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Abstract: In this paper we examine the existing definitions of deterministic chaos and the characterisation of 

its various ingredients. We then make use of some classical examples to provide cross links between the 

different chaotic behaviour of some simple but interesting maps which are then explained in a precise manner.   

 

I. Introduction 

The late twentieth century non-linear dynamical systems terminology „chaos‟   traces its origin to Li 

and York [9]. It asserts that for map on the real line which has a point with period three, there exists an 

uncountable scrambled set. This contrasts sharply with the definition given by Devaney [6] whose main 

ingredients are topological transitivity, density of periodic points and sensitive dependence on initial conditions.  

In fact it was widely accepted that sensitive dependence on initial conditions was the main ingredients in 

Devaney‟s definition of chaos but Banks et al [2], has proved that it was a redundant hypothesis since it was 

implied from the other two conditions. Other famous notions of chaos are those due to Wiggins  and Lyapunov 

and these, together with Devaney‟s chaos, will form the basis for the analysis of cross links between maps 

exhibiting them. But for a thorough treatise on the fundamental elementary notions from basic point set 

topology and dynamical systems, we refer the interested reader to [1]  

 

II. Ingredients Of Chaos 
Here under, we provide precise definitions as well as clear explanations of the main ingredients of chaos; 

topological transitivity, density of periodic points and sensitive dependence on initial conditions. 

 

Definition 2.1   Given the metric space X and the continuous mapf: X → X. We say that f is topologically 

transitive if for every pair of non empty open sets U and V in X, there exists k > 0 such that f k(U) ∩ V ≠ ϕ. 
Another famous definition of transitivity is the following: 

 

Definition 2.2   The map f is said to be topologically transitive if there exists xϵX such that its orbits  f n x : n ≥
0 is dense in X. 
Intuitively these two definitions of topological transitivity are clearly not equivalent as can be seen from the 

following example. 

 

Example 2.3  Consider the continuous map f: X → X where X =  0 ∪  
1

n
: nϵN  equipped with the metric 

d =  x − y  ∀x, yϵX. Then clearly f  is defined by f(0) = 0 and f(
1

n
) =

1

n+1
 for n = 1,2, …. Then by choosing 

U =  
1

2
  and V =  1 , f does not satisfy Definition 2.1 but then the point x = 1 has dense orbit in X so Definition 

2.2 is satisfied and so is not equivalent to Definition 2.1. However, by [10], these two definitions are equivalent 

when X is a compact metric space. 

 

Definition 2.4    Given the metric space X equipped with the metric d and the continuous map f: X → X.  We say 

that f exhibits sensitive dependence on initial conditions if there exists δ > 0 such that for any xϵX any open 

neighbourhood Nε(x) of x for some ε > 0 there exists a point yϵNε(x) and n ≥ 0 such that d f n x , f n y  ≥ δ.  
 

Remark 2.5   a)   A map which has sensitive dependence on initial conditions has points in Nε(x) which 

eventually separate from x by at least a distance δ under iteration. 

                    b)  From Definition 2.4 we can see that not all points in the open neighbourhood Nε(x) of x 

eventually separate from x under iteration but there is at least one such point in every open neighbourhood. 

                    c)  It is noteworthy that sensitivity is a metric property since it depends on the metric of the space. 

                   d)   The sensitivity constant δ neither depends on x nor on ε but only on the dynamical system (see 

also, [5]). 
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III. Characterization Of  Devaney’s, Wiggin’s And Lyapunov’s Chaos 
 We examine in the sequel the different perspectives of chaos such as Devaney‟s, Wiggin‟s and 

Lyapunov‟s chaos. We state however, that, conventionally in the rest of what follows, “transitivity” will always 

mean “topological transitivity” and “sensitivity” will always mean sensitive dependence on initial conditions”. 

 

Definition 3.1 ( Devaney‟s) Let f: X → X be a continuous map and X is a metric space. Then f is said to be 

chaotic according to Devaney, hence forth, D- chaotic if: 

i) f  is topologically transitive 

ii) The periodic points of f are dense in X 

iii)   f exhibits sensitive dependence on initial conditions. 

