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Abstract: The objective of the present analysis is to study the effect of overlapping stenosis on blood flow 

through an artery by taking the blood as Casson type non-Newtonian fluid. The expressions for flux and 

resistance to flow have been studied here by assuming the stenosis is to be mild. The results are shown 

graphically for different values of yield stress, stenosis length, stenosis height and discussed. 
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I. Introduction: 
As human system, its growth function are very complicated in nature, actual blood flow model is 

unknown to us. Many biomedical researchers have tried to develop mathematical models to get insight into the 

blood flow characteristics through an arterial tube by considering the blood as Newtonian or non-Newtonian 

fluid. Nowadays healthcare problems are concerned by the people. Presently cardiovascular diseases have been 

noticed as one of the major cause of death in the industrialized world. Cardiovascular system consists of heart 

and blood vessels, which plays an important role in blood flow through an artery. The blood flow characteristics 

can be altered significantly by the arterial disease, such as stenosis and aneurysm. Stenosis is a serious 

cardiovascular disease. Stenosis is formed due to the deposition of fats or lipids in the inner wall along the 

lumen of the artery. Once arterial stenosis occurs, resistance to flow is increased and so normal blood flow is 

disturbed abruptly. Hence blood flow is insufficient to reach every cell and this resists nutrient supplement and 

as a result of this, several diseases like hypertension, heart attack, brain haemorrhage occur. 

In view of this several authors (Young [1], Lee and Fung [2], Shukla et. al [3], Chaturani and Samy [4], 

Fry [5], Caro et. al [6], Texon [7], Richard et. al [8] and Radhakrishnamacharya et. al [9]) have presented 

mathematical models for blood flow through stenosed/constricted ducts. In all these studies blood has been 

considered as Newtonian fluid. However it may be noted that blood does not behave as Newtonian fluid under 

certain conditions. It is well known that whole blood behaves as a non-Newtonian fluid at low shear rate, as 

blood consists of cells in an aqueous solution. 

Many mathematicians have studies some mathematical models by treating the blood as a non-

Newtonian fluid (Charm and Kurland [10], Hershey et. al[11], Whitmore [12], Cokelet [13], Lih [14]). It has 

been pointed out that at low shear rate (0.1sec
-1

) the blood behaves like a Casson fluid model (Casson [15], 

Reiner and Scott Blair [16]). 

However, all these investigations considered the effect of single stenosis, but the constrictions may 

develop in series (multiple stenosis) or may be of irregular shapes or overlapping. Chakrabortyet. al [17] have 

studied effect of overlapping stenosis on arterial flow.  

In the present analysis I propose to discuss the effect of overlapping stenosis on blood flow through 

arterial tube by considering the blood as Casson type non-Newtonian fluid. 

 

II. Mathematical Formulation: 
 Let us consider the steady flow of blood through an axially symmetric but radially non symmetric 

overlapping stenosed artery. 

 The geometry of Stenosis can be taken as (Maruthiprasad et. al [18], Layek et. al [19], Srivastava [20]) 
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𝑅(𝑧)

𝑅0

 

 =1−
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 Where 𝑅 𝑧 is the radius of the tube in the stenotic region, 𝑅0 is the radius of the tube outside the 

stenotic region, 𝑅𝑝  is the radius in the plug flow region , 𝐿0 is the length of the stenosis and d indicates its 

location, 𝛿 is the maximum height of the stenosis. Projection of stenosis at the two positions is denoted by z as z 
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Fig.1:  Geometry of a uniform tube of circular cross section with overlapping stenosis 

 

The equation governing the flow is given by  

                                                        −
𝜕𝑝

𝜕𝑧
 = 

1

𝑟

𝜕

𝜕𝑟
 𝑟𝜏𝑟𝑧  ,                                         (2) 

 In which 𝜏𝑟𝑧  represents the shear stress of blood considered as Casson fluid and p is the pressure 

gradient. 

The relationship between shear stress and shear rate is given by  

                           𝜏𝑟𝑧

1

2 = (−𝜇
𝜕𝑤

𝜕𝑟
)

1

2 + 𝜏0

1
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   𝜕𝑤

 𝜕𝑟
= 0𝜏𝑟𝑧 < 𝜏0,                                             (3) 

 where𝑤 stands for the axial velocity of blood; 𝜏0, the yield stress and 𝜇 , the coefficient of viscosity of 

blood. 

The boundary conditions are  

 

                                          (i)  𝜏𝑟𝑧  is finite at 𝑟 = 0 

                                          (ii)𝑤 = 0 at 𝑟= ℎ(𝑧) 

                                         (iii)
𝜕𝑤

𝜕𝑟
= 0at𝑟 = 0 if 𝜏𝑟𝑧 < 𝜏0                                      (4) 

 

Solution: 

Integrating (2) and using the boundary condition (i) of (4) we get 

                                                                    𝜏𝑟𝑧  = 
𝑃𝑟

2
 , 

where P = −
𝜕𝑝

𝜕𝑧
 

From (3) 
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Integrating (5) and then using the boundary condition (4) we get  
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Since 
𝜕𝑤

𝜕𝑟
= 0 at 𝑟= 𝑟0, the upper limit of the plug flow region is obtained as  

𝑟0 =  
2𝜏0

𝑃
 

Thus we get 
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The plug velocity 𝑤𝑝  is given by  
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The volumetric flow rate i.e, the flux is given by  

𝑄 = 2 [ 𝑤𝑝𝑟𝑑𝑟 +  𝑤𝑟𝑑𝑟]
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The pressure drop ∆𝑝 across the stenosis between z = 0 to z = L is obtained as 
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Introducing the following non-dimensional quantities 
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in equation (10) we finally get (after dropping the bars) 
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The resistance to flow 𝜆 is defined as 
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The pressure drop in the absence of stenosis (h =1) is denoted by ∆𝑝𝑁and is obtained from (13) as 
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−168𝜇𝑄
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The resistance to flow in the absence of stenosis as  
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Hence the normalised resistance to flow 𝜆  is given by  
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III. Results and Discussions: 
 To illustrate the flow analysis the results are shown graphically with the help of MATLAB-7.6. The 

effect of various parameters on flux and resistance to floware computed numerically. 

 Figures 2, 3, 4 reveal that the variation of flux for different values of 𝜏0, 𝐿0 and z with the variation of 

𝛿. It is clear from the figures that Q decreases as 𝛿and 𝜏0increase, but the reverse effect occurs when 𝐿0 and z 

increase. 

 Figures 5, 6 and 7 describe the effectsof 𝜏0, 𝐿0 and d on resistance to flow. It is found that as 

𝛿increases 𝜆  increases with the increase of 𝜏0and 𝐿0, but it decreases when d increases for fixed values of 𝜏0and 

𝐿0 . 
 

IV. Conclusions 
   Blood flow through an arterial tube mainly depends on the volumetric flow rate and resistance to flow. 

It is clear from the present analysis that as stenosis grows resistance to flow increases with in the stenotic region, 

for which several diseases occur, such as high blood pressure, stroke, brain haemorrhage etc. so the results are 

greatly influenced by the change of shape parameters. Hence the present analysis may be helpful for the 

diagnosis of various types of cardiovascular diseases. 
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Figure -2 

 
Figure -3 

 
Figure -4 
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Figure -5 

 
Figure -6 

 
Figure -7 
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