-Lagrange equations 

                                  0 , 1, 2 , .. . ,

i
i

F d F
i n

x d t
x



 
 

   
 
 

           2 .3 .7  

                                  0 , 1, 2 , ...,

j
j

F d F
j m

u d t
u



 
  

  
   
 

       2 .3 .8  

If we relate equations (2 .3 .3 ), ( 2 .3 .7 ), ( 2 .3 .8 )a , we have 

                                       
1

0

n

i

i i

ii i

gf

x x
 






  

 
                                          2 .3 .7 a  

                                        
1

0

n

i

i

ii i

gf

u u





 

 
                                               2 .3 .8a    

 If we relate equations    ( 2 .3 .4 ) , ( 2 .3 .7 )a  , ( 2 .3 .8 )a
,  

we have
 

                                    , 1, 2 , . . . ,i

i

H
i n

x



  


                                         ( 2 .3 .9 )  

                                      0 , 1, 2 , . . . ,

i

H
j m

u


 


                                      ( 2 .3 .1 0 )

 

where equation (2.3.9) is known as adjoint equation. 

The optimum solutions for , ,x u  can be obtain by equation (2 .3 .2 ), ( 2 .3 .9 ), ( 2 .3 .1 0 ) . 

We can now state the various components of the maximum principle for problem (2.3.1) as follows: 
* *

0 0
( , , , , ) ( , , , , )H t x u H t x u          for all t [0, T] 

 

0
H

u




                               (Optimality condition)

 

 

H
x



 



                             (State equation) 

H

x


 
 


                           (Adjoint equation)               (2.3.11) 

                      
( )T free                          (Transversality condition). 

Condition one and two in (2.3.11) state that at every time t  the value of ( )u t , the optimal control, must be 

chosen so as to maximize the value of the Hamiltonian over all admissible values of ( )u t . Condition three and 

four of the maximum principle, ,
H H

x a n d
y




  
  

 
 give us two equations of motion, referred to as the 

Hamiltonian systems for the given problem. Condition five, ( )T free  is the transversality condition 

appropriate for the free terminal state problem only.  
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2.4   Hamilton’s Principle In Mechanics 

  The evolution of many physical systems involved the minimization of certain physical quantities. The 

minimization approach to physical systems was formalized in detail by Hamilton, and resulted in Hamilton‟s 

principle which states that. 

        “Of all the possible paths along which a dynamical systems may move from one point to another within 

a specified time interval, the actual path is that which minimizes the time integral of the difference between the 

kinetic and potential energies” [9].            

Expressing this principle in terms of the calculus of variations, we have   

                    

𝑆 = 𝑚𝑖𝑛  𝑇 − 𝑉 𝑑𝑡
𝑡2

𝑡1

 

Where S is the action to be minimized, T is the kinetic energy, V is the potential energy and the quantity 

(𝑇 − 𝑉) is called the Lagrangian 𝐿. [13]. Applying the necessary condition to minimize the action, the Euler-

Lagrange equations become 

                                                0
L d L

x d t
x



  
  

 
 

 

                                           

0
L d L

u d t
u



  
  

 
 

 

 Hence, in any dynamical system, we will first investigate the mechanical energy of the system and set 

up the Hamiltonian for the system. Then applying  Hamiltonian equations, we will obtain an equation describing 

the motion of the system instead of using Newton‟s approach which will be more difficult to handle because it 

requires the total force on the system [12].   

 

2.5   Procedures To Analytical Solution 
  Form the Hamiltonian for the problem. 

   Write the adjoint differential equation, transversality boundary condition, and the optimality condition in 

terms of three unknowns, 𝑢∗, 𝑥∗, and 𝜆. 

   Use the optimality equation 0
H

u




  

 to solve for 𝑢∗ in terms of 𝑥∗ and 𝜆. 

  Solve the two differential equations for 𝑥∗ and 𝜆 with two boundary conditions. 

  After finding the optimal state and adjoint, solve for the optimal control using the formula derived by third 

procedure. 