 

Banks et al [2] has since faulted this definition by proving that sensitivity is indeed a redundant hypothesis 

because it is implied by transitivity and density of periodic points. It has also been proved in [4] that a 

continuous map with dense periodic points and sensitive dependence on initial conditions doesn‟t need to be 

transitive. We illustrate this with a counter example. 

Counter example 3.2   Consider the continuous mapf: Y → Y, on Y = S ×  0,1   is a metric equipped with the 

“taxi cab” metric d  x1 , y1) , (x2 , y2  =  x2 − x1 +  y2 − y1  for every pair  x1 , y1)  and (x2 , y2  ϵY.  We 

then define  f by  f eiθ , t = (e2iθ , t) and we see clearly that a point z = (eiθ , t)  will be a periodic point of f 

when eiθis the root of unity of order 2n − 1  for some n, so the periodic points of f are dense in Y.  On the other 
hand if we take two sets, A and B, where  

A = S′ × [0,
1

2
 )  and  B = S′ ×  

1

2
 , 1  ,  so that,  f n (A) ∩ B = A ∩ B = ∅, ∀nϵN. Consequently, f is not 

transitive. However if we equip the space with the “arc length” metric, then it becomes obvious that the map is 

sensitive and so f is not D-chaotic and also not W- chaotic. 

 

Definition 3.3  (Wiggin‟s chaos [11] ) Let  f: X → X be a continuous map on a metric space X. Then the map f is 
said to be chaotic in the sense of Wiggin or W- chaotic if; 

i) f is topologically transitive 

ii) f exhibits sensitive dependence on initial conditions 

 

If   one may then ask “when does D- chaotic imply W- chaotic or vice versa in the dynamics of non- linear 

maps? To be able to answer this question favourably, we make haste to afford a third definition. 

 

Definition 3.4  (Lyapunov‟s chaos)  Consider Xϵℝ  and f: X → X be a continuous and differentiable map, then f 
is said to be Lyapunov chaotic or L- chaotic if: 

i) f is topologically transitive 

ii) f has positive Lyapunov exponent λ 

 

Note that for the mapping f and for all xϵXϵℝ we define the Lyapunov exponent of x by;                           

             λ(x) = limn→∞
1

n
 log f ′ (xi) 

n−1
i=0   for allxiϵℝ.  This is a measure of the exponential rate at which nearby 

points are moving apart under iteration. However, in a set of positive measure the Lyapunov exponent can 

always be found from the relation  

              λ x = ∫ log f ′ (x)  ρ(x)dx, where  ρ(x) is the invariant measure and is always unique if f is ergodic 

(see e g, [7]). 

It is therefore eminent from the definitions that transitivity is a common notion. Consequently, we are motivated 

to isolate it and seek the overbearing effect of a positive Lyapunov exponent on a continuous and differentiable 

map against the background of the absence of sensitive dependence on initial conditions in the definition. 

The motivation for this search arose from the following consideration of the definition of the Lyapunov 

exponent. 

Consider the iterative scheme 

                               xn+1 = f xn  and let the points  x0  and x′
0  be initially displaced by                                  

 

δ =  x′0−x0  . Then after n- iterations, we get 

                             δxn
=   x′n−xn   =   f n x0 + δ − f n (x0)  =  δenλ(x0)                             3.1 

Solving for  λ(x0)  we get in the limit,   

          λ x0 =  limn→∞ limδ→0
1

n
  

fn  x0+δ −fn (x0)

δ
  =  limn→∞

1

n
 log  

dfn (x0)

dx
    

                    =  limn→∞
1

n
 log  f ′ (xi)

n−1
i=0    =  limn→∞

1

n
  log f ′ (xi) 

n−1
i=0             3.2 
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This therefore leads us to the following proposition which is part of the main thrust of this paper.  

 

Proposition 3.5 Let  f: X → Xϵℝ be a continuous and differentiable map which has a positive Lyapunov 

exponent, then f has also sensitive dependence on initial conditions. 

