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Abstract: In this work error estimation for numerical solution of Diffusion equation by finite difference method 

is done. The Explicit centered difference scheme is described to find the numerical approximation of the 

Diffusion equation. The numerical scheme is implemented in order to perform the numerical features of error 

estimation. To get analytic solution, we present the variable separation method. We develop a computer 

program to implement the finite difference method in scientific programming language. An example is used for 

comparison; the numerical results are compared with analytical solutions.  
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I.       Introduction 
In Mathematics, the finite difference methods are numerical methods for approximating the 

solutions to differential equations using finite difference equations to approximate derivatives. Our goal 

is to approximate solutions to differential equations.i , e. to find a function (or some discrete 

approximation to this functions) which satisfies a given relationship between several of its derivatives 

on some given region of space /and or time, along with some boundary conditions along the edges of 

this domain. A finite difference method proceeds by replacing the derivatives in the differential equation 

by the finite difference approximations. This gives a large algebraic system of equations to be solved in 

place of the differential equation, something that is easily solved on a computer.  

In (A.N. Richmond, 2006), the authors develop the analytical solutions of non‐trivial examples of a 

well‐known class of initial‐boundary value problems which, by the choice of parameters, can be reduced to 

regular or singular Sturm‐Liouville problems. In (Sweilam et. al, 2012) the author presents the C-N-FDM to 

solve the linear time fractional diffusion equation. They claimed that the C-N-FDM gives good results. The 

authors studied the Spectral methods for solving the one dimensional parabolic heat equation (Juan- Gabriel et. 

al 2006). In (Hikment Koyunbakan and Emrah Yilmaz, 2010), the Authors claimed that The ADM method is 

more accurate. In (Subir et. al, 2011), the authors present the Adomian Decomposition method to solve the 

nonlinear diffusion equation with fractional time derivatives. With the above discussion in view, our intention is 

to investigate mathematical models, to establish the stability condition of the numerical scheme and to analyze 

the error of the scheme. 

In section 2, present a short discussion on the derivation of Diffusion equation as IBVP. In section 3, 

the analytical solution of diffusion equation is illustrated by variable separation method. We describe an explicit 

centered difference scheme for Diffusion equation as an IBVP with two sided boundary conditions in section 4. 

In section 4, we also set up the stability condition of the numerical scheme. In section 5, we develop a computer 

program in scientific programming language for the implementation of the numerical scheme and perform 

numerical simulations in order to verify the behavior for various parameters. Finally the conclusions of the 

paper are given in the last section. 

 

II.      Governing Equation And Its Derivation: 
In this study we consider the governing equation as IBVP                                  
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c is the concentration at the point x at the time t , D is the diffusive constant in the x direction, t is the 

time.  

With appropriate initial and boundary condition                                 

  
bxaxcxtc  );(),( 00                                 

  Ttttcatc a  0);(),(   

   )(),( tcbtc b  

Consider the equation of mass conservation of the tracer. The continuity equation states that divergence of mass 

flux equals change in mass in a control volume.   
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If we assume that  is constant in time and space, the continuity equation can be written as     
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Using Fick’s law for q , we have a general Diffusion equation 
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If D is constant, the diffusion equation is given by as   
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The diffusion coefficient theoretically is a tensor. However, for most cases, we assume it is a scalar. The 

diffusion equation written in the Cartesian coordinate system in a one dimensional. 
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III.       Analytical Solution Of The Governing Equation By The Method Of Variable Separation: 

Consider XTc   be the solution of the diffusion equation                      
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with the homogeneous boundary condition   

Initial condition 0)0,( cxc  , and boundary condition   0),0( tc , 0),( tLc , Lx 0   
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Now from the given equation, we have        

                   

 X

X

DT

T 



                                                                                                                        (2)                                       

 Each side of (2) must be constant,  
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Then  02  TDT   and 02  XX   whose solution are, 
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Thus a solution of the partial differential equation is  
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Applying the boundary condition 
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By the principle of superposition 

The solution is      
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In order to satisfy the last condition,  x
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The solution of the governing equation can be written as follows                                                     
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IV.    Formulation Of The Diffusion Equation 
We would like to consider the diffusion equation as an initial and homogeneous boundary value 

problem 
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Initial condition 0)0,( cxc  , and boundary condition 0),0( tc , 0),( tLc  

In order to develop the scheme, we discretize the tx   plane by choosing a mesh width xh   space and a 
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The terms )( 2xto   denote the order of the method. Neglecting the error terms and simplifying. We obtain 

the difference methods   
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This is the required explicit centered difference scheme for the IBVP                  
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This scheme uses a second order central difference in space and the first order forward Euler scheme in time. 
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This time step restriction typically requires an unacceptably large number of time steps, unless the diffusion 

constant D  is very small. 

4.1 Stability of the explicit centered difference scheme (8) is given by the conditions  
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Proof: The explicit centered difference scheme (8) takes the form        
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V.        Error Estimation Of The Scheme: 
In order to perform error estimation, we consider the exact solution of the model equation with initial condition 

)1()()0,( 0 xxxcxc  and homogeneous boundary condition. We get 
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 We compute the error defined by 
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for all time where ec  is the exact solution and Nc  is the Numerical solution computed by the finite difference 

scheme. 

 

5.1 Results And Discussion: 

We solve the diffusion equation by implementing the centered difference scheme, while varying the 

different parameter values. 

           

Figure 1: The behavior of numerical solution at smD /001.0 2 , sm /005.0 2
.  
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Concentration distribution for each diffusion rate at time t=24 min. In figure-1, the profile for varying 

contaminant diffusion rate, we saw that the contaminant concentration with a higher diffusion rate decreases at a 

higher rate than that with a lower diffusion rate. The curve marked by “star” shows the concentration profile for 

diffusion rate smD /001.0 2  and the curve visible by “dot line” represents the concentration profile for 

diffusion rate smD /005.0 2
  

 
               

Figure 2: Analytic solution and Numerical solution at different time Analytical solution of diffusion equation is 

compared with the numerical solution at different time in figure-2. The curve noticeable by “blue line” shows 

the numerical solution, the curve visible by “red line” represents numerical solution. The results are very close. 

        

Figure 3: The Numerical solution and Analytical solution in mesh. 

             

Figure 4: The error in the numerical result is shown for ∆x=0.1 
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Figure 5: The error in the numerical result is shown for ∆x=0.01 

Figure-4 and figure-5 shows the error in the numerical solution from each of the methods when 

compared with the analytical solution, for the atwo cases N=10, N=100, corresponding to ∆x=0.1, 0.01 

respectively. Comparisons are made for the solution at different time for smaller ∆x the errors reduce in size. 

The errors for the central difference scheme decrease as the grid size decrease.  

 

VI.    Conclusion: 

The study has presented the numerical and analytical solution of Diffusion equation. The explicit 

centered difference scheme is used in order to perform the numerical features of error estimation. We have seen 

that the contaminant concentration with a higher diffusion rate decreases at a higher rate than that with a lower 

diffusion rate. In order to execute the numerical method we have developed a computer program in the language 

of scientific computing that is a very good agreement of the finite difference method for Diffusion equation.   
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