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Abstract : This paper presents solution technique of geometric programming with fuzzy parameters to solve 

structural model. Here we are considered all fuzzy parameters as a generalized fuzzy number i.e. generalized 

triangular fuzzy number and generalized trapezoidal fuzzy number. Here material density of the bar, 

permissible stress of each bar and applied load are fuzzy numbers. We use geometric programming technique to 

solve structural problem. The structural problem whose aim is to minimize the weight of truss system subjected 

to the maximum permissible stress of each member. Decision maker can take the right decisions from the set of 

optimal solutions. Numerical examples are displayed to illustrate the model utilizing generalized fuzzy numbers. 
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I. Introduction 
Structural Optimization provides a means to help the structural engineer to achieve such an aim to find 

the best way to minimize the weight of structural design. This minimum weight design is subjected to various 

constraints on performance measures, such as stresses and displacements. Optimum shape design of structures is 

one of the challenging research areas of the structural optimization field. That is why the application of different 

optimization technique to structural problems has attracted the interest of many researchers. For example, 

artificial bee colony algorithm (Sonmez, M., [12]), particle swarm optimization (Luh et al., [11]), genetic 

algorithm (Dede et al., [10]), ant colony optimization (Kaveh et al., [9]) etc. 

In general, structural optimization problem is solved with the assumption that the applied load, 

permissible stress of each members and thickness of the truss are specified in an exact mode. In real life, due to 

hesitation in judgments, lack of confirmation of otherwise. Sometimes it is not possible to get significant exact 

data for the structural system. This type of imprecise data is always well represented by fuzzy number, so fuzzy 

structural optimization model is needed in real life problem. Also making a decision, decision-makers have to 

review the alternatives with fuzzy numbers. It can be seen that fuzzy numbers have a very important role to 

describe fuzzy parameters in several fuzzy structural optimization model from the different view-points of 

decision makers. Zadeh [2] first introduced the concept of fuzzy set theory. Then Zimmermann [3] applied the 

fuzzy set theory concept with some suitable membership functions to solve linear programming problem with 

several objective functions. Some researchers applied the fuzzy set theory to Structural model.  For example 

Wang et al. [1] first applied  -cut method to structural designs where the non-linear problems were solved 

with various design levels , and then a sequence of solutions were obtained by setting different level-cut value 

of  . Rao [6] applied the same  -cut method to design a four–bar mechanism for function generating 

problem .Structural optimization with fuzzy parameters was developed by Yeh et al. [5]. In 1989, Xu [4] used 

two-phase method for fuzzy optimization of structures. In 2004, Shih et al.[7] used level-cut approach of the 

first and second kind for structural design optimization problems with fuzzy resources .Shih et al.[8] developed 

an alternative  -level cuts methods for optimum structural design with fuzzy resources in 2003.Dey and Roy 

[22] introduced fuzzy multi-objective mathematical programming technique based on generalized fuzzy set and 

they applied it in multi-objective structural models. 

The non-linear optimization problems have been solved by various non-linear optimization techniques. 

Geometric Programming (GP) [14,16] is an effective method among those to solve a particular type of non-

linear programming problem. Duffin, Peterson and Zener [16] laid the foundation stone to solve wide range of 

engineering problems by developing basic theories of geometric programming and its application in their text 

book. Chiang [26] used geometric programming in Communication Systems. One of the remarkable properties 

of Geometric programming is that a problem with highly nonlinear constraints can be stated equivalently with a 

dual program. If a primal problem is in posynomial form then a global minimizing solution of the problem can 

be obtained by solving its corresponding dual maximization problem because the dual constraints are linear, and 

linearly constrained programs are generally easier to solve than ones with nonlinear constraints.  Cao [20] 

discussed fuzzy geometric programming (FGP) with zero degree of difficult. In 1987, Cao [24] first introduced 