 

Proof: Consider an initial point 𝑥0 𝜖ℝ .such that𝑥′
0𝜖𝑁𝜀(𝑥0), then, by 3.1, we have  

          𝛿𝑥𝑛
=   𝑓𝑛 𝑥0 + 𝛿 − 𝑓𝑛 (𝑥0) =  𝑥′𝑛−𝑥𝑛  =  𝛿𝑥0

𝑒𝑛𝜆𝑥0  = 𝛿                          3.3 

Where  𝛿 =   𝑥′0−𝑥0   and  𝑥′0 = 𝑥0 + 𝛿 ⟹  𝑒𝑛𝜆𝑥0 =  
𝛿

𝛿𝑥0

 ⟹ 𝑛 = 
1

𝜆𝑥0

=  𝑙𝑜𝑔  
𝛿

𝛿𝑥0

  

Therefore after 𝑚 > 𝑛 iterations, we get using 3.3, that 

                     𝑓𝑚 𝑥′
0 − 𝑓𝑚 (𝑥0)  = 𝛿𝑥0

𝑒𝑚𝜆 𝑥0 =  𝛿𝑥0
𝑒(𝑚−𝑛)𝜆𝑥0𝑒𝑛𝜆𝑥0 = 𝑒(𝑚−𝑛)𝜆𝑥0𝛿 > 𝛿, showing that 𝑓 has 

sensitive dependence on initial conditions. This then establishes the proof of the proposition. Intuitively this 

result shows that every real expanding map has sensitive dependence on initial conditions, see also [3] & [8]. 

 

IV. Cross Links between D-Chaotic, W-Chaotic and L-Chaotic Maps 
In this section we provide cross links between the three types of chaotic behaviour highlighted in the preceding 

sections of some interesting classical maps.   

 

Proposition 4.1 The Bernoulli Shift map 𝐵 𝑥 :  0,1 → [0,1) defined by; 

         

                       𝐵 𝑥 = 2𝑥𝑚𝑜𝑑1 =  

2𝑥,         0 ≤ 𝑥 <
1

2

2𝑥 − 1 ,
1

2
≤ 𝑥 ≤ 1

  

is D-chaotic, W-chaotic and L- chaotic. 

 

Proof: We first prove that 𝐵(𝑥)  is transitive being the common ingredient using symbolic dynamics. We let  𝛴 

be the metric space of all infinite sequences containing 0‟s and 1‟s equipped with the metric;  

                       𝜌 𝑠, 𝑡 =
1

2𝑖
 𝑠𝑖−𝑡𝑖  , for all 𝑆 = (𝑠0𝑠1𝑠2 … ) and T=  𝑡0𝑡1𝑡2 …  𝜖𝛴. 

 Define 𝜍: 𝛴 → 𝛴  by 𝜍 𝑠0𝑠1𝑠2 = 𝜍(𝑠1𝑠2𝑠3), then there exists a point say, 𝑥 = (0100011011000001 … )  

created by blocks of 0‟s and 1‟s, which has a dense orbit. By a similar argument as in [8] , 𝜍 is transitive and so 

𝐵(𝑥) is transitive. It remains to show that 𝐵(𝑥) has a dense orbit. We have however, that Fix𝐵 𝑥 =
𝑃𝑒𝑟1𝐵 𝑥 = {0} ⇒  𝑃𝑒𝑟1𝐵 = 1 = 21 − 1. 
 

The period two map 𝐵2 𝑥  is then given by; 

                       𝐵2 𝑥 = 4𝑥𝑚𝑜𝑑1, so 𝑃𝑒𝑟2 𝐵 =  0,
1

3
,

2

3
 ⇒  𝑃𝑒𝑟2𝐵 = 3 = 22 − 1. 

 

Generalising this, an inductive argument really, we see that the nth iterated map is given by  

                     𝐵𝑛 𝑥 = 2𝑛𝑥𝑚𝑜𝑑1,  so   𝑃𝑒𝑟𝑛𝐵 =  0,
1

2𝑛 −1
,

2

2𝑛 −1
, … ,

2𝑛 −2

2𝑛 −1
 ⟹  𝑃𝑒𝑟𝑛𝐵 = 2𝑛 − 1  

 

And certainly, 𝑙𝑖𝑚𝑛→∞ 𝑃𝑒𝑟𝑛(𝐵) = ∞ so ∀𝑥𝜖[0,1)  and 𝜀 > 0, 𝑁𝜀(𝑥) will contain at least a periodic point, 

hence the periodic points of 𝐵 are dense.       