 

2.6. Runge- Kutta method of Order 4 (RK4) 

 This method is developed for solving ODE numerically and to avoid computation of derivatives. Since 

optimal control problems are described by a set of ODE, we shall use this technique to obtain the numerical 

approximations to optimal control problems. 

 

2.6.1. Derivation Of Runge-Kutta Method Of Order 4, 

Consider an ODE of the form 

                                           ( , )X f t x




                     2.6.1a

 

In general form, RK4 is stated as 

                                             

 1
, ,

i i i i
x x h t x h


 

      2.6.1b
 

 Where   1 1 2 2 3 3 4 4
, , ...

i i n n
t x h a k a k a k a k a k       , while , 1, 2 , ... ,

i
a i n  are constants 

and , 1, 2 , ... ,
i

k i n  are functional relation given by 
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 

 

 

1

2 1 1 1 1

3 2 2 1 1 2 2 2

1 1 ,1 1 2 , 2 2 1 , 1 1

( , )

,

,

.

.

.

, . . .

i i

i i

i i

n i n i n n n n n

k f t x

k f t h x k h

k f t h x k h k h

k f t h x k h k h k h

 

  

   
     



  

   

     

 

 

Note that  is called increment function. 

 Let 
2 2 3

1 2 3
, 2 , 3 3

t x t t tx x x t t t t tx tx x x x x
F f f f F f f f f f F f f f f f f f           

Now differentiating the equation (2.6.1a), we have 

1

2

2 1

( ) 2 3 2 2

2

3 2 1 1

2 ( )

3 3 ( 2 ) 3( )( ) ( )

3 ( )

t x t x

tt tx x x x t x x

iv

tt t t tx tx x x x x x tt tx x x t x tx x x x t x

x tx x x x

x f f x f f f F

x f ff f f f f f f F f F

x f ff f f f f f f f f f f f f f f f f f f f f

F f F F f ff f F

  

  

    

      

           

    

   

Now the Taylor series con be written as  
2 3 4

2

1 1 2 1 3 2 1 1
( ) 3 ( ) ...

2 6 2 4
i i x x tx x x x

h h h
x x h f F F f F F f F F f ff f F


           
  2.6.1c 

And the functional at n=4 is given by  

 

 

 

1

2 1 1 1 1

3 2 2 1 1 2 2 2

4 3 3 ,1 1 3 , 2 2 3 ,3 3

( , )

,

,

,

i i

i i

i i

i i

k f t x

k f t h x k h

k f t h x k h k h

k f t h x k h k h k h

 

  

   



  

   

    

 

If we substitute into (2.6.1b), we have 

     1 1 2 1 1 1 1 3 2 2 1 1 2 2 2 4 3 3 ,1 1 3 , 2 2 3 ,3 3
( , ) , , ,

i i i i i i i i i i
x x h a f t x a f t h x k h a f t h x k h k h a f t h x k h k h k h        


              
 

 2.6.1d 

If we compare (2.6.1c) with (2.6.1d) and the classical Runge-Kutta vales for the constants 

1 2 3

1 1 2 1 2 2 3 1 3 2 3 3

1 2 3 4

1 1
, , 1

2 2

1 1
, 0 , , 0 , 0 , 1

2 2

1 1 1 1
, , ,

6 3 3 6
a a a a

  

     

  

     

   

 

[6]. Therefore, the RK4 becomes 

 

 

1

2 1

3 2

4 3

1 1 2 3 4

( , )

,
2 2

,
2 2

,

2 2 , 0 ,1, 2 , 3 ...
6

i i

i i

i i

i i

i i

k f t x

h h
k f t x k

h h
k f t x k

k f t h x h k

h
x x k k k k i N





 
   

 

 
   

 

  

     
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The algorithm for Classical Runge-Kutta method of order four for ( , , )X f t x u



  is given by
 

 

 

 

1

2 1

3 2

4 3

1 1 2 3 4

( , , )