FGP. There is a good book dealing with FGP by Cao [23]. Islam and Roy [27] used FGP to solve a fuzzy EOQ 

model with flexibility and reliability consideration and demand dependent unit production cost a space 

constraint. FGP method is rarely used to solve the structural optimization problem. But still there are enormous 
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scopes to develop a fuzzy structural optimization model through fuzzy geometric programming (FGP).  The 

parameter used in the GP problem may not be fixed. It is more fruitful to use fuzzy parameter instead of crisp 

parameter. Yang et al. [13] discussd about the basic and its applications of fuzzy geometric programming.  Ojha 

et al.[18] used binary number for splitting the cost coefficients, constraints coefficient and exponents and then 

solved it by GP technique. A solution method of posynomial geometric programming with interval exponents 

and coefficients was developed by Liu (Liu, S.T., [19]). Nasseri et al.[21] solved two bar truss nonlinear 

problem by using geometric programming technique into the form of two-level mathematical programming.  

In the present paper, we have considered the coefficients of the problem are generalized fuzzy number 

and solve it by fuzzy geometric programming technique. 

The rest of this paper is organized in the following way. In section II, we discuss about structural 

optimization model. In section III and IV , we discuss about mathematical analysis and fuzzy mathematics 

prerequisites . In section V, different methods for defuzzification of fuzzy number are discussed. In section VI, 

we discuss about geometric programming technique with fuzzy coefficient. In section VII and VIII, crisp and 

fuzzy model of two bar truss are discussed and finally we apply geometric programming technique to solve two 

bar truss structural model respectively. In section IX, we discuss about an illustrative example. Finally we draw 

conclusions from the results in section X. 

 

II. Structural Optimization Problem 
In sizing optimization problems the aim is to minimize a single objective function, usually the weight 

of the structure, under certain behavioral constraints on stress and displacements. The design variables are most 

frequently chosen to be dimensions of the cross-sectional areas of the members of the structure. Due to 

fabrication limitations the design variables are not continuous but discrete since cross-sections belong to a 

certain set. A discrete structural optimization problem can be formulated in the following form 

                                   

 

  0 , 1, 2 , ..., .

, 1, 2 , ...., .
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                                                                                   (1) 

where  f A  represents objective function,  g A  is the behavioral constraint, m and n are the number of 

constraints and design variables, respectively. A given set of discrete values is expressed by d
R  and design 

variables 
j

A  can take values only from this set. 

In this paper, objective function is taken as 
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and constraints are chosen to be stress of structures 
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where 
i

  and 
i

l  are weight of unit volume and length of 
th

i  element, respectively, m  is the number of the 

structural elements, 
i

 and 0

i
  are the 

th
i  stress and allowable stress, respectively. 

 

III. Mathematical Analysis 
3.1 Geometric Programming  

Geometric program (GP) can be considered to be an innovative modus operandi to solve a nonlinear 

problem in comparison with other nonlinear technique. It was originally developed to design engineering 

problems. It has become a very popular technique since its inception in solving nonlinear problems. The 

advantages of this method is that ,this technique provides us with a systematic approach for solving a class of 

nonlinear optimization problems by finding the optimal value of the objective function and then the optimal 

values of the design variables are derived. Also this method often reduces a complex nonlinear optimization 

problem to a set of simultaneous equations and this approach is more amenable to the digital computers.  

 GP is an optimization problem of the form: 

                  0
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where  j
g x   0 ,1, 2 , ...,j m  are posynomial or signomial functions,  x  is decision variable vector of 

n components  1, 2 , ...,
i

x i n . 

 

3.2. Geometric Programming Problem 
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M in im ize g x                                                                                                                                       (5) 
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3.3 Dual Problem 

The dual problem of the primal problem (5) is 
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where    1, 1, 2 , . . . , , 1 1, 2 , . . . . , ; 1, 2 , . . . ,
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0
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0

1

0 , 0 ,
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j
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0 0
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Case I: For 1N n   ,the dual program presents a system of linear equations for the dual  variables where the 

number of linear equations is either less than or equal to the number of dual variables. A solution vector exists 

for the dual variable (Beightler et al.,[15]). 