Also, since 𝐵 𝑥 = 2𝑥𝑚𝑜𝑑1, then  𝐵′ 𝑥 = 2 ∀𝑥𝜖[0,1) except for 𝑥 =
1

2
   where the derivative is not defined, 

implying that  𝜆 𝑥 = 𝑙𝑜𝑔 𝐵′ 𝑥  = 𝑙𝑜𝑔2 > 0 ⟹ 𝐵 𝑥  has a positive Lyapunov exponent. So all the 

conditions have been satisfied hence 𝐵(𝑥) is indeed D-chaotic, W-chaotic and L-chaotic. This establishes the 

proposition. 

 

In the next proposition we give yet another example of a map which is at variance with the requirements of 

proposition 4.1. 

 The quadratic map 𝐹:  0,1 → [0,1] given by 𝐹 𝑥 = 4𝑥 1 − 𝑥  is known to be D-chaotic  as well as  W-

chaotic(see eg, [6]). We shall use this result to investigate the chaotic behaviour of the map 𝐺: 𝐷 0,1 → 𝑈 ⊂
𝐷(0,1) in the next proposition. 

 

Proposition 4.2 The map 𝐺: 𝐷 0,1 → 𝑈 ⊂ 𝐷(0,1) defined by 𝐺:  𝑟, 𝜃 = (4𝑟 1 − 𝑟 , 𝜃 + 1) is only W-

chaotic but not L-chaotic. 
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Proof: Using the polar coordinates(𝑟, 𝜃), we define the map G on the disk D(0,1)= {𝑥𝜖ℝ2:  𝑥 ≤ 1}. We note 

that after a finite number of iterations, the image of a small disk in D(0,1) will contain an open set 𝑈 ⊂ 𝐷(0,1) 

with a full radius. Similarly a rotation of 1 radian will spread 𝑈 totally over D(0,1) after a finite number of  

iterations, so G is transitive on D(0,1). 

Now since the quadratic map 𝐹 is sensitive on [0,1] by [6], then G is also sensitive on D(0,1). 

Consequently, G has only a fixed point in the origin and so does not have any periodic points of period 𝑝 > 1. 
Basically G shrinks or stretches the distance of every point of D(0,1) from the origin while rotating by an angle 

of 1 radian. Since 
1

𝜋
 is irrational, no point 𝑥𝑛  that belongs to the orbit of 𝑥0 can return to the same ray which 

contains𝑥0. Hence G has no dense periodic points. So G is W-chaotic but not L-chaotic and consequently by 

[10], is also not D-chaotic. 

We give yet another example of a different kind in proposition 4.3 

 

Proposition 4.3 The continuous map 𝑓: 𝑋 → 𝑋 defined by 𝑓 𝑒𝑖𝜃  = 𝑒2𝑖𝜃  and             

                𝑋 = 𝑆1\  𝑒
2𝜋𝑝𝑖

𝑞
∶𝑝,𝑞𝜖ℤ,𝑞≠0

  a metric space endowed with the arc length metric 𝜌 is L-chaotic but not D- 

chaotic or W- chaotic. 

 

Proof: Observe that every non empty subset of 𝑋 is eventually expanded under iteration to coverX, so 𝑓 is 

transitive. Also by defining in this way the set 𝑋 we let out all the periodic points of𝑓, so 𝑓 has no dense 

periodic points. Finally for any given two points in𝑋, say 𝑒𝑖𝜃  and eiφ such that, 0<  θ − φ < 𝜋, we can choose 

n that satisfies2n  θ − φ ≤  θ − φ ≤ π < 2n+1 θ − φ ⇒ f is sensitive with sensitivity constant 
π

2
  since 

ρ(f n eiθ , f n eiφ ) >
π

2
 so the map f is L-chaotic, and not D-chaotic or W- chaotic. 
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