, ,
2 2 2

, ,
2 2 2

, ,

2 2 , 0 ,1, 2 , 3 ...
6

i i i

i i i

i i i

i i i

i i

k f t x u

h h h
k f t x k u

h h h
k f t x k u

k f t h x h k u h

h
x x k k k k i N





 
    

 

 
    

 

   

                                                 2.6.1e

 

The algorithm for Classical Runge-Kutta method of order four for ( , , , )f t x u 


  is given by
 

1 ,

2 1

3 2

( , , )

, , ,
2 2 2 2

, , ,
2 2 2 2

i i i i

i i i i

i i i i

k f t x u

h h h h
k f t k u x

h h h h
k f t k u x









 
     

 

 
     

                                2.6.1f

 

 

 

4 3

1 1 2 3 4

, , ,

2 2 , 1, 2 , 3 ...
6

i i i i

i i

k f t h h k u h x h

h
k k k k i N



 


    

     
 

 1 1 2 3 4
2 2 , 0 ,1, 2 , 3 ...

6
i i

h
x x k k k k i N


     

 

is the iterative method for generating the next value for

x ; it is calculated using the current value of i
x  plus the weighted average of four values of 

, 1, 2 .. .4
j

K j  . Where , 1, 2 .. .4
j

K j   are functional relations. Note that h is the step size. 

 

III. Results 
3.1. Analytical Solutions   

3.1a Geometrical Problems; Shortest Distance Between Two Points 

PROBLEM: What curve joining two different points  P and Q  has the shortest length? [8]. 

SOLUTION:  

Let the curve be y = y(t) and the two points be P[t1 , y1] and Q[t2 , y2]  
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where,  

,r t i y j

  

     ( ) ( ) ( ) ,r s t s i y s j

  

    ( ) ,d r d t i d y j

  

    
2 2

( ) ( )d s d r d t d y



    

 

                                                          
2

2 2

2

( )
( ) ( )

( )

d t
d t d y

d t
   

                                                            
2

1 ( )y d t

 
  

 

 

 

  Where s  is arc length parameter and d s  small element of arc length from P The distance between 

the two points is “L” 

                                                   
2

1

' 2
1 ( )

t

t

L d s y d t            3.1a.1 

If we let y = u be the control variable, (3.1a. 1) can be expressed as 

    

L =  { 1 + u2
t2

t1

}dt                                                            3.1a. 2 

Thus, the shortest-path problem is 

  Minimize 

0

1
2 2(1 )

T

t

u d t
                                               

3 .1 .3a  

  subject to y u



  

  and y t0 = y0 ,             y(T) free 

where,            F =   1 + u2 
 

The Hamiltonian for the problem is, 

  

1
2 2(1 )H u u  

                                                  
3 .1 .4a  

Recall that the necessary condition for optimal control is given by 

                                   
H

y



 



                                                

3 .1 .5a  

                                     0
H

u





                                                 3 .1 .6a  
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 (3 .1 .5 ) & (3 .1 .6 )a a   

                              

1

2 2

1

2 2

1

2 2

2 2

2

2 2 2

2 2 2

2

0

1
(1 ) 2 0

2

(1 ) 0

(1 )

1

1

(1 )

(1 )

( )

1

u u

u u

u u

u
u

u u

u

u t













 















  

   

   

 


  

  

  



 

From,                                  
0 ,

( )t c











 

But, 

                                   

2

2

1

( )

1

y u

y

y t t k















  



   



              

                  

If we substitute the value of c  , we have the control variable as 

                                             
2

( )

1

c
u t

c

 


 

and the corresponding state variable is  

                                             
2

( )

1

c
y t t k

c

  



 

 

3.1b.     The Economic Problems; Cocoa Production Problem 

 Problem: a farmer who owns a cocoa plantation and has a problem to decide at what rate to produce 

cocoa from his plantation. He is meant to manage the plantation from date 0 to a period of 2years. At date 0,  

there is 
0

x  cocoa in the farm, and the instantaneous stock of cocoa ( )x t  declines at the rate the farmer 

produces ( )u t . The plantation owner produces cocoa at cost 
2

x  and sells 𝑢2 + 2𝑥𝑢 of cocoa at constant 

price $1. He does not value the cocoa remaining in the farm at the end of the period (there is no scrap value). At 

what rate of production in time 𝑢 𝑡  will maximize his profits over the period of ownership with no discount 

time. 