Case II: For 1N n  ,the dual program presents a system of linear equations for the dual variables where the 

number of linear equation is greater than the number of dual variables. In this case, generally, no solution vector 

exists for the dual variables. However, one can get an approximate solution vector for this system using either 

the least squares or the linear programming method. 

 

IV. Fuzzy Mathematics Prerequisites 
Fuzzy sets first introduced by Zadeh [2] in 1965 as a mathematical way of representing impreciseness or 

vagueness in everyday life. 

 

Definition 4.1. Fuzzy Set 

A fuzzy set A in a universe of discourse X is defined as the following set of pairs 
  , ( ) /
A

A x x x X  .Here 

 : [0 ,1]
A

X   is a mapping called the membership function of the fuzzy set A and A
  is called the 

membership value or degree of membership of x X in the fuzzy set A . The larger   
A

x is the stronger the 

grade of membership form in A . 

 

Definition 4.2. Fuzzy Number  

A fuzzy number is a fuzzy set in the universe of discourse X . It is both convex and normal. 
 

Definition 4.3.  -cut of a Fuzzy Number  

 The  -level of a fuzzy number A is defined as a crisp set 

 : ( ) , , [ 0 ,1]
A

A x x x X


      . A


is non-empty bounded closed interval contained in X and it can be 
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denoted by    ,
L R

A A A
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A   are the lower and upper bounds of the closed interval , 

respectively. Figure 1 shows a fuzzy number A  with   cuts 
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                                0  

                                     

                                                   Fig. 1. Fuzzy number A  with  -cut 

Definition 4.4. Convex fuzzy set  

A fuzzy set A of the universe of discourse X  is convex if and only if for all 
1 2

,x x  in X , 

          1 2 1 2
1 m in ,

A A A
x x x x        when 0 1  . 

 

Definition 4.5. Normal fuzzy set 

A fuzzy set A  of the universe of discourse X  is called a normal fuzzy set implying that there exist at least one 

x X  such that    1
A

x  . 

 

Definition 4.6. Generalized Fuzzy Number (GFN)  

Generalized fuzzy number A  as   , , , ;A a b c d w  where 0 1w   and , ,a b c and d  are real numbers. The 

generalized fuzzy number A  is a fuzzy subset of real line R , whose membership function   
A

x  satisfies the 

following conditions: 
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Note: A  is a convex fuzzy set and it is a non-normalized fuzzy number till 1w  .It will be normalized for 

1w  . 
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Here 
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 i i i  If b c , then A  is called a generalized triangular fuzzy number (GTFN) as   , , ;A a b c w  
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                                                      Fig. 2. TFN and GTFN      

 v  If b c , then A  is called a generalized trapezoidal fuzzy number (GTrFN) as   , , , ;A a b c d w  

 v i  If b c , 1w   then it is called a trapezoidal fuzzy number (TrFN) as   , , ,A a b c d . 
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                                                                Fig. 3. TrFN and GTrFN 
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Fig. 3. shows  GTrFNs   , , , ;A a b c d w and TrFN   , , ,A a b c d  which indicate different decision maker‟s 

opinions for different values of w , 0 1w  .The values of w  represents the degree of confidence of the 

opinion of the decision maker. 

 

V. Different Methods for Defuzzification of Fuzzy Number 
In real life, bulk of the information is assimilated as fuzzy numbers but there will be a need to 

defuzzify the fuzzy number. Actually defuzzification is the conversion of the fuzzy number to precise or crisp 

number. Several processes are used for such conversion. Here we have discussed four types of defuzzification 

method; 

 

5.1. Type-I: Center of Mass (COM) Method 

Let A be a fuzzy number then the defuzzification of A is given by 
  

  
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a A
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a A

x x d x
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x d x
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 where 
l

a and 

u
a are the lower and upper limits of the support of A .The value Â  represents the centroid of the fuzzy 

number A . 

