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Abstract : The steady flow of an incompressible viscous fluid above an infinite rotating disk in a porous 

medium is studied with heat transfer. Numerical solutions of the nonlinear governing equations which govern 

the hydrodynamics and energy transfer are obtained and solved using Crank  Nicolson  method. The effect of 

the porosity of the medium on the velocity and temperature distributions is considered. 
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I. Introduction 
 The pioneering study of fluid flow due to an infinite rotating disk was carried by von Karman [1]. Von 

Karman gave a formulation of the problem and then introduced his famous transformations which reduced the 
governing partial differential equations to ordinary differential equations. Asymptotic solutions were obtained 

for the reduced system of ordinary differential equations by Cochran [2]. Their analysis was much simpler and 

valuable information was gained from it. This gave the problem significant theoretical value and invited many 

researchers to add to it new features. Benton [3]  improved Cochran's solutions and solved the unsteady problem 

and proved that the steady state solution can be obtained via a time-dependent process. 

In recent years, considerable interest has been shown in mass addition to boundary layer flows, 

especially in connection with the cooling of turbine blades and the skins of high speed aero-vehicles. Such a 

cooling process, frequently termed transpiration, might utilize a porous surface through which a coolant, either a 

gas or liquid, is forced. It is of interest to study the effect of the magnetic field as well as the non-Newtonian 

fluid behaviour on the heat transfer and, in turn, on the cooling  process of such devices. These results are 

needed for the design of the wall and the cooling arrangements. 

 The problem of heat transfer from a rotating disk maintained at a constant temperature was first 
considered by Millsaps and Pohlhausen [4] for a variety of Prandtl  numbers in the steady state. Sparrow and 

Gregg (1960) studied the steady state heat transfer from a rotating disk maintained at a constant temperature to 

fluids at any Prandtl number. Later Attia (1998) extended the problem discussed in (Millsaps et al. 1952, 

Sparrow et al. 1960) to the unsteady state in the presence of an applied uniform magnetic field where a 

numerical solution has been obtained. Sparrow and Gregg [5] studied thesteady state heat transfer from a 

rotating disk maintained at a constant temperature to fluids at any Prandtl number. The influence of an external 

uniform magnetic field on the flow due to a rotating disk was studied [6–8]. The effect of uniform suction or 

injection through a rotating porous disk on the steady hydrodynamic or hydromagnetic flow induced by the disk 

was investigated [9–11]. 

 In the present work, the steady laminar flow of a viscous incompressible fluid due to the uniform 

rotation of a disk of infinite extent in a porous medium is studied with heat transfer. The flow in the porous 
media deals with the analysis in which the differential equation governing the fluid motion is based on the 

Darcy’s law which accounts for the drag exerted by the porous medium [12-14]. The temperature of the disk is 

maintained at a constant value. The governing nonlinear differential equations are integrated numerically using 

the finite difference approximations.  The effect of the porosity of the medium on the steady flow and heat 

transfer is presented and discussed. 

 

II. Physical Description Of The Problem 
 Physical model presented below consists of a rotating disk immersed in a large amount of 

fluid. Motions within the fluid are generated by rotating disk, which induces heat  transfer phenomenon. Disk of 

a radius R rotates around an axis perpendicular to the surface with uniform angular velocity . Due to the 

viscous forces  n  a layer of fluid is carried by the disk. Fluid motion is characterized by velocity components u-

radial, v-circumferential, and w-axial. Fluid is defined as single-component gas and therefore temperature is 

maintained constant at all points on the disk surface. 

 Let the disk lie in the plane z = 0 and the space z > 0 is equipped by a viscous incompressible fluid. 

The motion is due to the rotation of an  insulated disk of infinite extent about an axis perpendicular to its plane 

with constant angular speed ω through a porous medium where the Darcy model [14] is assumed. Otherwise the 
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fluid is at rest under pressure p∞. 

 
 

III. Basic Equations 
Considering system of cylindrical co-ordinates: 
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The equations of steady motion are given by
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 where wvu ,,  are velocity components in the directions of increasing zr ,,   respectively, P is 

denoting the pressure,   is the coefficient of viscosity,   is the density of the fluid, and K  is the Darcy 

permeability [12-14].  