SOLUTION: Let 𝑃 represents the farmer‟s profits, if he produces cocoa at cost  𝑥2 and sells 𝑢2 + 2𝑥𝑢 at 

constant price $1 then, 𝑃 is given by 

                                     𝑃 =  $1 (𝑢2 + 2𝑥𝑢) − 𝑥2                                                3.1𝑏. 1 
The total profit over the period of ownership is  
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2

2 2

0

( 2 )P u xu x d t  
 

3 .1 .2b
 

 Then the cost functional is given by      

                Maximizes     

2

2 2

0

( 2 )P u xu x d t                                   3 .1 .3b  

                                        subject to         x u



    

                     and           (0 ) 1, (0 ) 0x x



    

Taking the Hamiltonian equation, we have 

            
2 2

2H f g u x u x u                        3 .1 .4b  

Recall that the necessary condition for optimal control is given by 

                                   

H

y



 



                                                              

3 .1 .5b  

                                     0
H

u





                                                               3 .1 .6b  

 (3 .1 .5 ) & (3 .1 .6 )b b   

                              2 2u x 



  

       

3 .1 .7b

                                2 2 0u x                        3 .1 .8b  

If we differentiate equation (4.2a.8), we have  

                                

2 2

2 2 2 2

u x

u x u x



  

 

 

    

                           

 

                                  u x u x

 

                                                      3 .1 .9b  

But, x u



  , equation (3.1b.9) becomes 

                              

0

x x x x

x x

   

 

   

  

 

If we take the auxiliary equation, we have 

                                        

2

2

1 0

1

( ) c o s s in

r

r

r i

x t A t B t

 

  

  

  

  

Where A, B are constants applying the initial conditions, we have 
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                                          

 

.

.

(0 ) 1 c o s 0 s in 0

1,

( ) s in c o s

(0 ) 0 s in 0 c o s 0

0

x A B

A

x t A t B t

x A B

B

  

 

  

   

 

 

We recall that, from equation (3.1b.3) we have  

 
.

( ) s inx u u t t       

                                                 ( ) s inu t A t   

Substituting the values our constants, the control becomes 

                               ( ) s inu t t  

The corresponding state trajectory is given by 

                             ( ) co sx t t  

 

3.1c. Applications To Physical Principles 

3.1c.1 The Pendulum Problem. 

  PROBLEM: Describe the mechanical system of a point mass 𝑚 constrained by a light wire of length 𝑙 
to swing in an arc. 

SOLUTION: 

Let figure (3.1𝑐. 1) be the diagrammatical illustration of the system. 

 

 
 

Let 𝑠 be the displacement of the bob from its mean position. 

Let 𝑂𝐴    = 𝑙 be the length of the light wire before swing. 

Let 𝑂𝐵     be the length after swing. 
                          

=>   𝑂𝐴    = 𝑂𝐵    = 𝑙 
Let the angle 𝜃 (in radian) be the angle made by 𝑂𝐵     and the vertical  𝑂𝐴     . 

From the diagram above, at point 𝐴 the potential energy 𝑉 = 0 and the kinectic energy 𝑇 = 𝑇, but at point 𝐵, 
kinetic energy 𝑇 = 0 and potential energy 𝑉 = 𝑉 

In order to set up the Lagrangian for the system, we first define the work done by the system as  

                      

𝑊 =  𝐹. 𝑑𝑟,  

  where 𝑟 is the position and 𝐹 is the force  

                    

