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Abstract: Rayleigh-Bénard-Marangoni convection in a relatively hotter or cooler layer of liquid is studied 
theoretically by means of modified linear stability theory. The upper surface of the layer is considered to be 

non-deformable free where surface tension gradients arise on account of variation of temperature and the lower 

boundary surface is rigid, each subject to constant heat flux condition. The Galerkin technique is used to obtain 

the eigenvalue equation analytically. This analysis predicts that the onset of convection in a relatively hotter 

layer of liquid is more stable than a cooler one under identical conditions, irrespective of whether the two 

mechanisms causing instability act individually or simultaneously, and that the coupling between the two 

agencies causing instability remains perfect. 
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I. Introduction 
The mechanism of the onset of surface tension induced convection in a thin horizontal liquid layer 

heated from below with free upper surface was reported experimentally by Block [1] and explained 

mathematically by Pearson [2]. They established that the patterned hexagonal cells observed by Bénard [3, 4] 

and explained by Rayleigh [5] in terms of buoyancy, were in fact due to temperature dependent surface tension. 

Convection induced by surface tension gradients is now commonly known as Bénard-Marangoni convection in 

contrast to the buoyancy induced Rayleigh- Bénard convection. Quantitative disagreement between experiment 

and theory has indicated that gravity was present in Bénard’s experiments as well as in other experiments 

involving convection in a liquid layer with free surface in a laboratory on the earth, therefore, Nield [6] 

considered the combined effects of both the surface tension and buoyancy on the onset of convection in a liquid 

layer heated from below with free upper surface, called Rayleigh-Bénard-Marangoni convection, and found that 

the two effects causing instability are tightly coupled. For a detail study of convection one may be referred to 

the work of Chandrasekhar [7], Normand et al. [8], Koschmieder [9] and Schatz & Neitzel [10]. 

Since the process of controlling convection in a fluid has become important in material processing and 

because of its applications extending from producing large crystals of uniform properties to manufacturing new 

materials with unique properties. Recently, Gupta et al. [11] studied the Rayleigh-Bénard-Marangoni convection 

in a relatively hotter or cooler layer of liquid with thermally conducting rigid lower boundary surface and the 

upper free surface subject to general mixed thermal condition using the Fourier series method, and established 

that irrespective of the nature of the driving mechanism (surface tension or buoyancy or both) the hotter layer 

with its heat diffusivity apparently increased as a consequent of actual decrease in its specific heat at constant 

volume, must exhibit convection at a higher temperature difference, hence more stable, than a cooler layer of the 

same liquid under identical conditions. In this paper, we study the Rayleigh-Bénard-Marangoni convection in a 

relatively hotter or cooler layer of liquid whose lower boundary is rigid and upper boundary is free, each subject 

to constant heat-flux (thermally insulating). The Galerkin method is used to find the eigenvalue equation 

analytically. We find that the Galerkin method turns out to be simple and gives quite accurate results with 

minimum of mathematical computations compared to the cumbersome Fourier series method which leads to 

considerably more algebra. This analysis predicts that the onset of convection in a relatively hotter layer of 

liquid is more stable than a cooler one under identical conditions, irrespective of whether the two mechanisms 

causing instability act individually or simultaneously and that the coupling between the two agencies causing 

instability remains perfect whether the layer of liquid is relatively hotter or cooler. 

 

II. Mathematical formulation of the problem 
 The physical configuration of the problem consists of an infinite horizontal layer of viscous fluid of 

uniform thickness d  heated from below. The lower rigid boundary of the layer is maintained at a constant 

temperature 
0

0T ( )   whose upper boundary surface is open to the atmosphere at temperature 
1 0

T ( T ) , each 

subject to constant heat flux condition. We choose a Cartesian coordinate system of axes with the x and y axes 
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in the plane of the lower surface and the z axis along the vertically upward direction so that the fluid is confined 

between the planes at 0z   and z d as shown in Fig 1.   

 

 
Fig 1: Schematic representation of the physical configuration of the problem. 

 

 The surface tension on the upper free surface of the fluid is regarded as a function of temperature only 

which is  given by the simple linear law 
1 1

( T T )     where the constant 
1

  is the unperturbed value of   

at the unperturbed surface temperature 
1

T T  and 
1

T T
( / T ) 


     represents the rate of change of surface 

tension with temperature, evaluated at temperature 
1

T , and surface tension being a monotonically decreasing 

function of temperature,   is positive. 

