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Abstract: A general description of the cut method is presented and an overview of its applications in a 

benzenoid graph is given. The Wiener index, the Szeged index and the hyper-Wiener index of a benzenoid graph 

is calculated based on the consideration of the elementary cuts and the pair of elementary cuts of the 

corresponding benzenoid graph. 

Keywords: Benzenoid graph, cut method, hyper-Wiener index, Szeged index, Wiener index. 

 

I. Introduction 
Cut method is defined in the following general form. For a given (molecular) graph G, 

1. Partition the edge set of G into classes F1 , F2 ,…… … , Fk , call them cuts, such that each of the graphs 

G − Fi , i = 1,2, … . . k, consists of two (or more) connected components; and 

2. Use properties (of the components) of the graphs G − Fi to derive a required property of G. 

 The cut method can hardly be studied in the above generality; instead we are interested in classes of 

(chemical) graphs that allow applicable partitions into cuts and in relevant properties. Often a property of G, that 

we are interested in, is some graph invariant, for instance the Wiener index.  We could be interested to obtain 
expressions for such invariants for certain (chemically) important classes of graphs or to develop fast algorithms 

for computing them. 

 The cut method turned out to be especially useful when if comes to metric properties of graphs. The 

key idea how the graphs G − Fi can be used to obtain such properties of G is to find an isometric embedding 

f: G → H, where H is a properly selected target graph and to use the image f(G) to obtain distance properties of 

G. The key subidea is then to select H to be a Cartesian product graph. We introduce and explain the concepts 

mentioned in this paragraph in Section 2. 

 The most prominent class of chemical graphs for which the cut method turned out to be extremely 

fruitful is the class of benzenoid graphs. In fact, the 1995 paper [1] and the elaboration of its method for the 

computation of the Wiener index of benzenoid graphs (and, more generally, of partial cubes) from [2] can be 
considered as the starting point of the cut method. We explain the method and its consequences in Section 3. 

 A similar approach that works for the Wiener index can be applied to the Szeged index as well. This is 

presented in Section 4. We continue with a section on the hyper-Wiener index. Again, the cut method is 

applicable; however, in this case it is slightly more involved than the corresponding methods for the Wiener and 

the Szeged index because the computation of the hyper-Wiener index requires not only graph distance but also 

squares of graphs distances. 

  

II. Preliminaries 
 Let G = (V, E) be a connected graph and u, v ∈ V. Then the distance dG u, v  between u and v is the 

number of edges on a shortest u, v-path. 

       The Cartesian product G□H of graphs Gand H is probably the most important graph product and is defined 

in the following way: 

1. V G□H = V(G) × V(H); 

2. E(G□H) Consists of pairs  g, h (g ′, h′) where either g = g ′ and hh′ ∈ E(H), or gg ′ ∈ E(G) and h = h′. 
  

The graphs Gand H are called factors of G□H. The Cartesian product is commutative and associative. The latter 

property implies that products of several factors are well-defined. The fundamental metric property of the 

Cartesian product is that the distance function is additive: 

dG□H   g, h ,  g ′, h′  = dG g, g ′ + dH (h, h′) 

 

This property has been independently discovered several times. 
        The simplest Cartesian products are products in which all factors are the complete graph on two 

vertices K2. These graphs are known as hypercubes. More precisely, the n-cube Qn  is the Cartesian product of n 

factors K2, that is,Qn = □i=1
n K2. It is important to observe that the n-cube Qn  can be equivalently described as 

the graph whose vertex set consists of all n-tuples b1b2 …… bn with bi ∈  0,1 , where two vertices are adjacent 
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if the corresponding tuples differ in precisely one position. 

 

       A subgraph H of a graph G is isometric if for any vertices u and v of H, 

dH u, v = dG (u, v) 

 The class of graphs that consists of all isometric subgraphs of hypercubes turns out to be very 

important and has got the name partial cubes. We point out that hypercubes; even cycles, trees, median graphs, 

benzenoid graphs, and Cartesian products of partial cubes are all partial cubes. 

 

III. Wiener index 
       The Wiener index W(G) of a graph G = (V, E) is defined with 

W G =
1

2
  dG (u, v)

v∈Vu∈U

 

 As we have already mentioned, the cut method was first implemented for a calculation of the Wiener 

index of benzenoid graphs. In fact, the method works for any partial cube as the next theorem asserts. For its 

formulation we need the following concepts. 

       Let G be a connected graph. Then e = xy and f = uv are in the Djokovic-Winkler relation Θ [3, 4] if 

dG x, u + dG y. v ≠ dG x, v + dG (y, u) 

 

 The relation Θ is always reflexive and symmetric, and is transitive on partial cubes. Therefore, Θ 

partitions the edge set of a partial cube G into equivalence classes, called Θ-classes. 
  

