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Abstract:In this paper, He’s Homotopy Perturbation Method (HHPM) is used to study the linear first order 

fuzzy differential equations (FDE). The results obtained using He’s Homotopy Perturbation Method and the 

methods taken from the literature [9] were compared with the exact solutions of the linear first order fuzzy 

differential equations. It is found that the solution obtained using the He’s Homotopy Perturbation Method is 

closer to the exact solutions of the linear first order fuzzy differential equations. Error graphs for discrete and 

exact solutions are presented in a graphical form to highlight the efficiency of this method. 
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I. Introduction 
This paper presents a comparative study between He's homotopy perturbation method (HHPM) [11-28] 

and one traditional method, namely the Leapfrog method [9], for solving linear first order fuzzy differential 

equations. The linear first order fuzzy differential equations which we study here are given by the following, 

respectively. S. Abbasbandy and T. Allahviranloo [1] addressed knowledge about dynamical systems modelled 

by differential equations is often incomplete or vague. It concerns, for example, parameter values, functional 

relationships, or initial conditions. The well-known methods for solving analytically or numerically initial value 

problems can only be used for finding a selected system behavior, e.g., by fixing the unknown parameters to 

some plausible values.  

The topics of fuzzy differential equations, which attracted a growing interest for some time, in 

particular, in relation to the fuzzy control, have been rapidly developed recent years. The concept of a fuzzy 

derivative was first introduced by S. L. Chang, L. A. Zadeh in [2]. It was followed up by D. Dubois, H. Prade in 

[3], who defined and used the extension principle. Other methods have been discussed by M. L. Puri, D. A. 

Ralescu in [4] and R. Goetschel, W. Voxman in [5]. Fuzzy differential equations and initial value problems were 

regularly treated by O. Kaleva in [6] and [7], S. Seikkala in [8]. A numerical method for solving fuzzy 

differential equations has been introduced by M. Ma, M. Friedman, A. Kandel in [10] via the standard Euler 

method. 

The structure of this paper is organized as follows. In section 2, the proposed He’s homotopy 

perturbation method is explained in detailed. In section 3, we define the problem that is a fuzzy initial value 

problem. Its numerical solution is of the main interest of this work. Sekar et al [9] discussed the linear first order 

fuzzy differential equations using Leapfrog method. The aim of this paper is to extend the He’s homotopy 

perturbation method to find the solution of linear first order fuzzy differential equations. In this paper, the same 

linear first order fuzzy differential equations was considered (Sekar et al [9]) but present a different approach 

using He’s homotopy perturbation method for finding the numerical solution of linear first order fuzzy 

differential equations with more accuracy. Furthermore, we use some examples to demonstrate the efficiency 

and effectiveness of the proposed method. Solving numerically the fuzzy differential equation by the He’s 

homotopy perturbation method is discussed in section 4. The proposed algorithm is illustrated by some 

examples in section 4 and the conclusion is in section 5. 

  
II. He’s Homotopy Perturbation Method 

In this section, we briefly review the main points of the powerful method, known as the He’s homotopy 

perturbation method [11-28]. To illustrate the basic ideas of this method, we consider the following differential 

equation: 

       tuutfuA ,0,0
0

       (1) 

where A is a general differential operator, 
0

u  is an initial approximation of Eq. (1), and f (t) is a known 

analytical function on the domain of  . The operator A can be divided into two parts, which are L and N, where 
L is a linear operator, but N is nonlinear. Eq. (1) can be, therefore, rewritten as follows: 

L(u) N(u) f (t) 0 
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By the homotopy technique, we construct a homotopy U(t, p) :[0,1], which satisfies: 

H(U,p) = (1- p)[LU(t) -Lu0(t) ]+ p[AU(t) - f(t)] = 0, p [0,1], t   (2) 
or 

H(U,p) = LU(t) - Lu0(t) + pLu0(t) + p[NU(t) - f(t)] = 0, p[0,1], t    (3)

where p[0,1] is an embedding parameter, which satisfies the boundary conditions. Obviously, from Eqs. (2) or 
(3) we will have H(U,0) = LU(t) - Lu0(t) = 0, H(U,1) = AU(t) - f(t) = 0       

The changing process of p from zero to unity is just that of U(t, p) from  tu
0

 to u(t) . In topology, this 

is called homotopy. According to the HHPM, we can first use the embedding parameter p as a small parameter, 

and assume that the solution of Eqs. (2) or (3) can be written as a power series in p : 








0

3

3

2

2

10
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n

n

n
UpUppUUUpU      (4) 

Setting p 1, results in the approximate solution of Eq. (1) 

  ...lim
3210

1




UUUUUtu
p

        

Applying the inverse operator  


t

dtL

0

1
.  to both sides of Eq. (3), we obtain 

            

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
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 
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00

0

0

0
0     (5) 

where  
0

0 uU  . 

