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Abstract:  The groups of much attention for which the Diffie - Hellman problem may be hard and used securely 

are the multiplicative group 
*

pF , (Z/nZ)* and the group of rational points on an elliptic curve over a finite field. 

These groups involve large key sizes or expensive arithmetic operations. In this paper we consider the group of 

Lucas sequences and describe the generalization of discrete log problem to the group of Lucas sequences and 

adapt the baby-step giant-step algorithm to the generalization. For the computations we implement fast 

computing methods proposed by Smith. 
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I. Introduction 
The development of public key cryptography due to Diffie and Hellman is based on using Discrete 

Logarithm as one way function. The Discrete Logarithm problem in finite fields Fp is based on the fact that 
*

pF

is cyclic and if g is any generator every element of 
*

pF is g
a 
for some non negative integer a. For the discrete log 

problem in (Z/nZ)* we consider the generator g of a cyclic subgroup or a primitive root g mod n. More 

generally the discrete log problem may be discussed in any group with the group law in place of multiplication. 

In this paper we first discuss the discrete log problem in the finite groups of the form 
*

pF or (Z/nZ)* and some 

of its attacks and then describe the discrete log in group L(, N) of Lucas sequences and look at the possible 

extension of the Baby-Giant extension.[2, 4] 

 

1.1  Discrete Log Problem 

Public key cryptography based on the difficulty of discrete log problem due to Diffie- Hellman is a 

protocol used for key exchange in a classical cryptosystem and also used in public key cryptosystems like 

ElGamal cryptosystem. 

1.1.1 Definition Let G be a finite group of the form (Z/nZ)*or
*

qF and b be a fixed element of G, if y is any 

element of G of the form y = b
x 

for some x. Then the problem of finding the x given y is called the discrete 

logarithm problem. We write yx blog  and x is called discrete logarithm of y to the base b.[11] 

1.1.2 Example Let G = 
*

17Z and take b=3 the generator of 
*

17Z then the discrete log of 13 to base 3 in 
*

17Z is x 

such that 3
x
13(mod17), note for x=4, 3

4
13(mod17). 

1.1.3 Example Let G = 
*

pZ for p = 1999 and take b = 3 the generator of G then the discrete log of 1452 to base 

3 is x such that 3
x
1452(mod1999). Note in this example computing that x = 789 is difficult but computing 

3
789
1452(mod1999) is easy by adapting the modular exponentiation method. 

 

1.2 Diffie-Hellman Key Exchange 

 The Diffie-Hellman protocol works as follows. A and B wish to agree on a common secret key to 

communicate over an insecure channel. A chooses a large prime p and an integer g such that 2  p  p-2 and an 

integer a{0,1,…….p-2} randomly, then he computes g
a 

mod p and makes (p, g, g
a
) public. B chooses an 

integer b{0,1,……. p-2}randomly, then he computes g
b 

mod p and makes (p, g, g
b
) public. Then they agree 

upon the  

k = g
ab 

mod p as the common shared secret key. 

 To compute the discrete log there are algorithms likes Trial exponentiation, Shanks Baby -Step Gaint-

Step Method, Pollard's  method, Pohlig-hellman method, Index calculus method etc. In this paper we describe 
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Shanks Baby -Step Gaint-Step Method for discrete log in
*

pF or (Z/nZ)* and then describe the implementation 

of Shanks Baby -Step Gaint-Step Method to discrete log with lucas sequences. This gives a wider crossectional 

view in the study of attacks on extended discrete logarithms. The earliest method for finding the discrete 

logarithm x from =g
x
(DLP) is to check whether x = 0,1,2,3,… satisfy DLP. If one of these x values satisfy then 

Discrete Logarithm is found. This is the Trial exponentiation. It needs enumeration of x -1 multiplications and x 

comparisons in the group and the three elements x, g and g
x 
need to be stored.[8, 1] 

 

1.2.1 Example The Discrete Logarithm of 3 to the base 5 in (Z/2017Z)* with enumeration of 1029 

multiplications modulo 2017 yields x = 1030. 

 

1.3 Shanks Baby-Step Giant-Step Algorithm  

 A notable development of enumeration is the Shanks Baby-step Giant-Step algorithm. This algorithm 

needs less number of group operations but storage should be greater. This algorithm is described as follows. 

