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Abstract: Method of collocation of the differential system and interpolation of the approximate solution which 

is a combination of power series and exponential function at some selected grid and off-grid points to generate 

a linear multistep method which is implemented in block method is considered in this paper. The basic 

properties of the block method which include; consistency, convergence and stability interval is verified. The 

method is tested on some numerical experiments and found to have better stability condition and better 

approximation than the existing methods. 
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I. Introduction 
 This paper considers a new numerical block integrator for the solution of first order initial value 

problems of the form 

00
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 Where f  is continuous and satisfies Lipschitz's conditions, 
0

x is the initial point and 
0

y  is the 

solution at
0

x .Problems in the form (1) has wide application in engineering, physical sciences, medicine etc. 

The solution of (1) has been discussed by various scholars among them are Onumanyi et al. [1,2], Lambert [3], 

James and Adesanya [6], Sirisena [7,8]. Adoption of collocation and interpolation of power series approximate 

solution to developed block method  for solution of initial value problems have been studied by many scholars, 

among them are James et al. [5], Fasasi et al. [16], Areo and Adeniyi [15], Adesanya et al. [12], Skwame et al. 

 [18], Adesanya et al. [11,13]. These authors independently implemented their methods such that the 

solutions are simultaneously generated at different grid points within the interval of integration. It has been 

reported that block method is more efficient than the existing method in terms of time of development and 

execution. Moreover, block method gives better approximation than the predictor corrector method and enables 

the nature of the problem to be understood at the selected grid points Adesanya et al.,[11,13]. The introduction 

of hybrid method to circumvent the Dahlquist stability barrier has been studied by many scholars which include 

Anake et al. [14], Fasasi, et al. [16], Adesanya, et al. [12], Lambert  [3]. This scholars reported that though 

hybrid method are difficult to develop but enables the reduction in the step length. These scholars equally 

reported that lower k step method gives better result than the higher k step method. Approximate solution of the 

form 
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 Where n is the number of Interpolation and Collocation point has been studied by scholars, among 

them are: Sunday, et al. [9,10], Momoh, et al. [17]. These authors reported that this method possess a good 

stability condition which is good for stiff, oscillatory and nonlinear problems. In this paper, we combined the 

desire qualities of hybrid method, block method and the approximate solution which is the combination of 

power series and exponential function to derive a new method for the solution of first order ordinary differential 

equation. It should be noted that our approximate solution considered more exponential functions than the one 

proposed by the authors mentioned above. 

 

II. Methodology 
We consider an approximate solution of the form 
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The first derivative of (3) is given by 
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 Substituting (4) into (1) gives 
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 We sought the motion of (1) on the partition 
NN

xxxx  ...:
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 over a constant stepsize 
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1
. Interpolating (3) at 0, 


sx

sn
and collocating (4) at points ,

rn
x


 gives a system of nonlinear 

equation of the form; 
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Solving (5) for the constants to be determined sa
j

' ,and substituting back into (3) gives a continuous linear 

multistep method of the form 
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Evaluating (6) at 1,
4

3
,

2

1
,

4

1
,0t  and writing in block form gives a discrete block formula in the form 
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where 
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Analysis of Basic Properties of the Developed Method. 

 Order of the Block Method 

Let the linear operator  hxyL :)(  associated with the block integrator (8) be defined as 

  )()(:)(
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Expanding using Taylor series and comparing the coefficients of h gives 

 

...)()()(

...)('')(')(:)(

22

2

11

1

210












xyhCxyhCxyhC

xhyCxhyCxyChxyL

pp

p

pp

p

pp

p

 10
 

Definition 1.1:  Order of Block Method 
 The linear operator L and associated block method are said to be of order p if  

11210
.0,0...


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ppp
cccccc  is called the error constant and implies that the truncation error is 

given by 
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For our method 
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Expanding (12) in Taylor series, and comparing the coefficient of h , gives 
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Hence, cⁿ=c₀=c₁=c₂=c₃=c₄=0.  
T

c )5.1670(-07- ),4.5776(-06 ),2.7127(-06 ),4.5776(-06
6


Therefore,our new hybrid block method is of order 5. 

Zero-Stability 

Definition 1.2: Zero-stability  

The block method (8) is said to be zero stable, if the roots Nsr
s

,...,2,1,   of the first characteristics 
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III. Consistency 
 A block method is said to be consistent, if it has order greater than one.From the above analysis,it is 

obvious that our method is consistent. 

 

Convergence 

Theorem 1  

 The necessary and sufficient conditions for a linear multistep method to be convergent are that it be 

consistent and zero stable. 

 

IV. Region of Absolute Stability 
Definition1.3: Region of Absolute Stability. 

 Region of absolute stability is a region in the complex z plane,where hz  .It is defined as those 

values of z such that the numerical solution of yy ' satisfies 0
j

j 0 as j for any initial 

condition. 