  =>   𝑚
𝑑𝑣

𝑑𝑡
. 𝑑𝑟  = 𝑚  

𝑑𝑟

𝑑𝑡

𝑣

0

. 𝑑𝑣 
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  =   𝑚 𝑣. 𝑑𝑣 =  
1

2

𝑣

0

𝑚𝑣2 

Since the energy of the particle is its capacity to do work, we have 

Kinetic energy  

𝑇 =
1

2
𝑚𝑣2                                        3.1𝑐. 1𝑎        

                                       

Similarly potential energy 

𝑉 = 𝑚𝑔ℎ                                        3.1𝑐. 1𝑏 
The circular measure of an angle in radian is equal to the ratio of the arc which the angle subtends when at the 

centre of the circle to the radius of that circle, [1]. That is  

                                               

𝜃 =
𝑎𝑟𝑐𝐴𝐵

𝑂𝐴    =   
𝑆

𝑙
 

                                                   

= > 𝑆 = 𝑙𝜃 
The velocity is                    

   
𝑑𝑠

𝑑𝑠
=

𝑑(𝑙𝜃)

𝑑𝑡
=

𝑙𝑑𝜃

𝑑𝑡
= 𝑙𝜃′ 

This implies that the kinetic energy becomes 

                                                            𝑇 =  
1

2
𝑚(𝑙𝜃′)2 =

1

2
𝑚𝑙2𝜃′2 

Also from the diagram above 

                                         

 𝑂𝐴     − 𝑂𝐶    = 𝐴𝐶    = ℎ 
  But, 

  

𝑂𝐴    = 𝑙,  𝑐𝑜𝑠 𝜃 =
𝑂𝐶    

𝑂𝐵    =  
𝑂𝐶    

𝑙
 

      

=>   𝑂𝐶    = 𝑙 𝑐𝑜𝑠 𝜃 

∴          𝑂𝐴    − 𝑂𝐶    = ℎ = 𝑙 − 𝑙 𝑐𝑜𝑠 𝜃 = 𝑙(1 − 𝑐𝑜𝑠 𝜃) 
Substitute into equation  3.1𝑐. 1𝑏 , we have potential energy  

 𝑉 = 𝑚𝑔(𝑙 − 𝑙 𝑐𝑜𝑠 𝜃) 
                                               

𝑉 = 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠 𝜃) 
Now that we have both kinetic energy and potential energy of the system, then we can define the Lagrangian L 

of system as L = kinetic energy – potential energy [12]. 

                                        

𝐿 =
1

2
𝑚𝑙2 2

( )



− 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠 𝜃) 

  

[2], using Hamilton principle, the action S becomes  

                                 

  𝑆 =   (
1

2

𝑡2

𝑡1

𝑚𝑙2 2
( )



− 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠 𝜃))𝑑𝑡              3.1𝑐. 1𝑐  

 

If we let 𝜃 = 𝑢 be the control variable, (4.1c.2.1c) can be expressed as 
    

  𝑆 =   (
1

2

𝑡2

𝑡1

𝑚𝑙2𝑢2 − 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠 𝜃))𝑑𝑡  

Thus, the pendulum problem is 

   

        Minimize  

  𝑆 =   (
1

2

𝑡2

𝑡1

𝑚𝑙2𝑢2 − 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠 𝜃))𝑑𝑡  
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  subject to 
.

u   

  and 𝜃 𝑡1 =   𝜃1           𝜃(𝑇) free 

where,            𝐹 =
1

2
𝑚𝑙2𝑢2 − 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠 𝜃)   

 

The Hamiltonian for the problem is, 

  𝐻 =
1

2
𝑚𝑙2𝑢2 − 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠 𝜃) + u  

Recall that the necessary condition for optimality is given by 

                                  

0

H

x

H

u




 








 

                              
2

s in

0

m g l

m l u

 





 

 

 

From,                                  

2

2

2

0 ,

s in

m l u

m l u

m l u m g l





 

 

 

 

    

 

But, 

                                   
2

2

s in 0

s in

s in 0 ...(3 .1 .1 )

u

u

m l m g l

m l m g l

g
c d

l





 

 

 



  

 

 

 



 

   

 

  

                              

The equation (3.1𝑐. 2.1𝑑) above constitutes the Newton‟s second law of motion which describes the 

motion of pendulum oscillation to arbitrary angles. 