 

IV. Solution Of The Problem 
 Although equations describe behavior of fluid at some distance from an object most critical and 

important from  physical point of view is steady  flow of the layer nearest to surface of the disk z = 0.  From 
physical and mathematical description we can determine boundary conditions considering no-slip condition at 

the wall of the disk: 

0  v0,u    :z

0   wω,*r  v0,u     :0z





 
Successful attempt of solving similar velocity problem for an impermeable disk rotating in a single-

component fluid was achieved in 1921 by T. von Karman. In order to use similarity transform to reduce the 

partial differential equations to ordinary differential equations new variables need to be introduced:  

Independent variable is given by 
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Dependent variables are given by 
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thus  von Karman transformations [1] are given by  

)(Fru  ,  )(Grv  ,  )( Hw  ,   /z ,  Pp   

where   is a non-dimensional distance measured along the axis of rotation, HGF ,,  and P  are non-

dimensional functions of  , and   is the kinematic viscosity of the fluid,  / . 

With these definitions, equations (3.1) – (3.4) take the form 
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 KM / is the porosity parameter. The boundary conditions for the velocity problem are given by 

 

 0 ,     0F ,    1G ,    0H ,      (3.9a) 

 ,  0F ,  0G ,  0P ,      (3.9b)  

Two missing Boundary conditions are given as 

6159.00'510.00'  )  (,  G)(F
 

can be obtained by approximation method stretching of the independent variable and using least squares method 

to minimize the error in the differential equations.   
 Equation (3.9a) indicates the no-slip condition of viscous flow applied at the surface of the disk. Far 

from the surface of the disk, all fluid velocities must vanish aside the induced axial component as indicated in 

equation (3.9b). The above system of equations (3.5)–(3.7) with the prescribed boundary conditions given by 

equations (3.9) are sufficient to solve for the three components of the flow velocity. Equation (3.8) can be used 

to solve for the pressure distribution if required. 

 Due to the difference in temperature between the wall and the ambient fluid, heat transfer takes place. 

The energy equation without the dissipation terms takes the form [4,5] 
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 Where T  is the temperature of the fluid, pc  is the specific heat at constant pressure of the fluid, and 

K  is the thermal conductivity of the fluid. The boundary conditions for the energy problem are that, by 

continuity considerations, the temperature equals wT  at the surface of the disk. At large distances from the disk, 

T  tends to T  where T  is the temperature of the ambient fluid. In terms of the non-dimensional variable 

     TTTT w/  and using von Karman transformations, equation (3.10) takes the form          
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 Where Pr  is the Prandtl number, kc kp /Pr  . The boundary conditions in terms of   are 

expressed as 

 

1)0(  ,  0)( 
 (3.12)

 

 

 The system of non-linear ordinary differential equations (3.5)–(3.7) and (3.11) is solved under the 

conditions given by equations (3.9) and (3.12) for the three components of the flow velocity and temperature 

distribution, using the Crank-Nicolson method [15]. The resulting system of difference equations has to be 

solved in the infinite domain  0 . A finite domain in the  -direction can be used instead with   

chosen large enough to ensure that the solutions are not affected by imposing the asymptotic conditions at a 
finite distance. The independence of the results from the length of the finite domain and the grid density was 

ensured and successfully checked by various trial and error numerical experimentations. Computations are 

carried out for 12 . 

 

The graph is drawn for the velocity components u, v, w is easy to obtain from previously introduced equations 
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V. Results And Discussion 
 The nonlinear ordinary differential equations (3.5 ) – (3.8) subject to the boundary conditions (3.9) 

have been solved via crank nicolsan method for some values of the porosity  parameter  𝑀 . For the present 

investigation, the value of the Prandtl number  𝑃𝑟  is considered equal to 0.7. 

 Fig (1-4) represents the influence of porosity parameter, on the radial, tangential and axial velocity 

components as well as temperature distribution.  It is noted that all velocity boundary layer thickness decrease, 

as porosity parameter increases. It is worth mentioning that the large resistances on the fluid particles apply as 

the porosity increases. 

 

 

Fig. 1 Effect of porosity parameter on axial velocity components 
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Fig. 2 Effect porosity parameter on radial velocity components 

 

 
Fig. 3 Effect of  porosity parameter on tangential velocity components 
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Fig. 4 Effect of porosity parameter on temperature distribution  

 

VI. Conclusion 
In this study the steady flow induced by a rotating disk with heat transfer in a porous medium was 

studied. The results indicate the restraining effect of the porosity on the flow velocities and the thickness of the 

boundary layer. On the other hand, increasing the porosity parameter increases the temperature and thickness of 

the thermal boundary layer. 
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