 Following Banerjee et al [12], the modified linearized perturbation equations governing the system 

under consideration are given as                                 

                                    
2 2

2 2

2 2
w g

t x y
  

    
      

     

                                                                  (1) 

                                2

2
(1 )

0
T w

t


   

 
    

 

                                                                               (2) 

where the dependent variables w and   represent respectively the z-component of perturbation velocity and the 

temperature perturbation. The uniform temperature gradient  0 1
T T / d     , the gravitational acceleration g, 

the coefficient of volume expansion  , the kinematic viscosity  , the thermal diffusivity 
 
are each assumed 

constant,  

                                       
2 2 2

2

2 2 2
x y z

  
   

  
  

and t represents time. Further, the coefficient 
2

  (due to variation in specific heat at constant volume on account 

of variation in the temperature) lies in the range from 0 to 10-4 and that range of the dimensionless parameter 

2 0
T  covering the usual laboratory conditions is 

2 0
0 1T   for liquids with which we are mostly concerned. 

In this range, any given value of  2 0
0T   corresponds to the layer of liquid which is relatively hotter 

compared to that associated with its value less than (including 
2 0

0T  ) the given one (Banerjee et al. [12]). 

Equations (1)-(2), must be solved subject to appropriate boundary conditions. We confine our attention to 

boundaries on which the heat flux is kept constant. 

Thus, the boundary conditions at z = 0, are 

                                            0 0 0
w

w , , ,
z z

 
  

 
                                                              (3a, b, c) 

and the boundary conditions  at  z = d, are                                                                                                

                 
2

2

12
0 0 0

w
w , , ,

zz


  

 
    


                                                (4a, b, c) 

where 
2 2

1 2 2
x y

 
  

 
. 

 We now analyze an arbitrary disturbance in terms of normal modes assuming that the perturbations w 

and    are of the form                                                                                                             

                               ( , , ) , ( , , ) ( ), ( ) exp
x y

w x y z x y z w z z i a x a y st   
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where ax and ay are components of the horizontal wave number  
2 2

x y
a a a   of the disturbance, and s is the 

time growth rate (a complex number in general). Using the above expressions for w and    in equations (1)-(2) 

and then making the resulting equations dimensionless by choosing d, 2
d / , / d   and  d /    as units of 

length, time, velocity and temperature scales respectively; on putting 

                                      

2 2

*

* * *
 

R aw d sd
a a d , W , p ,  

d



   
       

and omitting asterisks (*) for convenience, we obtain   

                              
                   

2 2 2 2
D a D a p W                                                                          

(5) 

                                       
2 2 2

2 0 2 0
1 1

r
D a p P T R a T W                                                 (6)       

Here, 
4

g d
R ,

 




r
P




  are respectively the Rayleigh number and Prandtl number. 

 We restrict our analysis to the case when the principle of exchange of stability is valid for the present 

problem so that instability first sets in as stationary convection. In this case, the marginal state is characterized 

by p = 0. Then the equation (5) and (6) relevant to marginal stability reduces to  

                                                
 

2
2 2

D a W                                                                                          (7)
  

                                                 
   

2 2 2

2 0
1D a R a T W                                                                    (8)     

 
 

In terms of new variables, the non-dimensional form of boundary conditions (3a, b, c) and (4a, b, c) can be 

written as 

                        
2

(0 ) 0 , (0 ) 0 , (0 ) 0 , a t 0 ,

(1) 0 , (1) (1) 0 , (1) 0 , a t 1 .

W D W D z

W D W D z

     


        

                            (9)    

where 
2

M

R g d




 
   with 

2
d

M





 

as the Marangoni number.                                                     

 The parameter where  0  characterizes the strength of surface-tension relative to buoyancy; which 

depends only on the fluid parameters and on the liquid depth, but not on the external heating Garcia [13] and 

Zeren [14]  

 In absence of surface tension ( 0 0M or   ) buoyancy is the sole agency causing instability 

determined by R while in absence of buoyancy ( 0R or    ), surface tension is the sole agency causing 

instability determined by M. In fact, each instability mechanism causing instability has a non-dimensional 

number (R or M), but when surface tension and buoyancy act simultaneously they are related by means of the 

relation M R , however, for the sake of clarity results will be discussed in terms of usual (R, M) plane. 

 

III. Solution Of The Problem 
 The Equations (7)-(8) together with boundary conditions (9) constitute an eigenvalue problem of order 

six. The single term Galerkin method (Finlayson [15]) is convenient for solving the present problem. 

Accordingly, the unknown variables W and  are written as  

                                                    
1

W A W  and 
1

B                                                                         (10) 

in which A and B are constants and 
1

W  and 
1


 
are the trial functions, which are chosen suitably satisfying the 

boundary conditions (9). Multiplying equation (8) by
 
W and equation (9) by  , integrating the resulting 

equations with respect to z from 0 to 1 using the boundary conditions (9). Substituting for W and   from (10) 

and eliminating A and B from resulting system of equations, we obtain yield the following eigenvalue equation 

             
     

     

2 2 22 2 4

2 22 2

2 0

2 (1) (1)

0 ,

1

D W a D W a W D W W

R a T W D a





      
 



                                 
(11)

 

 
where 

 
denotes integration with respect to z from z = 0 to z = 1, and suffixes have been dropped for 

simplicity while writing equation (11). The eigenvalue equation (11) may be put in the following form 
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         
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IV. Result and discussion 
           We select the trial function  

                                  
2 1 3

1 an d 1,
4 2 4 2

W z z z



  

      
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                                                  (13) 

Such that they satisfy all the boundary conditions in (9). 