3.1. Theorem 

 [1] Let G be a partial cube and let F1 ,… . . Fk  be its Θ-classes. Let n1(Fi) and n2(Fi) be the number of 

vertices in the two connected components of G − Fi. Then 

W G =  n1 Fi . n2(Fi)

k

i=1

  

        Let G be a partial cube isometrically embedded into Qk . (Note that the number of Θ-classes is equal to 

the dimension of the hypercube into G is embedded.) Then a vertex u of G can be considered as a binary k-tuple 

u = u1u2 ……… uk , and the distance between two vertices is the number of positions in which they differ. For 

b, b′ ∈  0,1 , let δ b, b′ = 0 if b = b′, and δ b, b′ = 1 if b ≠ b′. Having this in mind we can compute as 

follows: 

W G =
1

2
  dG (u, v)

v∈Vu∈V

 

              =
1

2
  dQk

(u, v)
v∈Vu∈V

 

                    =
1

2
   δ(ui , vi)

k

i=1v∈Vu∈V

 

                         =   
1

2
  δ(ui , vi)

v∈Vu∈V

 

k

i=1

 

                =  n1(Fi)

k

i=1

 . n2(Fi) 

      In benzenoid graphs the Θ-classes are precisely their orthogonal cuts. Hence if 𝒞 is the set of 

orthogonal cuts of a benzenoid graph B, and for 𝐶𝜖𝒞 we let 𝑛1(𝐶) and 𝑛2(𝐶) be the number of vertices in the 

two components of 𝐺 − 𝐶, respectively, then Theorem 3.1 specializes as follows [1,2]: 

𝑊 𝐵 =  𝑛1 𝐶 

𝐶𝜖𝒞

 . 𝑛2 𝐶  

 

We illustrate the use of the above equation in the ovalene 𝑯𝟐, see Fig.1. 

      The Ovalene 𝐻2 has three horizontal cuts, two of them being symmetric. Each of these two cuts 

contribute 7.25 to 𝑊(𝐻2), while contribution of the remaining cut is 16.16. Hence horizontal cuts contribute 

2.7.25+16.16=606. Clearly, there are two more groups of elementary cuts which contributes 

2.5.27+2.12.20=750. Hence we conclude that 𝑊 𝐻2 = 606 + 2 . 750 = 2106.  
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Figure 1: Ovalene 𝑯𝟐 and three of its cuts 

 

IV. Szeged index 
 For an edge 𝑒 = 𝑢𝑣 of a connected graph G let 𝑊𝑢𝑣 =  𝑥 ∈ 𝑉(𝐺)|𝑑𝐺(𝑥, 𝑢) < 𝑑𝐺(𝑥, 𝑣) . The set 𝑊𝑣𝑢  is 

defined analogously. Then the Szeged index of G is defined as: 

𝑆𝑧 𝐺 =   𝑊𝑢𝑣   .  𝑊𝑣𝑢   
𝑢𝑣∈𝐸(𝐺)

 

 Now, let 𝑢𝑣 be an edge of a partial cube G and suppose that it belongs to the Θ-class. Then it follows 

easily from definitions that 𝑊𝑢𝑣  and 𝑊𝑣𝑢  induce the connected components of 𝐺 −  𝐹. Therefore, Theorem 3.1 

has its variant for the Szeged index: 

 

4.1. Theorem  

 Let G be a partial cube and let 𝐹1 , ……… , 𝐹𝑘  be its Θ-classes. Let 𝑛1(𝐹𝑖) and 𝑛2(𝐹𝑖) be the number of 

vertices in the two connected components of 𝐺 − 𝐹𝑖 . Then 

𝑆𝑧 𝐺 =   𝐹𝑖  . 𝑛1 𝐹𝑖 . 𝑛2 𝐹𝑖 

𝑘

𝑖=1

 

      Theorem 4.1 was elaborated in [5] for benzenoid graphs. Since the Θ-classes of a benzenoid graph are 

its cuts, the result specializes to: 

 

4.2. Corollary  

 [5] Let B be a benzenoid graph and 𝐶 the set of its orthogonal cuts. For 𝐶 ∈ 𝒞 let 𝑛1(𝐶) and 𝑛2(𝐶) be 

the number of vertices in the two components of 𝐺 −  𝐶, respectively. Then 

𝑆𝑧 𝐵 =   𝐶 

𝐶𝜖𝒞

 . 𝑛1 𝐶  . 𝑛2 𝐶   

        Consider again the ovalene 𝐻2 from Fig.1. The computation of 𝑆𝑧(𝐻2) goes along the same lines as the 

computation of 𝑊(𝐻2), except that now we need to multiply each contribution with the size of the 
corresponding cut. Therefore, 

𝑆𝑧 𝐻2 =   4.2.7.25 + (5.16.16) + 2  3. 2. 5. 27 + (4.2.12.20) = 8140. 
 

