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Abstract:This paper presents an analytical method to describe the heat and mass transfer in the flow of an 

incompressible viscous fluid past an infinite horizontal wall. The governing equations account for the viscous 

dissipation effect and mass transfer with chemical reaction of constant reaction rate. The coupled partial 

differential equations describing the phenomenon have been solved analytically using variable seperation 

method and Fourier Sine transform. The results obtained are presented graphically. It is discovered that the 

Schmidt number enhances the fluid velocity and decreases the fluid temperature. Lewis number and Eckert 

number enhance the fluid temperature while reaction rate number decreases the species concentration. 
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I. Introduction 
In recent years, fluid flow and heat transfer problems have attracted the attention of a number of 

scholars because of their possible application in many branches of science and technology such as fibre and 

granular insulation, geo-thermal system, etc. The phenomena of heat and mass transfer are also very common in 

theory of stellar structure and observable effects are detectable on the solar structure. In nature and industrial 

application many transport processes exist where the heat and mass transfer takes place simultaneously as a 

result of combined effects of thermal diffusion and diffusion of chemical species.  

The study of heat generation or absorption effects in moving fluids is important in view of several 

physical problems such as fluids undergoing exothermic or endothermic or transfer chemical reactions.  

An extensive contribution on heat and mass transfer flow has been made by Khair and 

Bejan[1].Olajuwon and Dahimire[2] examined unsteady free convection heat and mass transfer in an MHD 

micropolar fluid in the presence of thermo diffusion and thermal radiation. They studied the effects of thermo-

diffusion and thermal radiation on unsteady heat and mass transfer. The results show that the observed 

parameters have significance influence on the flow, heat and mass transfer. Uwanta and Omokhuale[3] studied 

viscoelastic fluid flow in a fixed plane with heat and mass transfer. 

Recently, Ibrahim [4] examined the unsteady MHD convection heat and mass transfer past an infinite 

vertical plate embedded in a porous medium with radiation and chemical reaction under the influence of Dufour 

and Soret effects.  

The objective of this paper is to obtain an analytical solution for describing the heat and mass transfer 

in the flow of an incompressible viscous fluid past an infinite horizontal wall. To simulate the flow analytically, 

the viscous dissipation effect is retained and mass transfer with chemical reaction of constant reaction rate is 

considered.We assume the wall suddenly start to move with constant velocity. 

 

II. Model Formulation 
Consider anunsteady two-dimensional mass transfer flow of an incompressible viscous fluid past an infinite 

horizontal wall. The wall which is maintained at a constant temperature 
w

T suddenly start to move with constant 

velocity U and the concentration is maintained at a constant value 
w

C . Introducing a Cartesian coordinate 

system, x -axis is chosen along the wall in the direction of flow and y -axis normal to it. Far above the wall, 

the temperature is assumed to be same as initial temperature of the fluid 
0

T and the concentration assumed to be 

zero. We ignored pressure gradient and assume no body force. The viscous dissipation effect is retained and 

mass transfer with chemical reaction of constant reaction rate is considered. With the above assumptions the 

system of governing equations to be solved is:  
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Energy equation                                                                                        
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Species equation 
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This is a two-dimensional problem. Thus, the velocity vector 

     tyxvvtyxuuuq ,,,,,,0,                    (5) 

By symmetry and from continuity equation (1): 
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Then, the system of governing equations reduce to 
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withinitial and boundary conditions: 

     

     

      













0,,,0,00,

,,,0,0,

0,,,0,00,

00

tCCtCyC

TtTTtTTyT

tuUtuyu

w

w
,                                                          (11) 

where the subscript w  represents the condition at the wall.  is the kinematic viscosity, t  is the time,   is the 

fluid density, u and v  are the components of velocity along x and y directions respectively, T  is  the 

temperature of the fluid, C  is the species concentration,  
p

c  is the specific heat capacity at constant pressure, 

  is the reaction rate, k  is the thermal conductivity, D  is the diffusion coefficient.   

 

III. Method Of Solution 
3.1 Non-Dimensionalization 

 Here, we non-dimensionalized equations (8) – (11), using the following dimensionless variables: 

0

0

2
,,,

TT

TT

C

C

L

y
y

L

tD
t

ww



    (12) and we obtain 



Modeling And Analytical Simulation Of Heat And Mass Transfer ... 

DOI: 10.9790/5728-11656876                                    www.iosrjournals.org                                              70 | Page 

2

2

y

u
Sc

t

u









     (13)  

2

2

2

' 



























y

u
EcSc

y

Le
t


(14)  




12

2











xt
(15) together with initial and boundary conditions: 

     

     

      













0,,1,0,00,

0,,1,0,00,

0,,1,0,00,

tCtCyC

tTtTyT

tutuyu

,                   (16)  

where 


D

Sc


Schmidt number,  
Pr

Sc

DCpD

k
Le




Lewis number,      

 





pw
cTT

U
Ec

0

2

Eckert 

number 

 

3.2 Analytical Solution 
 Here, we solve equations (13) and (14) by change of variable method and carry out necessary 

integration to obtain our solution. For equation (15), Fourier sine transform is employed to obtain the solution. 

For equations (13) and (14), we let  
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and solution of equation (14) as 

  1

2222
2

22

2

4
, 















































tSc

ya
erfc

tSc

ya
erf

tSc

ya
erf

a
ty


 ,         (19) 

where,  




































a

a

b
c

Le

EcSc
b

Le

Sc
a

2

2
22

,
4

,
2

 

For equation (15), we let 
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Using the Fourier Sine transform (see Myint-U and Debnath [5], p. 333 - 335), we obtain the solution of 

problem (21) in compact form as: 
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andwe simplify further the solution (22) as follows: 

Taking 
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and  integrating with respect to  , we have 
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We want to compare (24) with the integral (see Abramowitz and Stegun[6], p. 78): 
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andthe integral (see Myint-U and Debnath [5], p. 334): 
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Then, we have 
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The computations were done using computer symbolic algebraic package MAPLE. 

 

IV. Results And Discussion 
The systems of partial differential equations describing the mass transfer flow of an incompressible 

viscous fluid past an infinite horizontalwall are solved analytically using a change of variable method and 

Fourier sine transform. Analytical solutions of equations (13) - (16) are computed for the values of 

,0.1,8.0,5.0Le ,78.0,62.0,22.0Sc 5.0,3.0,1.0Ec 6,4,2
1
 . The following figures 

explain the fluid velocity, fluid temperature and species concentration distribution against different 

dimensionless parameters. 

From figures 1, 2 and 3, we can conclude that with the increase of Schmidtnumber  S c , velocity 

increases.  
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From figures4, 5 and 6, we can conclude that with the increase of Schmidtnumber  S c , temperature 

decreases.  
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From figures7, 8 and 9, we can conclude that with the increase of Lewisnumber  Le , 

temperatureincreases.  
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From figures10, 11 and 12, we can conclude that with the increase of Eckertnumber  E c , 

temperature increases.  
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From figure 13, 14 and 15, we can conclude that with the increase of reaction rate  
1

 , species 

concentration decreases.  

 

 

 
 

V. Conclusion 
From the studies made on this paper we conclude as under. 

1. Schmidt number enhances the fluid velocity and decreases the fluid temperature. 

2. Lewis number enhances the fluid temperature. 

3. Eckert number enhances the fluid temperature. 

4. Reaction rate number decreases the species concentration. 
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