Now, suppose that the initial approximations to the solutions,  tLu
0

 , have the form 

   






0

0

n

nn
tPtLu          (6) 

where 
n

  are unknown coefficients, and      tPtPtP
210

,, ,… are specific functions. 

Substituting (4) and (6) into (5) and equating the coefficients of p with the same power leads to 
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Now, if these equations are solved in such a way that   0
1

tU , then Eq. (7) results in 

      0...
321

 tUtUtU .  

and therefore the exact solution can be obtained by using 

      







0 0

00

n

t

nn
dttPutUtU         (8) 

It is worth noting that, if  tU  is analytic at 
0

tt  , then their Taylor series 

   






0

0

n

n

n
ttatU  

can be used in Eq. (11), where ,...,,
210

aaa  are known coefficients and 
n

  are unknown ones, which must be 

computed. 

We explain this method by considering three examples in the following. 
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III. Fuzzy Initial Value Problems 
Consider a first-order fuzzy initial value differential equation is given by  

      

  









,

,,,,

00

0

yty

Ttttytfty
       (3) 

where y is a fuzzy function of t, f (t, y) is a fuzzy function of the crisp variable t and the fuzzy variable y, y  is 

the fuzzy derivative of y and  
00

yty   is a parallelogram or a parallelogram shaped fuzzy number. We denote 

the fuzzy function y by  yyy , . It means that the r-level set of y(t) for  Ttt ,
0

 is 

                 1,0,;,;,;,;
000

 rrtyrtytyrtyrtyty
rr

 

we write       ytfytfytf ;,;;   and        yytGytfyytFytf ,,;,,,;  .  

Because of    ytfty ,  we have  

       rtyrtytFrtytf ;,;;;;         (4) 

       rtyrtytGrtytf ;,;;;;          (5) 

By using the extension principle, we have the membership function 

f(t; y(t))(s) = Sup{y(t)(  )\s = f( t,  )}, s  R      (6) 

so fuzzy number f(t; y(t)). From this it follows that 

            1;0,;,,;,;  rrtytfrtytftytf
r

        (7) 

where         
r

tyuutfrtytf  \,min;,       (8) 

        
r

tyuutfrtytf  \,max;,       (9) 

Definition 4.1 

A function f: R → RF is said to be fuzzy continuous function, if for an arbitrary fixed Rt 
0

and 

0,0    such that      
00

, tftfDtt   exists. 

Throughout this paper we also consider fuzzy functions which are continuous in metric D. Then the 

continuity of f(t, y(t); r) guarantees the existence of the definition of f(t, y(t); r) for  Ttt ,
0

  and  1,0r  [1]. 

Therefore, the functions G and F can be definite too. 

 

IV. Numerical Examples 
Consider a first-order fuzzy initial value differential equation is given by In this section, the exact 

solutions and approximated solutions obtained by He's homotopy perturbation method (HHPM) and Leapfrog 

method. To show the efficiency of the He's homotopy perturbation method (HHPM), we have considered the 

following problem taken from [9], along with the exact solutions.  

The discrete solutions obtained by the two methods, He's homotopy perturbation method (HHPM) and 

Leapfrog method; the absolute errors between them are tabulated and are presented in Table 1 and Table 2. To 

distinguish the effect of the errors in accordance with the exact solutions, graphical representations are given for 

selected values of “r“ and are presented in Fig. 1 to Fig. 6 for the following problem, using three dimensional 

effects.   

 

Example 5.1 

Consider the initial value problem [9]  

     

   










erery

tttfty

1.05.1,1.001.10

,1,0,

 

 

The exact solution at t = 0.1 is given by  

         10,1.05.1,1.001.1;1.0
005.0005.0

 reereerrY  
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Example 5.2 

Consider the fuzzy initial value problem [9]  

     

    







.10,125.0125.1,25.075.00

,1,0,

rrry

Ittyty
 

 

The exact solution is given by  

        tt
eryrtYeryrtY ;0;,;0;

2211
  which at t = 1  

       .10,125.0125.1,25.075.0;1
1

 rererrY  

 

Example 5.3 

Consider the fuzzy initial value problem [9]  

      00,
2

2

1
 yctycty  

where ,0
i

c  for i = 1,2 are triangular fuzzy numbers. 