5.1.a. Defuzzification of   , , ;G T F NA a b c w by COM method   
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ˆ

3
A a b c    

5.1.b. Defuzzification of   , , , ;G T rF NA a b c d w  by COM method 
2 2 2 2

1
ˆ

3

d c b a d c b a
A

d c b a

    


  
  

Note: 5.1. For COM method, defuzzification of GTFN and GTrFN does not depend on w. In this case, 

defuzzification of generalized fuzzy number and normalized fuzzy number  1w   will be same. 

 

5.2. Type-II: Mean of  -Cut (MC) Method 

Let A be a fuzzy number then the defuzzification of A is given by 
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 where  L
A   and  R

A   are the left and right limits of the   cut  of 

the a fuzzy number A . 

5.2.a. Defuzzification of   , , ;G T F NA a b c w by MC method   ˆ 2
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w
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5.2.b. Defuzzification of   , , , ;G T rF NA a b c d w by MC method   ˆ
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w
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Note: 5.2. For MC method, defuzzification of TFN and TrFN (normalized fuzzy number  1w    obtained by 

putting 1w  in the defuzzification rule of GTFN (5.2.a) and GTrFN (4.2.b) respectively. 

 

5.3. Type III: Removal area (RA) method 

According to Kaufmann and Gupta [25], let us consider an ordinary number k    and a fuzzy 

number A . The left side removal of A with respect to  , ,
l

k R A k ,is defined as the area bounded by x k  and 

the left side of the fuzzy number A . Similarly, the right side removal  ,
r

R A k  is defined. The removal of the 

fuzzy number A with respect to x k  is defined as the mean of  ,
l

R A k  and  ,
r

R A k . 

Thus       
1

, , ,
2

l r
R A k R A k R A k  . 
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5.3.a. Defuzzification of   , , ;G T F NA a b c w by RA method, the removal number of A   

with respect to origin is defined as the mean of two areas,  , 0
2

l

a b
R A w


  and  

 , 0
2

r
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 ,     ˆ , 0 2

4

w
A R A a b c    .  

5.3.b. Defuzzification of   , , , ;G T rF NA a b c d w by RA method, the removal number of A with respect to origin 

is defined as the mean of two areas,  , 0
2

l

a b
R A w


  and  , 0

2
r

c d
R A w


 ,    

   ˆ , 0
4

w
A R A a b c d     .  

Note:5.3. For RA method, defuzzification of TFN and TrFN are obtained by putting 1w   in the defuzzification 

rule of GTFN (4.3.a), GTrFN (5.3.b) respectively. 

Note: 5.4. Defuzzification of GTFN and GTrFN by type-II and type-III method are same but these are different 

with type-I. 

 

5.4. Mean of Expected Interval (MEI) Method 

The  level set of A is defined as    ,
L R

A A A


     . According to Heilpern [28], the expected 

interval of fuzz number A ,denoted as  E I A  is      
1 1

0 0

,
L R

E I A A d A d   
 


 
 
  . The approximated 

value of A  is given by     
1 1

0 0

1

2
M E I L R

A A d A d   
 

 
 
 
  . 

5.4.a. Defuzzification of   , , ;G T F NA a b c w by MEI method     
1 1

ˆ 2
2 2

A a c a b c
w

 
    

 
 

.Here 

   L
A a b a

w


     and    R

A c c b
w


     

5.4.b. Defuzzification of   , , , ;G T rF NA a b c d w by MEI method     
1 1

ˆ

2 2
A a d a b c d

w

 
     

 
 

.Here 

   L
A a b a

w


     and    R

A d d c
w


     

Note:4.6. For MEI method, defuzzification of TFN and TrFN are obtained by putting 1w   in the 

defuzzification rule of GTFN (4.4.a), GTrFN (5.4.b) respectively. 