 To determine the absolute stability region of the new block method, we adopt the boundary locus 

method.This is achieved by substituting the test equation 
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into the block formula (8).This gives 
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since h is given by  hh  and
i

ew  .Equation (16) is called characteristic or stability polynomial.For our 

method, equation (16) is given by 
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Definition 1.4: A-stable: A numerical integrator is said to be A-stable if its region of absolute stability R 

incorporates the entire half of the complex plane denoted by C i.e. 

 0)(/  ZrealCZR .This shows that the method is A-stable. 

 

Numerical Examples 

 We shall apply the method newly developed to solve some sample problems as shown below. The 

following notations shall be used in the tables below. 

ENM-Error in our new method 

EJM-Error in (James et al., [5]).  

Problem 1 

We consider a linear first order ordinary differential equation: 

1.0,10,1)0(,'  hxyyy  

Exact solution: 
x

exy )( . 

This problem was solved by James et al., [5]. 

 

Table 1: Results for Problem 1 

X Exact solution Computed solution     ENM      EJM 
0.1 1.1051709180756477   1.10517091807564868.8818(-16)                 1.7444(-11) 

0.2 1.22140275816017011.2214027581601712   1.1102(-15)                 1.5783(-11)   

0.3 1.3498588075760034   1.3498588075760041    6.6613(-16)   1.4281(-11) 

0.4 1.4918246976412703   1.4918246976412712   4.4409(-16)   1.2925(-11) 

0.5 1.6487212707001286   1.6487212707001289   2.2204(-16)   1.1696(-11) 

0.6 1.8221188003905089   1.8221188003905107   8.8818(-16)   1.0580(-11) 

0.7 2.0137527074704775   2.0137527074704775   0.0000(+00)   9.5701(-11) 

0.8 2.2255409284924688   2.2255409284924688   0.0000(+00)   8.6612(-11) 

0.9 2.4596031111569512   2.4596031111569534   2.2204(-15)   7.8371(-11) 

1.0 2.7182818284590473   2.7182818284590504   3.1086(-15)   7.0927(-11) 

 

Problem 2 

1.0,10,1)0(,'  hxyxyy  
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figure 1 showing stability region
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Exact solution: 

2

2

1

)(
x

exy  . 

 

Table 2: Results for Problem 

X Exact solution      Computed solution          ENM              EJM 

0.1 1.0050125208594012    1.0050125208594014 2.2204(-16)   1.6554(-11) 

0.2 1.0202013400267558     1.0202013400267567 8.8818(-16)   4.3981(-11) 

0.3 1.0460278599087169    1.0460278599087172 2.2204(-16)   7.8451(-11) 

0.4 1.0832870676749586 1.0832870676749586   0.0000(+00)   1.2925(-10) 

0.5 1.1331484530668265     1.1331484530668250 1.5543(-15)   1.9709(-10) 

0.6 1.1972173631218104 1.1972173631218075 2.8866(-15)   3.0180(-10) 

0.7 1.2776213132048870     1.2776213132048844 2.6645(-15)   4.5771(-10) 

0.8 1.3771277643359578     1.3771277643359543 3.5527(-15)   6.8954(-10) 

0.9 1.4993025000567677     1.4993025000567641 3.5527(-15)   1.0336(-09) 

1.0 1.6487212707001293     1.6487212707001255 3.7748(-15)   1.5435(-09) 

 

Problem 3 

1.0,10,0)0(,'  hxyyxy  

 Exact solution: 1)( 
x

exxy . 

    This problem was solved by (James et al., [5]) 

 

Table 3: Results for Problem 3 

X Exact solution Computed solution              ENM      EJM 

0.1 0.0048374180359596      0.0048374180359596 2.9490(-17)   1.7443(-11) 

0.2 0.0187307530779819      0.0187307530779819 2.0817(-17)   1.5786(-11) 

0.3 0.0408182206817180      0.0408182206817179 1.4571(-16)   1.4283(-11) 

0.4 0.0703200460356395      0.0703200460356394 4.1633(-17)   1.2924(-11) 

0.5 0.1065306597126337      0.1065306597126336 9.7145(-17)   1.1694(-11) 

0.6 0.1488116360940266      0.1488116360940267 8.3267(-17)   1.0581(-11) 

0.7 0.1965853037914098      0.1965853037914098 2.7756(-17)   9.5739(-12) 

0.8 0.2493289641172218      0.2493289641172220 1.9429(-16)   8.6613(-12) 

0.9 0.3065696597405996      0.3065696597405995 1.1102(-16)   7.8396(-12) 

1.0 0.3678794411714428      0.3678794411714428 0.0000(+00)   7.0906(-12) 

 

V. Discussion of Result 
 We have considered three numerical examples in this paper to test the efficiency of our method. The 

three problems were earlier solved by (James et al., [5]). In all the three examples our new method gave better 

approximation when compared to that of (James et al., [5]).   

 

VI. Conclusion 
 In this paper, we have developed a new hybrid block method for the solution of first order initial value 

problems in ordinary differential equations. Our method was found to be zero stable,consistent and convergent. 

The numerical results show that our method is computationally reliable and gave better accuracy than the 

existing methods. 
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