Set  n  where n is the group order and write the unknown Discrete Logarithm as x = qm + r,  0  r < m. Thus 

r is the remainder and q is the quotient of the division of x by m. The Baby-step Giant-step algorithm calculates 

q and r. 

 

We have g
qm+r

= g
x
=  

 (g
m
)

q
= g

-r
 

 

We first compute the set of Baby-steps B = {(g
-r
, r): 0 r < m} and if we find a pair (1, r) in the set B; 

then g
-r
=1 (i.e. =g

r
), then we can set x = r with the smallest of such x. If such a pair not found, we determine 

= g
m
. 

Then we check for q = 1, 2, 3, … if the group element 
q 

is the first component of an element in B, that 

is we check if there is a pair (
q
, r) in B, and when it is true, we have 

 

g
-r
= 

q
= g

qm 

=g
qm+r 

 

Therefore x = qm + r is the discrete logarithm and the elements of 
q
, q=1,2,3,.... are known as Giant 

steps. We should compare each 
q 

with all first components of the Baby-Step set B. To make this comparison 

effective, the elements of B are stored in a hash table where the key is the first element. 

 If we use a hash table, then a constant number of comparisons are sufficient to check whether a group 

element computed as a giant-step is a first component of a baby-step. Therefore, the following result is easy to 

verify that the baby-step giant-step algorithm requires O( || G ) multiplications and comparisons in G. It needs 

storage for O( || G ) elements of G. 

 Time and space requirements of the Baby-step giant-step algorithm are approximately || G . If 

|G|>2
160

,then computing discrete logarithms with the baby-step giant-step algorithm is still infeasible.[8] 

 
1.3.1 Example Determine the Discrete Logarithm of 3 to the base 7 in (Z/17Z)*.  

 We have =g
x
(mod17) and m = 17 = 4. 

i.e. = 3, g = 7. 

The Baby-step is B = {(g
-r
, r): 0  r < m} 

B = {(37
-r
, r): 0  r < 4} = {(3,0),(15,1),(16,2),(1,3)} 

 Therefore (g
-r
, r) = (1, 3) 

      (g
-3

, 3) = (1, 3) 

      g
-3

=1 

  3(7
-3

) = 1 

      37
3
(mod17) 

x = 3 is the discrete log of 3 to the base 7.  

 In this example there is no need to go for Giant-step, because solution is found in Baby-step itself. 

 

1.3.2 Example Determine the Discrete Logarithm of 3 to the base 5 in (Z/19Z)*. 

 We have = g
x
(mod19) and m = 19 = 4. 
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i.e. = 3, g = 5. 

The Baby-step is B = {(g
-r
, r): 0  r < m} = {(35

-r
, r): 0r<4} = {(3,0),(12,1),(10,2),(2,3)} 

Here we do not find a pair (1,r), so we have to determine 


q
= g

mq
, where q = 1,2,3,… 


q
= 5

4q 
(mod 19) 

The Giant-steps are 13, 7,12,… 

We have (12,1) in the baby-step set. Therefore, g
1
=12 + 19Z. Since 12 has been found as the third 

giant-step, we obtain g
3*4

= g
-1

  g
3*4+1

= .  

x = 3*4 + 1 = 13 is the discrete log of 3 to the base 5.  

 

1.3.3 Observation To compute Baby-step set, 4 multiplications mod 19 were necessary, where as to compute 

giant steps, 3 multiplications mod 19 were necessary. 

 

II. Lucas Sequences 
 Lucas sequences are widely used in cryptography. There are RSA like Elgamal like cryptosystems 

based on Lucas sequences. Lucas sequences are also used in the cryptanalytic study.[5] 

 

2.1 Introducing Lucas sequences 

2.1.1 Definition Let a and b be two integers and  a root of the polynomial x
2
-ax + b in Q(  ) for  = a

2
-4b  

a non square, writing 
2




a
 and its conjugate 

2




a
 we have + = a,  = b, - =   and 

the Lucas sequences {Vn(a,b)} and {Un(a,b)}, n  0 are defined as  

 






















nn

n

nn

n

baU

baV

),(

),(

 

 

2.2 Lucas Sequences Satisfy The Following Relations 

1. V2n(a,b) = (Vn(a,b))
2
 – 2b

n
 

2. V2n-1(a,b) = Vn(a,b)Vn-1(a,b) – ab
n-1

 