 

VI. Geometric Programming With Fuzzy Coefficient 
When all coefficients of (5) are generalized fuzzy number, then the geometric programming problem is 

of the form 

                              

  

0

0
000

1 1

k i

T n

kk i

k i

M in im iz e g x c x




 

  
  

                 subject to   

1 1

j

jk i

N n

jk jjk i jj

k i

g x c x b


 

 

  
   for 1, 2, 3, ..., .j m

                                                     (6) 

                                            0
i

x   for 1, 2, .., .i n  

where 0 kc , j kc  and jb are generalized fuzzy number. 

Using different difuzzification methods, we transform all generalized fuzzy number into crisp  number i.e. 

0 ,k jkc c
  and jb

 . 

The geometric programming problem with imprecise parameters is of the following form 

                              

  

0

0
000

1 1

k i

T n

kk i

k i

M in im iz e g x c x




 

  
  
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                 subject to   

1 1

j

jk i

N n

jk jjk i jj

k i

g x c x b


 

 

  
   for 1, 2, 3, ..., .j m

                                                     (7) 

                                            0
i

x   for 1, 2, .., .i n  

This is a geometric programming problem.  

 

VII. Two Bar Truss Structural Model 
Two bar truss model is developed and work out under the following notations. 

 

7.1. Notation 

We define the following variables and parameters; 

2P = applied load; 

t = thickness of the bar; 

d = mean diameter of the bar (decision variable); 

2b= the distance between two hinged point. 

WT= weight of the structure; 

h = the perpendicular distance from applied load point to the base line  (decision variable); 

y = depends on b and h (decision variable); 

 

7.2. Crisp Structural Model 

The symmetric two-bar truss shown in Figure 4 has been studied by several researchers like [17,21]. Here we 

consider same model. The objective is to minimize the weight of truss system subject to the maximum 

permissible stress in each member is 
0

 . There are two design variables- mean tube diameter (d) and height (h) 

of the truss.  

 

                                                  Fig. 4.Two bar truss under load 

The weight of the structure is  2 2
2 d t b h    and stress is

 2 2
P b h

d th



. 

The structural model can be written as  

                               

   

 

2 2

2 2

0

, 2

, ;

, 0 ;

M in im iz e W T d h d t b h

P b h
S u b je c t to d h

d th

d h

 

 


 


 



                                                                              (8) 

 Let 2 2
b h y  

2 2 2
b h y  . Hence the new constraint is 

2 2 2 2 2 2 2
1 .b h y b y h y

 
    

 

Hence the structural model is   
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 

 

1

0

2 2 2 2

, , 2

, , ;

1;

, , 0 ;

M in im iz e W T d h y td y

P y h
S u b je c t to d h y

d t

b y h y

d h y

 

 




 



 

 



                                                                                           (9)

     The above problem (9) can be treated as a Posynomial Geometric Programming problem with zero Degree of 

Difficulty. 

 

7.3. Fuzzy Structural Model 

The objective as well as constraint goal can involve many uncertain factors in a structural optimization 

problem. Therefore the structural optimization model can be represented in fuzzy environment to make the 

model more flexible and adoptable to the human decision process. If the coefficient of objective function and 

constraint goal of (9) are fuzzy in nature .Then the crisp model (9) is transformed into fuzzy model as follows 

                                     

  




1

0

2 2 2 2

, , 2

;

1;

, , 0 ;

M in im iz e W T d h y t d y

P y h
S u b je c t to

d t

b y h y

d h y

 






 





 



                                                                                (10)    

where   
0P , a n d  are fuzzy in nature. 

 

VIII. Solution Procedure of Fuzzy Structural Model throgh Geometric Programming 
After defuzzificationof the fuzzy parameters, the fuzzy two bar truss structural model (10) reduces as 

                       

 





1

0

2 2 2 2

ˆ, , 2

1;

1;

, , 0 ;

M in im iz e W T d h y d y t

P y h
S u b je c t to

d t

b y h y

d h y

 

 



 





 



                                                                                            (11)     

 Applying Geometric Programming Technique, the dual programming of the problem (11) is  




 

1 10 1 2 1 2 2

2 1 2 2

2
( )

