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Abstract : In this article, a new method of analysis for linear and nonlinear stiff problems using the Adomian 

Decomposition Method (ADM) is presented. To illustrate the effectiveness of the ADM an example from linear 

and nonlinear stiff problems have been considered and compared with the single-term Haar Wavelet series 

(STHW)[9] and with exact solutions of the problems, and are found to be very accurate. Error graphs for the 

linear and nonlinear stiff problems are presented in a graphical form to show the efficiency of this ADM. This 

ADM can be easily implemented in a digital computer and the solution can be obtained for any length of time. 
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I. Introduction 
Among the models using differential equations (DE), ordinary differential equations are frequently 

used to describe various physical problems, for example, motions of the planet in a gravity field like the Kepler 

problem, the simple pendulum, electrical circuits and chemical kinetics problems. 

An ordinary differential equation (ODE) has the form 

                     xyxfxy ,                                   (1) 

where x is the independent variable which often to time in a physical problem and the dependent variable, y(x), 

is the solution. Moreover, since y(x) could be an N dimensional vector valued function, the domain and range of 

the differential equation, f and the solution, y are given by 

.:

,:

N

NN

RRy

RRRf


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The above equation (1) where f is a function of both x and y are called „non-autonomous‟. However, by 

simply introducing an extra variable which is always exactly equal to x, it can be easily rewritten in an 

equivalent „autonomous‟ form below where f is a function of y only. 

                                                                           xyfxy              (2) 

Even though many problems are naturally expressed in the non-autonomous form, the autonomous 

form of differential equation (2) is preferred for most of the theoretical investigations. Furthermore, the 

autonomous form has some advantages in numerical analysis since it gives a greater possibility that numerical 

methods can solve the differential equation exactly. 

The differential equation by itself is not enough to find a unique solution. Hence, some other additional 

information is needed. However, if all components of y are given at a certain value of x i.e. „initial conditions‟ 

then the differential equation is called as an „initial value problem (IVP)‟ which is closely and naturally involved 

with physical modeling. 

An initial value problem with the given initial condition  
00

yxy  has the structure  

    xyxfxy , ,  
00

yxy       (3) 

in (3) non-autonomous form and 

                                xyfxy  ,  
00

yxy                                                              (4)        

in (4) autonomous form.  

In this paper we developed numerical methods for addressing linear and nonlinear stiff differential 

equations by an application of the Adomian Decomposition Method which was studied by Sekar and team of his 

researchers [4-7]. Recently, Sekar et al. [8] discussed the linear and nonlinear stiff differential equations using 

STHW. In this paper, the same linear and nonlinear stiff differential equations was considered (discussed by 

Sekar et al. [8]) but present a different approach using the Adomian Decomposition Method with more accuracy 

for linear and nonlinear stiff differential equations. In this paper we show the simulation results in graphical 

form to highlight the effectives of ADM compare to STHW. 
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II. Adomian Decomposition Method 

Suppose k  is a positive integer and 
1 2

, , ,
k

f f f  are k  real continuous functions defined on some 

domain G . To obtain k  differentiable functions 
1 2

, , ,
k

y y y  defined on the interval I  such that 

1 2
( , ( ), ( ), , ( ))

k
t y t y t y t G  for t I .  

Let us consider the problems in the following system of ordinary differential equations: 

1 2

( )
( , ( ), ( ), , ( ))

i

i k

d y t
f t y t y t y t

d t
   ,   ( ) |

0
y t

i t i



                                                                        (5) 

where 
i

  is a specified constant vector, ( )
i

y t  is the solution vector for 1, 2 , ,i k  . In the decomposition 

method, (5) is approximated by the operators in the form: ( ) ( , ( ), ( ), , ( ))1 2L y t f t y t y t y ti i k   where L  is the 

first order operator defined by /L d dt  and 1, 2 , ,i k  .  

Assuming the inverse operator of L  is 
1

L


 which is invertible and denoted by 
0

1
(.) (.)

t

t

L d t


  , then 

applying 
1

L


 to ( )
i

L y t  yields  

1 1
( ) ( , ( ) , ( ) , , ( ))

1 2
L L y t L f t y t y t y t

i i k

 
   

where 1, 2 , ,i k  . Thus 

1
( ) ( ) ( , ( ) , ( ) , , ( ))

0 1 2
y t y t L f t y t y t y t

i i i k


   . 

Hence the decomposition method consists of representing ( )y ti  in the decomposition series form 

given by 

                                                      ( ) ( , ( ) , ( ) , , ( )), 1 2

0

y t f t y t y t y ti i n k

n



 



                                                  

where the components 
,i n

y , 1n   and 1, 2 , ,i k   can be computed readily in a recursive manner. Then the 

series solution is obtained as 

                                                1
( ) ( ) { ( , ( ) , ( ) , , ( ) )}, 0 , 1 2

1

y t y t L f t y t y t y ti i i n k

n




  



 .                                    

For a detailed explanation of decomposition method and a general formula of Adomian polynomials, 

we refer reader to [Adomian 1]. 

 

III. Stiff Problems 
Even if there exists the numerical solution to a differential equation, certain types of differential 

equations are difficult to solve, in fact, they need certain types of numerical methods. This phenomenon known 

as „stiffness‟ was first recognized by Curtiss and Hirschfelder [3] in 1952. Stiffness occurs when some 

components of the solution decay much more rapidly than others. These problems have highly stable exact 

solutions but have highly unstable numerical solutions. There are several ways of characterizing „stiffness‟ and 

one way of understanding is looking at the Lipschitz constant. Stiff problems typically have a large Lipschitz 

constant; however, many of them have a more moderate size one-sided Lipschitz constant.    