3. V2n+1(a,b) = a(Vn(a,b))
2
-bVn(a,b)Vn-1(a,b) – ab

n
 

4. (Vn(a,b))
2
= (Un(a,b))

2
+4b

n
 

5. Vkm(a,b) = Vk(Vm(a,b), b
k
) 

6. Ukm(a,b) = Uk(Vm(a,b), b
k
)Um(a,b) 

7. Vk+m(a,b) = 1

2
(Vk(a,b)Vm(a,b)+  Uk(a,b)Um(a,b))  

8. Uk+m(a,b) = 1

2
(Uk(a,b)Vm(a,b)+ Um(a,b) Vk(a,b))  

 

2.3 Modular Computations With The Lucas Sequences 

2.3.1 Definition [3,5] Let re

r

e
ppN ...1

1 , p
i
’s odd primes and define the function                                           

     S(N)=lcm

r

ii

i

e

i
p

pp i

1

1
))((











 

 . 

The following theorem is an analogue to Euler Fermat theorem.  

 

2.3.2 Theorem   For  re

r

e
ppN ...1

1  and pi does not divide, then 











.2nintmod2)1,()1,(

mod0)1,()1,(

0)(

0)(

divideotdoespandtegersomeforNaVaV

NaUaU

itNS

tNS
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2.4 Group Structure on Lucas Sequence  

 Let N be an integer with gcd(,N)=1 and write V
k
  for  V

k
(a,1) , consider the set L(,N)={( Vk, Uk)  

mod N: k0} then for all (Vk,Uk), (Vm,Um) L(,N) we  define an operation ⋆ on L(,N) as follows 

(V
k
,U

k
)⋆(V

m
,U

m
)=(V

k+m
,U

k+m
)modN.  

 

2.4.1 Theorem L(,N) forms an abelian group with respect to operation ⋆ defined as  

(V
k
,U

k
)⋆(V

m
,U

m
)=(V

k+m
,U

k+m
)  

 

Proof   

1. ⋆ is closed 

L(,N) is closed w.r.t ⋆ follows by definition 

 

2.⋆ is associative 

For any (Vk, Uk), (Vm, Um), (Vl, Ul) L(, N) we have by the definition 

(V
k+m

,U
k+m

)⋆(V
l
,U

l
)=(V

(k+m)+l
,U

(k+m)+l
) 

(V
k+m

,U
k+m

)⋆(V
l
,U

l
)=(V

k+(m+l)
,U

k+(m+l)
) 

                                    =(V
k
,U

k
)⋆(V

m+l
,U

m+l
)modN 

Therefore L(,N) is associative. 

 

3.(V
0

,U
0
) is the identity 

For any (Vk, Uk)L(,N) we have (V0, U0)L(,N) such that 

(V
k
,U

k
)⋆(V

0
,U

0
)=(V

k+0
,U

k+0
) =(V

k
,U

k
) 

            =(V
0
,U

0
)⋆(V

k
,U

k
) 

Therefore (V
0
,U

0
) is the Identity. 

 

4. Inverse of (V
k

,U
k

) 

For any (Vk, Uk)L(,N), we have (V(S(N)-1)k, U(S(N)-1)k)L(,N), is the inverse of (V
k
,U

k
) and 

(V
k
,U

k
)⋆(V

(S(N)-1)k
,U

(S(N)-1)k
)=(V

k+(S(N)-1)k
,U

k+(S(N)-1)k
)modN 

             =(V
kS(N)

,U
kS(N)

)modN 

                                                     = (2,0) by theorem 2.3.2 

             =(V
0
,U

0
)modN 

Therefore (V
(s(N)-1)k

,U
(s(N)-1)k

) is the inverse of (V
k
,U

k
) 

 

5.⋆ is commutative 

(V
m

,U
m

)⋆(V
n
,U

n
)=(V

m+n
,U

m+n
) 

                             =(V
n+m

,U
n+m

) 

                             =(V
n
,U

m
)⋆(V

m
,U

n
) 

Therefore L(,N) is an abelian group. 

 

III. Fast Computation Method For V
e
 

 We describe the fast computation method to compute V
e
 suggested by P.Smith for Lucas sequences, 

this method directly leads to the computation of Ve with no ambiguity of adding or doubling at each stage right 

from V
1

 by using the above recursive formulas. [3,12] We give an algorithm for this fast computation in this 

section.   