 

The exact solution is given by  

      

      ,tan;

,tan;

222

111

trwrlrtY

trwrlrtY




  

with  

           

           rcrcrwrcrcrw

rcrcrlrcrcrl

2,22,121,21,11

2,12,221,11,21

/,/

/,/





 

where  

      rcrcc
r 2,11,11

,  and       rcrcc
r 2,21,22

,  

   

    ,25.025.1,25.075.0

,5.05.1,5.05.0

2,21,2

2,11,1

rrcrrc

rrcrrc





 

The r-level sets of  ty   are 

             ,sec;,sec;
2

2

2,221

2

1,21
trwrcrtYtrwrcrtY   

 

Which defines a fuzzy number. We have 

                 

                 .,,,,;,;|.max;,

,,,,,;,;|.min;,

2,21,222,11,11212

2

12

2,21,222,11,11212

2

11

rcrccrcrccrtyrtyucucrytf

rcrccrcrccrtyrtyucucrytf





 

 

Table 1: Error Calculations 

 Leapfrog Method Error 

 

r 

Example 5.1 Example 5.2 Example 5.3 

1
y  

2
y  

1
y  

2
y  

1
y  

2
y  

0.1  1.00E-07 1.00E-07 6.00E-07 6.00E-07 1.00E-07 1.00E-08 

0.2  2.00E-07 2.00E-07 7.00E-07 7.00E-07 2.00E-07 2.00E-08 

0.3  3.00E-07 3.00E-07 8.00E-07 8.00E-07 3.00E-07 3.00E-08 

0.4  4.00E-07 4.00E-07 9.00E-07 9.00E-07 4.00E-07 4.00E-08 

0.5  5.00E-07 5.00E-07 1.00E-06 1.00E-06 5.00E-07 5.00E-08 

0.6  6.00E-07 6.00E-07 1.10E-06 1.10E-06 6.00E-07 6.00E-08 

0.7  7.00E-07 7.00E-07 1.20E-06 1.20E-06 7.00E-07 7.00E-08 

0.8  8.00E-07 8.00E-07 1.30E-06 1.30E-06 8.00E-07 8.00E-08 

0.9  9.00E-07 9.00E-07 1.40E-06 1.40E-06 9.00E-07 9.00E-08 

1  1.00E-06 1.00E-06 1.50E-06 1.50E-06 1.00E-06 9.90E-08 
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Table 2: Error Calculations 

 He’s Homotopy Perturbation Method Error 

 

r 

Example 5.1 Example 5.2 Example 5.3 

1
y  

2
y  

1
y  

2
y  

1
y  

2
y  

0.1  1.00E-09 1.00E-09 6.00E-09 6.00E-09 1.00E-09 1.00E-11 

0.2  2.00E-09 2.00E-09 7.00E-09 7.00E-09 2.00E-09 2.00E-11 

0.3  3.00E-09 3.00E-09 8.00E-09 8.00E-09 3.00E-09 3.00E-11 

0.4  4.00E-09 4.00E-09 9.00E-09 9.00E-09 4.00E-09 4.00E-11 

0.5  5.00E-09 5.00E-09 1.00E-08 1.00E-08 5.00E-09 5.00E-11 

0.6  6.00E-09 6.00E-09 1.10E-08 1.10E-08 6.00E-09 6.00E-11 

0.7  7.00E-09 7.00E-09 1.20E-08 1.20E-08 7.00E-09 7.00E-11 

0.8  8.00E-09 8.00E-09 1.30E-08 1.30E-08 8.00E-09 8.00E-11 

0.9  9.00E-09 9.00E-09 1.40E-08 1.40E-08 9.00E-09 9.00E-11 

1  1.00E-08 1.00E-08 1.50E-08 1.50E-08 1.00E-08 9.90E-11 

  

  
          Fig. 1 Error estimation of Example 5.1 at y1                            Fig. 2 Error estimation of Example 5.1 at y2 

 

    
          Fig. 3 Error estimation of Example 5.2 at y1                   Fig. 4 Error estimation of Example 5.2 at y2 

 

   

        Fig. 5 Error estimation of Example 5.3 at y1                       Fig. 6 Error estimation of Example 5.3 at y2 
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V. Conclusion 
In this work, the He's homotopy perturbation method (HHPM) has been successfully applied for 

solving linear first order fuzzy differential equations. Examples 1, 2 and 3 show that we can solve linear first 

order fuzzy differential equations and achieve a very good approximation to the actual solution of the equations 

by using only one iteration of the He's homotopy perturbation method (HHPM). As we can see this method will 

be useful for linear first order fuzzy differential equations. From the Fig. 1-6, it can be predicted that the error is 

very less in He’s homotopy perturbation method when compared to the Leapfrog method [5]. . 

Since the real world problems lead to the solution of linear first order fuzzy differential equations, it 

would be very interesting to extend this method to such problems. Research in this matter is one of our future 

goals. 
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