 

Definition. 

Butcher [2] The function   NN
RRbaf ,: is said to satisfy a ‘one-sided Lipschitz condition’ if there 

exists a ‘one-sided Lipschitz constant’ l, such that for all  bax ,  and all ,,
N

Rzy   

   
2

,,, zylzyzxfyxf   

where the norm is defined by yyy ,
2
 assuming that there exists an inner-product on RN. 

 

Therefore, the Lipschitz constant could be large while the one-sided Lipschitz constant could be small, or 

even negative. This theorem leads me to deduce the following result.  
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Theorem. 

 Butcher [2] If f satisfies a one-sided Lipschitz condition with one-sided Lipschitz constant l, and y and z 

are solutions of     ,, xyxfxy   then for all ,
0

xx   

                      
000

exp xzxyxxlxzxy  .         

           

 Notice from this result that the distance between any two solutions will not increase rapidly or may 

even decrease if the equation has an adequate one-sided Lipschitz constant. Since stiffness is closely related to 

the behaviour of perturbations to a given solution, it is important to find out the effect of small perturbations 

with a one-sided Lipschitz condition. 

Consider        xyxfxy ,                          (6) 

with y(x), a solution, and  ,xY  a small perturbation to the given solution. Replace y(x) in the equation (6) by 

   xYxy  and expand the solution in a series in powers of   up to the second order, then get  

                                              ., xY
y

f
xyxfxYxy




                              (7) 

 Subtract the equation (6) from (7) and simplify it, then finally obtain the equation which controls the 

behaviour of the perturbation,  

   xY
y

f
xY




    xYxJ  

 where J(x) is the Jacobian matrix of    ., xyxf I can use the spectrum of eigen values of J(x) to 

characterise stiffness. The eigen values of J(x) determine the growth rate of the perturbation with a moderate 

change in the value of the solution and a very small change in J(x) in a time interval .x   The existence of one 

or more large and negative values of  where   xJ  where xx  indicates that stiffness is present. 

 

IV. Numerical Example for Linear Stiff Problem 
Stiffness can be understood by the practical difficulty found in numerical calculation as well. The stiff 

problems are impossible or very difficult to solve by explicit methods, mainly because the small bounded 

stability region of explicit methods forces the numerical method to take very small step sizes for the smooth 

solution. Two examples of stiff problems are given here to observe how explicit and implicit methods work for 

these problems. 

Consider the stiff system of three linear ordinary differential equations with corresponding initial 

conditions is of the autonomous form.  
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where L= - 25 and  =2.  

 

The analytic solution is  which is drawn in Figure 1. 

 

 

 
Fig. 1 Analytical Solution of linear Stiff problem 
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The results of using the STHW and ADM methods for solving this stiff problem on the interval of [0,1] 

are presented in Fig. 2-7. The Fig. 2-4 show that the STHW method definitely seems to have difficulty 

approximating y3 while y1 and y2 are computed without difficulties. Especially the approximations with n=10 

and n=15 are hopeless. However, the ADM method performs perfectly well even for n as low as 4 as shown in 

Figures 5-7. 

 

 
Fig. 2 STHW solution of linear Stiff problem with n = 4 and 8 

 

 
Fig. 3 STHW solution of linear Stiff problem with n = 12 and 16 

 

 
Fig. 4 STHW solution of linear Stiff problem with n = 20 and 30 

 

 
Figure 5 ADM solution of linear Stiff problem with n = 4 and 8 
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Fig. 6 ADM solution of linear Stiff problem with n = 12 and 16 

 

 
Fig. 7 ADM solution of linear Stiff problem with n = 20 and 30 

 

V. Numerical Example for Nonlinear Stiff Problem 
Consider the stiff system of two dimensional Kaps problem with corresponding initial conditions is of 

the non autonomous form.  
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Analytic solution is 
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which is drawn in Figure 8. 

In Fig. 9-14, the computed solutions of this problem using the STHW and ADM method on the interval 

of [0,10] are displayed. Even using a large number of steps, the STHW method performs poorly. However the 

ADM method easily gives a good approximation. From these two examples, it is clearly confirmed that the 

STHW method is not suitable but the ADM method is appropriate for stiff problems. 

 
Fig. 8 Analytical Solution of Stiff nonlinear problem. 
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Fig. 9 STHW solution of Stiff nonlinear problem with n = 4 and 8 

 

 
Fig. 10 STHW solution of Stiff nonlinear problem with n = 12 and 16 

 

 
Fig. 11 STHW solution of Stiff nonlinear problem with n = 20 and 30 

 

 
Fig. 12 ADM solution of Stiff nonlinear problem with n = 4 and 8 
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Fig. 13 ADM solution of Stiff nonlinear problem with n = 12 and 16 

 

 
Fig. 14 ADM solution of Stiff nonlinear problem with n = 20 and 30 

 

VI. Conclusion 
 The STHW method is simple. It uses only four pieces of information from the past and evaluates the 

driving function only four per step. However, the STHW method is not very practical for computational purpose 

since considerable computational effort is required to improve accuracy. From the Figures 2-7 and 9-14, one can 

predict that the error is very less in ADM when compared to the STHW method. This ADM provided a 

momentum for advancing numerical methods for solving linear and nonlinear stiff problems. 
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