Now solving for equation (3.1𝑐. 2.1𝑑) above, we have  
                   

𝜃 𝑡 = 𝐴 𝑐𝑜𝑠  
𝑔

𝑙
𝑡 + 𝐵 𝑠𝑖𝑛 

𝑔

𝑙
𝑡 

and  

𝑢 𝑡 = 𝜃 =  
𝑔

𝑙
{−𝐴 𝑠𝑖𝑛 

𝑔

𝑙
𝑡 + 𝐵 𝑐𝑜𝑠 

𝑔

𝑙
𝑡} 

 

where 𝐴 and 𝐵 are constants. 

                  If we let  𝑤 =  
𝑔

𝑙
 , we have  

𝜃 𝑡 = 𝐴 𝑐𝑜𝑠 𝑤 𝑡 + 𝐵 𝑠𝑖𝑛𝑤𝑡                                             3.1𝑐. 1𝑒 

𝑢 𝑡 = 𝑤{−𝐴 𝑐𝑜𝑠𝑤 𝑡 + 𝐵 𝑠𝑖𝑛 𝑤𝑡 }                         
Therefore the equation (3.1𝑐. 1𝑒) above shows that the system is a Harmonic oscillator (SHM). 

 

3.2. The Numerical Results.  
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Here, we want to apply the results we have in (2.6.1e) and (2.6.1f) to obtain the numerical 

approximations to problems (3.1a), (3.1b) and (3.1c). 

1.  the shortest-path problem: 

  Minimize 

5
1

2 2

0

(1 )u d t
                             

 

  subject to x u



  

  and 𝑥 0 = 2,             𝑥(𝑇) free 

where,            𝐹 =   1 + 𝑢2 
Taken the first four procedures in (2.5), we have         

                 

              

                              

2

0

, 1

1

0

, 2

i

i

i

u

x u x












  





 

 

 

Employing Runge-Kutta method of order 4, with initial guess of  

                                   

0

0

1

1

2

u





 

 

we have, 

1

2 1

3 2

( , , )

, ,
2 2 2 2

, ,
2 2 2 2

i i i i

i i i i

i i i i

k f t x u u

h h h h
k f t x k u u

h h h h
k f t x k u u

 

 
      

 

 
      

                                                   

 

 

   

 

4 3

1 1 2 3 4

1

, ,

2 2 2 2
6 6

6 3 , 0 ,1, 2 , 3 ... , (3 .2 .1 )
6

i i i i

i i i i i i i

i i i

k f t h x h k u h u h

h h
x x k k k k x u u h u h u h

h
x x u h i N a





     

            

     

Also, for iterative formula   

1 ,

2 1

3 2

( , , ) 0

, , , 0
2 2 2 2

, , , 0
2 2 2 2

i i i i

i i i i

i i i i
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k f t k u x

h h h h
k f t k u x
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
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 

 
      

 

 
      

                               

 

 
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4 3

1 1 2 3 4

1
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2 2
6

, 1, 2 , 3 ... , (3 .2 .1 )

i i i i
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h
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  

 





     

     

 
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The table below shows the results of problem 1
 

   h=0.1 

S/N Time u . x .   u .exact x .exact 

1 0 1 2 0.707107 1 2 

2 0.1 1 2.105 0.707107 1 2.1 

3 0.2 1 2.21 0.707107 1 2.2 

4 0.3 1 2.315 0.707107 1 2.3 

5 0.4 1 2.42 0.707107 1 2.4 

6 0.5 1 2.525 0.707107 1 2.5 

7 0.6 1 2.63 0.707107 1 2.6 

8 0.7 1 2.735 0.707107 1 2.7 

9 0.8 1 2.84 0.707107 1 2.8 

10 0.9 1 2.945 0.707107 1 2.9 

11 1 1 3.05 0.707107 1 3 

Table 1 

 
Fig. 3.2.a, optimal state and control values at h = 0.1 

 