For any integer m, we have the binary expression given as e= 
t=0

t
 x

i
2

t-i
,x

0
=1,x

i
=0 or 1, for i  0. 
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Let e
k
= 

i=0

k
 x

i
2

k-i
, for 0  k  t, then et=e, e0=1.  

3.1 Theorem ek+1 = 













112

02

1

1

kk

kk

xife

xife
   

3.2 Remark  ek+1 +1 = 













1)12(2

012

1

1

kk

kk

xife

xife

 

                 

ek+1 -1 = 













.12

012

1

1

kk

kk

xife

xife
 

   

 

3.3 Remark  V
e
 are computed by evaluating V

ek
 for k=0,1,...,t by using recursive formulas for V

2er+1
,V

2er-1
 

and V
2er

 for r k.  

 We give in the following an algorithm for fast computation method for computing the Lucas sequences  

Ve(a,1) mod N.  Let a be an integer modulo N, we initialize with V
1

(a,1)=a  to obtain the result V
e
(a,1) . 

3.4 Algorithm  

           Step 1: Write the binary expression of e as  e= 
i=0

t
 x

i
2

t-i
,x

0
=1. 

           Step 2: Initialize the values V
c
=V

1
(a,1)  

                                             V
c+

=V
2

1
-2 V

c-
=2  

           Step 3: For i from 0 to t do 

  c←2c  

                 c-←2c1 

  V2c← 22 cV  

                                                                    V2c1← Vc Vc   V1 
  Vc← V2c 

  Vc-← V2c1 
  if x

i
=1 

  then c←2c+1 

  c-←2c 

  V2c+1← V1
2

cV VcVc  V1 

  V2c← 22 cV  

  Vc← V2c+1 

  Vc← V2c 

  else c←2c 

  c ← 2c1 

 

IV. Discrete Log with Lucas Sequences 

Let L(, N) be the group of Lucas sequences with D=a
2

-4 mod n, then for any (,)L(, N) if 

=Vm(a)  given  and a to find m is the Discrete Log problem of Lucas sequences and m may be called the 

discrete log of  to the base a.[6] 

 
4.1  Extended Diffie Hellmann Protocol With Lucas Sequences 

    L(, N) be a group of Lucas sequences for =a
2
-4 mod N. 

  1. A and B generate m, n ZS(N) the secret keys respectively and calculate their respective public keys 

P
A

andP
B

 as PA=Vm(a) and PB=Vn(a).  

  2. A and B exchange their public keys (a,P
A

)  and (a,P
B

) .  
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  3. A receives P
B

 from B and calculates K = V
m

(P
B

)=V
m

(V
n

(a))=V
mn

(a).  

  4. B receives P
A

 from A and calculates K = V
n

(P
A

)=V
n
(V

m
(a))=V

nm
(a)=V

mn
(a).  

  5. Then A and B agree upon K=V
mn

(a) as the shared secret key.  

 

4.2 To Extend Shank’s Baby-step Giant-Step attack on Discrete Log problem with Lucas Sequences 

 The attacker can gather the shared secret key if he computes m or n from the public information P
A

 or 

P
B

, so we employ Shank’s Baby-step Giant-step method to the Discrete Log problem with Lucas sequences as 

follows. 

 In this method we compute m from the public key Vm(a). Let n=S(N) be the order of the group L(

,N) and t= n for n=S(N). Now by division algorithm for t and m we write the unknown discrete logarithm as 

m=qt+r, for 0r<t. Thus r is the remainder and q is the quotient of the division of m by t. The Baby-step Giant-

step algorithm calculates q and r.  

          We have Vm(a) =  

            Vtq+r(a) = , now by group operation å on L(, N)  

           we have Vtq+r(a) = Vtq å  Vr(a)= 

           Vtq =  å (Vr(a))
-1  

We first compute the set of Baby-Steps B = ( å (Vr(a))
-1

, r): 0r<t and if we find a pair (V0,r) in B, if exists then  

                             a⋆(V
r
(a))

-1
V0 mod N 

                            V0 å (Vr(a)) mod N 

                            (Vr(a)) mod N 

then take m=r and Vm(a)== Vr(a) and if such pair in B is not found we determine =Vt(a) and evaluate Vq() 

for all q=1,2,3,… until for some q there is a pair ( ( ), )qV r in B for some r, then we have  

                              Vq()= å (Vr(a))
-1 

                               =Vq() å (Vr(a))  

            =V
q

(V
t
(a))⋆V

r
(a) 

                                  =V
qt

(a)⋆V
r
(a) 

                                  =V
qt+r

(a) 

                                  =V
m

(a) 

therefore m=qt+r is the discrete log of  to base a. 