2 1 2 2

00 1 2 1 2 2

2 1
m ax ( )

ww w w

w wt P b
g w w w

w w wt



 


      

           
     




                                                        (12) 

01
1sub ject to w                                                                                              (Normality condition) 

For primal variable y : 
01 11 21 22

1 . ( 2 ). ( 2 ). 0w w w w                                    (orthogonal condition) 

For primal variable h : 
01 11 21 22

0 . ( 1). 0 . 2 . 0w w w w                                     (orthogonal condition) 

For primal variable d :  
0 1 1 1 2 1 2 2

1 . ( 1). 0 . 0 . 0w w w w    
                               

(orthogonal condition) 

                                       
01 11 21 22

, , , 0w w w w   

This is a system of four linear equation with four unknowns. Solving we get the optimal values as follows  

                             
0 1

* * * *

1 1 2 1 2 2
1, 1, 0 .5 0 .5w w w a n d w     

From primal dual relation we get  

                                    
*

0 1
ˆ2 ( )d y t w g w    

                                          





1 1 1 1

0 1 1

wP
y d h

wt 

 
  

                                  

2 2 2 1

2 1 2 2

w
b y

w w





 and 2 2 2 2

2 1 2 2

w
h y

w w





 

So the dual objective value is given by  




 

1 1 2 10 1 2 2

2 1 2 2

2
( )*

2 1 2 2

00 1 2 1 2 2

ˆ2 1
( )

w ww w

w wt P b
g w w w

w w wt
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 


      

         
     
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2

* 2 1 2 2

2 1

( )b w w
y

w


   ,  

2

* 2 2

2 1

b w
h

w
  

              





2

* 2 1 2 2 2 1

2
0 2 1 2 2

( )b w w wP
d

w b wt 


     

 

 

IX. Numerical Expose 
We assume that material density of the bar, permissible stress of each bar and applied load are fuzzy in 

nature. We take two types of fuzzy generalized, GTFN, GTrFN as input data instead of crisp coefficient.  

 

 

Table-1: Input data for fuzzy model (10) as TFN 

P  
  

0  

 3 2 0 0 0 , 3 3 0 0 0 , 3 3 7 5 0 : w   0 .2 , 0 .3, 0 .5; w   6 0 0 0 0 , 6 1 0 0 0 , 6 1 7 5 0; w  

 

Table-2: Input data  for fuzzy model (10) as TrFN 

P  
  

0  

 3 2 0 0 0 , 3 2 6 0 0 , 3 3 2 5 0 , 3 3 7 5 0 : w   0 .1, 0 .2 , 0 .4 , 0 .5 5; w   5 8 5 0 0 , 5 9 0 0 0 , 6 0 7 5 0 , 6 1 5 0 0; w  

 

For COM defuzzification rule is not considered for different values of w (only 1w  is considered) for 

numerical result of different types of generalized fuzzy number which are exhibited in table-3, table-4, table-5 

and table-6. 

 

Table 3. Optimal solution of Two Bar Truss Structural Model (10) by GP method when input data are GTFN 

Weights *
W T (lb s )  

Diameter 

*
d (in )  

Height 

*
h ( in )  

*
y ( in )  

Defuzzificztion 

Type 

1w   21.39818441 2.431487813 30 42.42640687 Type-I 

0.2w   
4.21614703 2.432268425 30 42.42640687 Type-II&III 

22.36176586 2.430502722 30 42.42640687 Type-IV 

0.5w   
10.54007352 2.432200569 30 42.42640687 Type-II&III 

21.88113042 2.431114268 30 42.42640687 Type-IV 

0.8w   
16.86400000 2.432183604 30 42.42640687 Type-II&III 

21.40057448 2.431759397 30 42.42640687 Type-IV 

1w   
21.08014703 2.432200569 30 42.42640687 Type-II&III 

21.08014703 2.432200569 30 42.42640687 Type-IV 

  

The table (3) gives the result of optimum weight for two bar truss using generalized triangular fuzzy number by 

defuzzification rule of COM method, MC method, RA method and MEI method. For MC method and RA 

method outcome are same. 