 It is important to remark here that above choice of the velocity trial function given by (13) is found to 

be useful for cases in which the two mechanisms (buoyancy and surface tension) causing instability act 

individually or simultaneously. Substitution of trial functions given by (13) into the eigenvalue equation (12), 

we obtain
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                     (14) 

 

Case 1.   When buoyancy is the sole agency causing instability   
 By setting γ = 0 (M = 0) in the relation (14), we obtain the case in which buoyancy is the sole agency 

causing instability. The eigenvalue equation (14) then yields                                              

                                                   
2 4

2 0

3 2 0 2 1 9
1

(1 ) 2 1 4 5 3 6

a a
R

T

 
   
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                                                              (15) 

and R attain its minimum when a = 0,  given by  

                                                            
2 0

3 2 0

(1 )
c

R
T




                                                                                 (16) 

 
Figure 2: Variation of Rc as function of 

2 0
T  , when M = 0. 

 

 When 
2 0

0T , 
 
then Rc = 320 which is exactly same as that obtained by Nield[16].  The effect of 

increasing values of 
2 0
T  on the onset of buoyancy driven convection problem is plotted in Fig 2, using the 

expression (16). Increasing value of the critical Rayleigh number Rc with 
2 0
T  as shown in Fig 2, illustrates that 

a relatively hotter layer of liquid is more stable than a cooler one under identical conditions. 
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Case 2.   When surface tension is the sole agency causing instability  
The relation (4) may be written as follows 

           

2 2

2 4

2 2

2 0

1 1 7 5

1 8 4 4 8 4 8 6 9 1 2
1
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
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                           (17)

       
 

 

 By setting   
 
(R = 0) in the relation (17), we obtain the case in which surface tension is the sole 

agency causing instability. The eigenvalue equation (17) then yields                                              

                                         
2 4

2 0

4 8
1
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M
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                                                                           (18) 

and M attain its minimum when a = 0,  given by  

                                                                   
2 0

4 8

(1 )
c

M
T




                                                                         (19) 

 

 
Figure 3: Variation of Mc as function of 

2 0
T  , when R = 0. 

 

 When 
2 0

0T , 
 
then Mc = 48 which is exactly same as that obtained by Pearson [2] and confirmed by 

Nield [16].  The effect of increasing values of 
2 0
T  on the onset of surface tension driven convection problem is 

plotted in Fig 3, using the expression (19). Increasing value of the critical Marangoni number Mc with 
2 0
T  as 

shown in Fig 3 illustrates that a relatively hotter layer of liquid is more stable than a cooler one under identical 

conditions. 

 

Case 3. When both surface tension and buoyancy mechanisms cause instability 

 For the case when instability is caused by both surface tension and buoyancy mechanisms, from the 

relation (17) we find that coefficients of both a2 and a4 are positive for prescribed values of γ and 
2 0
T ,  hence 

true minimum of R with respect to a exists at a = 0. In this case, the relation (17) reduces to the following 

neutral stability condition 

                                                         
2 0

1

3 2 0 4 8 1

R M
.

T
 


                                                                     (20) 

 When 
2 0
T  = 0, then we have the relationship between R/320 and M/48 previously referred to by 

Nield [17] and corresponds to maximum reinforcement of the two agencies causing instability. Further, the 

relation (20) shows that the surface tension and buoyancy effects remain perfectly coupled for a prescribed 

value of 
2 0
T . 
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Figure 4:  Variation of Marangoni and Rayleigh numbers on the onset of convection for various values of 

2 0
T . 

 

 The (R, M)-loci corresponding to neutral stability for the combined surface tension and buoyancy 

driven instability are plotted in Fig 4, using the relation (20) for various values of 
2 0
T . Fig 4 clearly 

demonstrates that a relatively hotter layer of liquid is more stable than a cooler one under identical conditions, 

and that the coupling between the two mechanisms remains perfect. 

 

V. Conclusion 
 We conclude that the onset of Rayleigh-Bénard-Marangoni convection in a relatively hotter layer of 

liquid is more stable than a cooler one under identical conditions, irrespective of whether the two mechanisms 

causing instability act individually or simultaneously and that the coupling between two mechanisms causing 

instability remains perfect whether the layer of liquid is relatively hotter or cooler. This analysis will hopefully 

stimulate further theoretical studies as well as experimental work on this problem. 
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