(2). The cocoa problem: 

                        Maximizes     

2

2 2

0

( 2 )P u xu x d t                          
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Employing Runge-Kutta method of order 4, with initial guess of  
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The table below shows the numerical results to problem 2 

h=0.02 

S/N Time u  x    .u exact .x exact 

1 0 0 1 2 0 1 

2 0.02 0.0202 0.9998 2.04 0.019999 0.9998 

3 0.04 0.040396 0.999196 2.079184 0.039989 0.9992 

4 0.06 0.06058 0.998188 2.117536 0.059964 0.998201 

5 0.08 0.080744 0.996776 2.15504 0.079915 0.996802 

6 0.1 0.100879 0.994962 2.191682 0.099833 0.995004 

7 0.12 0.120978 0.992744 2.227445 0.119712 0.992809 

8 0.14 0.141033 0.990124 2.262316 0.139543 0.990216 

9 0.16 0.161036 0.987104 2.296279 0.159318 0.987227 

10 0.18 0.180978 0.983683 2.329322 0.17903 0.983844 

11 0.2 0.200852 0.979864 2.36143 0.198669 0.980067 
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12 0.22 0.220649 0.975646 2.392591 0.21823 0.975897 

13 0.24 0.240362 0.971034 2.422791 0.237703 0.971338 

14 0.26 0.259982 0.966026 2.452017 0.257081 0.96639 

15 0.28 0.279503 0.960627 2.480259 0.276356 0.961055 

16 0.3 0.298915 0.954837 2.507504 0.29552 0.955336 

17 0.32 0.318212 0.948658 2.533741 0.314567 0.949235 

18 0.34 0.337385 0.942094 2.558959 0.333487 0.942755 

19 0.36 0.356427 0.935146 2.583147 0.352274 0.935897 

20 0.38 0.37533 0.927818 2.606296 0.37092 0.928665 

21 0.4 0.394087 0.920111 2.628395 0.389418 0.921061 

Table 2 

 
Fig. 3.2.b. Optimal state and control values at h = 0.02 

 

(3) The pendulum problem: 
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  The table below shows the numerical approximations to problem 3.                                   

h=0.01 

 

S/N Time u .  .   u .exact  .exact 

1 0 2. 1 -2 2 1 

2 0.01 1.991563 1.02005 -1.99156 1.9899 1.019949667 

3 0.02 1.98302 1.040016 -1.98302 1.979601 1.03979734 

4 0.03 1.974375 1.059896 -1.97437 1.969105 1.059541034 

5 0.04 1.965631 1.07969 -1.96563 1.958411 1.079178775 

6 0.05 1.956794 1.099396 -1.95679 1.947521 1.098708599 

7 0.06 1.947866 1.119014 -1.94787 1.936437 1.118128553 

8 0.07 1.938851 1.138542 -1.93885 1.925159 1.137436695 

9 0.08 1.929753 1.157981 -1.92975 1.913689 1.156631094 

10 0.09 1.920577 1.177329 -1.92058 1.902027 1.175709831 

11 0.1 1.911325 1.196584 -1.91132 1.890175 1.194670999 

12 0.11 1.902002 1.215748 -1.902 1.878134 1.2135127 

13 0.12 1.892611 1.234818 -1.89261 1.865905 1.23223305 

14 0.13 1.883157 1.253794 -1.88316 1.85349 1.250830179 

15 0.14 1.873642 1.272675 -1.87364 1.840889 1.269302226 

16 0.15 1.864071 1.291462 -1.86407 1.828104 1.287647343 

17 0.16 1.854447 1.310152 -1.85445 1.815136 1.305863697 

18 0.17 1.844774 1.328747 -1.84477 1.801987 1.323949465 

19 0.18 1.835056 1.347245 -1.83506 1.788658 1.34190284 

20 0.19 1.825296 1.365645 -1.8253 1.77515 1.359722025 

21 0.2 1.815497 1.383948 -1.8155 1.761464 1.377405239 
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Table 3. 