 

Table 4. Optimal solution of Two Bar Truss Structural Model (10) by NLP method when input data are GTFN 

Weights *
W T (lb s )  

Diameter 

*
d (in )  

Height 

*
h ( in )  

*
y ( in )  

Defuzzificztion 

Type 

1w   21.39818 2.431488 30 42.42641 Type-I 

0.2w   
4.216147 2.432268 30 42.42641 Type-II&III 

22.36177 2.430503 30 42.42641 Type-IV 

0.5w   
10.54007 2.432201 30 42.42641 Type-II&III 

21.88114 2.431114 30 42.42641 Type-IV 

0.8w   
16.86400 2.432184 30 42.42641 Type-II&III 

21.40057 2.431759 30 42.42641 Type-IV 

1w   
21.08015 2.432201 30 42.42641 Type-II&III 

21.08015 2.432201 30 42.42641 Type-IV 
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Table (4) displayed the result of two bar truss model by non-linear programming by Lingo software taking  

GTFN . It is notice that GP method gives batter result for some case otherwise almost same.  

 

Table 5. Optimal solution of Two Bar Truss Structural Model (10) by GP method when input data are GTrFN 

Weights *
W T (lb s )  

Diameter 

*
d (in )  

Height 

*
h ( in )  

*
y ( in )  

Defuzzificztion 

Type 

1w   20.68491787 2.469420081 30 42.42640687 Type-I 

0.2w   
4.114900358 2.468814258 30 42.42640687 Type-II&III 

21.21842370 2.466367467 30 42.42640687 Type-IV 

0.5w   
10.29105767 2.468937777 30 42.42640687 Type-II&III 

20.98022858 2.467749166 30 42.42640687 Type-IV 

0.8w   
16.46028766 2.468917190 30 42.42640687 Type-II&III 

20.74113428 2.469056683 30 42.42640687 Type-IV 

1w   
20.57518954 2.468896603 30 42.42640687 Type-II&III 

20.58376989 2.469926374 30 42.42640687 Type-IV 

  

The table (5) gives the result of optimum weight for two bar truss using generalized trapezoidal fuzzy number 

by defuzzification rule of COM method, MC method, RA method and MEI method. For MC method and RA 

method outcome are same. 

 

Table 6. Optimal solution of Two Bar Truss Structural Model (10) by NLP method when input data are GTFN 

Weights *
W T (lb s )  

Diameter 

*
d (in )  

Height 

*
h ( in )  

*
y ( in )  

Defuzzificztion 

Type 

1w   20.68492 2.469420 30 42.42641 Type-I 

0.2w   
4.114900 2.468814 30 42.42641 Type-II&III 

21.21184 2.466367 30 42.42641 Type-IV 

0.5w   
10.29106 2.468938 30 42.42641 Type-II&III 

20.98023 2.467749 30 42.42641 Type-IV 

0.8w   
16.46029 2.468917 30 42.42641 Type-II&III 

20.74113 2.469057 30 42.42641 Type-IV 

1w   
20.57519 2.468897 30 42.42641 Type-II&III 

20.58377 2.469926 30 42.42641 Type-IV 

 

Table (6) displayed the result of two bar truss model by non-linear programming by Lingo software taking 

GTrFN . It is notice that GP method gives batter result for some case otherwise almost same.  

 

X. Conclusion 
We have considered two bar truss structural model whose aim is to minimize the weight of truss system 

subjected to the maximum permissible stress of each member. We use geometric programming technique to 

solve structural problem with fuzzy coefficients. Here material density of the bar, permissible stress of each bar 

and applied load are generalized fuzzy numbers. In many situations, problem parameters are more competent to 

take as GFN for real life examples. Hence this work gives more significant for structural engineer for decision-

making. This technique can be applied to solve the different decision making problems in other engineering and 

management sciences with different types of fuzzy number.  
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