5. Hyper-Wiener index 

 The hyper-Wiener index WW was proposed by Randic in [6]. His definition was originally given only 

for trees and was extended to all connected graphs 𝐺 =  (𝑉, 𝐸) by Klein, Lukovits and Gutman [7] as follows: 

𝑊𝑊 𝐺 =
1

4
  𝑑𝐺 𝑢, 𝑣 +

𝑣∈𝑉

1

4
  𝑑𝐺(𝑢, 𝑣)2

𝑣∈𝑉𝑢∈𝑉𝑢∈𝑉

                                                          (1)      

 Note that the first term is one half of the Wiener index, while in the second we need to compute the 

squares of distances. The cut method is applicable also in this case, but because squares of distances are 

involved, the method, that we describe next, becomes slightly more involved. 

     Let G be a partial cube and let 𝐹1 , ……… , 𝐹𝑘  be its Θ-classes. For each Θ-class 𝐹𝑖  let 𝑢𝑖𝑣𝑖 be a representative 

of 𝐹𝑖 . Then for any 1 ≤ 𝑖 < 𝑞 let 

𝑛11 𝐹𝑖 , 𝐹𝑗  =  𝑊𝑢𝑖𝑣𝑖
∩ 𝑊𝑢𝑗𝑣𝑗

 ,        𝑛22 𝐹𝑖 , 𝐹𝑗  =  𝑊𝑣𝑖𝑢𝑖
∩ 𝑊𝑣𝑗𝑢𝑗

 ,      

and 

𝑛12 𝐹𝑖 , 𝐹𝑗  =  𝑊𝑢𝑖𝑣𝑖
∩ 𝑊𝑣𝑗 𝑢𝑗

 ,        𝑛21 𝐹𝑖 , 𝐹𝑗  =  𝑊𝑣𝑖𝑢 𝑖
∩ 𝑊𝑢𝑗𝑣𝑗

  

Now consider the following theorem. 
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5.1. Theorem 

[8] Let G be a partial cube with Θ-classes 𝐹1 , ……… , 𝐹𝑘  and representatives 𝑢𝑖𝑣𝑖 ∈ 𝐹𝑖 , 1 ≤ 𝑖 ≤ 𝑘. Then  

𝑊𝑊 𝐺 = 𝑊 𝐺 +    𝑛11 𝐹𝑖 , 𝐹𝑗   . 𝑛22 𝐹𝑖 , 𝐹𝑗  + 𝑛12 𝐹𝑖 , 𝐹𝑗   . 𝑛21 𝐹𝑖 , Fj   

𝑘

𝑗=𝑖+1

𝑘

𝑖=1

                      (2) 

       The key step in proving Theorem 5.1 is to show that 

  dG (u, v)2

v∈Vu∈V

= 2W G + 4    n11 Fi , Fj  . n22 Fi , Fj + n12 Fi , Fj  . n21 Fi , Fj   

k

j=i+1

k

i=1

 

The result then follows immediately by plugging the last equality into (2). 

       For an example consider again the ovalene. 
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Figure 2: Types of pairs of cuts in the ovalene 

 

        It contains 11 cuts, hence there are  
11
2

 = 55 pairs of cuts to be considered. These cuts can be 

grouped into 17 types that are shown in Fig.2. 

        There are 2, 1, 4, 4, 4, 4, 4, 4, 4, 7, 4, 2, 4, 1, 2, 2, 2 pairs of cuts in the cases (a), (b), (c), (d), (e), (f), 

(g), (h), (i), (j), (k), (l), (m), (n), (o), (p), (q) respectively. Hence the second term of Theorem 5.1 gives 

 

2 7.16 + 0.9 +  7.7 + 0.18 + 4 0.20 + 7.5 + 4 1.14 + 6.11 + 4 3.8 + 4.17 + 4 5.3 + 2.22 +
4 1.12 + 15.4 + 4 4.8 + 12.8 + 4 5.20 + 0.7 + 7 5.12 + 0.15 + 4 5.5 + 0.22 + 2 2.24 + 3.3 +
4 4.19 + 1.8 +  5.12 + 0.14 + 2 12.12 + 0.8 + 2 8.16 + 4.4 + 2 11.11 + 9.1  =  4403. 

 

Since W H2 = 2106 we conclude by Theorem 5.1 that WW H2 = 6509. 

 

V. Conclusion 
 The cut method is applied in ovalene (a benzenoid graph) and the Wiener index, the Szeged index and 

the hyper-Wiener index has been calculated. 
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