 
Fig. 3.2.c, optimal state and control values at h = 0.01 

 

IV. Discussion 
 We use Pontryagin‟s maximum principles to obtain analytic solutions to problems formulated from 

three different fields. We derived Runge-Kutta algorithm that generates the numerical approximations to the 

problems considered. Both the state and adjoint variables are solved with forward Runge-Kutta iterative 

formulas. It is observed that the Runge-Kutta scheme produces results that are comparable with analytic results 

as it is shown in above tables. The errors occur are highly infinitesimal.                         

 

V. Conclusion 
 We have formulated optimal control problems from three different fields. The Pontryagin‟s maximum 

principles were employed for obtaining analytic solutions to optimal control problems. A Runge-Kutta method 

of order four for numerical approximations to optimal control problems has been developed.  From the 

numerical experiments, the results show that the Runge-Kutta method of order four produced results that are 

comparable to analytic solutions to the problems considered. Therefore, we conclude that Runge-Kutta method 

gives error that is negligible. 

 

Acknowledgements 
 The successful completion of this paper could have not been possible without the contributions made 

by various authors, persons and groups. We owe a lot to all authors of various literatures we consulted and they 
are dully acknowledged in the relevant sections of this write up. We express our most gratitude to Dr. Eze, E. O. 

and Dr. Nkem Ogbonna for pointing out errors and appropriate corrections made in this paper.   

 

References 
[1]  Borchardt, W.G. and Perrott, A.O, New Trigonometry for Schools, G.Bell and Sons Limited, London, 1959, 9-9. 

[2]  Byron, F. and Fuller, R, Mathematics of Classical and Quantum Physics, Addison-Wesly, 1969. 

[3]  Ejieji, C.N, A modified conjugate gradient method for solving discrete optimal control problems: PhD thesis, University Ilorin, 
Ilorin, Nigeria, 2005. 

[4]  Elsogolts, L, Differential Equations and Calculus of Variations, Mir Publisher, Moscow, 1973. 

[5]  Eugene, S. and Wing, S, The structure of Economics, Irwin McGraw–Hill, New York, 2000. 

[6]  Francis, S., Numerical Analysis, Irwin McGraw–Hill, New York,, 1968 

0.0 0.2 0.4 0.6 0.8 1.0

1
.2

1
.6

2
.0

time

U
.

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

1
.0

1
.5

2
.0

time

U
.e

x
a
c
t

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

1
.5

2
.0

2
.5

time

T
h
e
ta

.

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

1
.4

1
.8

2
.2

time

T
h
e
ta

.e
x
a
c
t



Application of Pontryagin’s Maximum Principles and Runge-Kutta Methods in Optimal Control…  

DOI: 10.9790/5728-11524363                                 www.iosrjournals.org                                                 63 | Page 

[7]  Garret, R. R, Numerical methods for solving optimal control problems: M.sc thesis, The University of Tennessee, Knoxville, 2005. 

[8]  Lyusternik, L.A, The Shortest Lines, Mir Publisher, Moscow, 1976.  

[9]  Riley, K.F., Hobson, M.P. and Bence, S.J, Mathematical Methods for Physics and Engineering, Press Syndicate of the University of 

Cambridge, U.K, 2002, 741-746. 
[10]  Saleem, R, Habib, M. and Manaf, A, “Review of forward backward Sweep method for bounded and unbounded control problem 

with payoff term”, Science Int. Lahore0, 27(1). 69-72. 2014 

[11]  Singiresu, S. R, Engineering optimization: theory and practices, New age international limited, West Lafayette, Indiana, 2008. 

[12]  Spiegel, M.R, Theoretical Mechanics with Introduction to Lagrange‟s Equation and Hamiltonian Theory, McGraw–Hill, New York, 

1967. 
[13]  Yourgrav, W. and Mandelstexolowatam, S, Variational Principle in Dynamics and Quantum Theory, Pitman and Sons, London, 

1968.  
 

 