 

4.2.1 Example Let N=17 and a=5 then =a
2
-4 = 5

2
-4 =21 and S(N)=N-( /N)=17-1=16. In L( ,N) given =12 

to find the discrete log of 12 to the base 5. We have t= n= 16=4 and by division algorithm m = tq+r, 0r < t 

i.e. m = 4q + r; r = 0,1,2 or 3. To find V
m

(a)=a, we have to find V4q+r(a)=, in this context we compute the pairs 

 ( å Vr (a)
-1

, r) in B for r=0,1,2,3; and a=5. We have (V
r
(a))

-1
=V

(S(N)-1)r
 and using the fast computing method  

 V
0

(5)=2;(V
0

(5))
-1

=V
0

(5)=2 

 V
1

(5)=5;(V
1

(5))
-1

=V
15

(5)=5 

 V
2

(5)=6;(V
2

(5))
-1

=V
14

(5)=6 

 V
3

(5)=8;(V
3

(5))
-1

=V
13

(5)=8 

B ={
1

0(12 ( (5)) ,0);V å 1

1(12 ( (5)) ,1);V å 1 1

2 3(12 ( (5)) , 2);(12 ( (5)) ,3)V V å å } 

          ={ 0(12 ( (5)),0);Vå 15(12 ( (5)),1);Vå 14(12 ( (5)),2);Vå 13(12 ( (5)),3)Vå }. 

Now we can compute these values using the product V
k
⋆V

m
=V

k+m
 in the group (L( ,N);⋆) and apply the 

formula 

 ( , )k mV a b 
1

( ( , ) ( , )
2

k mV a b V a b  ( , ) ( , ))k mU a b U a b  
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by computing the corresponding U
i
’s by using formula .4),(),( 22 n

nn bbaUbaV    

.4),(),( 22 n

nn bbaUbaV   

So, for a=5 we have  =4; and  

            U
2

0
(5)= 

V
2

0
(5)-4

▵
= 

2
2
-4

4
=0(mod17)=0 

           U
2

15
(5) = 

V
2

15
(5)-4

▵
= 

5
2

-4

4
= 

21

4
=1(mod17)=1 

          8)17(mod8
4

15

4

32

4

464)5(
)5(

22

142

14 








V
U  

            U
2

13
(5)= 

V
2

13
(5)-4

▵
= 

8
2

-4

4
= 

60

4
=15(mod17)=15. 

 

Therefore U
0

(5)=0;U
15

(5)=1;U
14

(5)=5;U
13

(5)=7, now from the formula of V
k+m

(a,b),wehave   

         12 å V0(5) = 12 å 2 12)17(mod12)0.1.42.12(
2

1
  

         12 å V15(5) = 12 å 5 15)17(mod32)1.1.45.12(
2

1
  

         12 å V14(5) = 12 å 6 12)17(mod46)5.1.46.12(
2

1
  

         12 å V13(5) = 12 å 8 11)17(mod62)7.1.48.12(
2

1
  

B={⋆(
1

rV , r): r=0,1,2,3}={(12,0), (15,1), (12,2), (11,3)} 

The pair (V
0

,r) does not exists in B, so we take =Vt(a)= V4(5)=0 and evaluate Vq() for all q=1,2,3,… until for 

some q there is a pair ( ( ), )qV r  in B for some r , we have 

1 2(0) 0( 17) 0; (0) 2( 17) 15V mod V mod      for 2, 1q r  . 

Therefore 4.2 1 9m tq r     , also 9 (5) 12V  .  

 

V. Conclusion 

 The generalization of discrete log problem to Lucas sequences is obtaining a
±k

from kv ( ,1)a mod p

as a root of the irreducible polynomial  x
2
-vk(a,1)x+1 over Fp of degree 2 and retrieving k from a

±k
 i.e. it is a 

discrete log problem in F
2

p
. The discrete log problem with Lucas sequences is originally considered as 

equivalent to problems with Dickson polynomials. In this paper we depicted the discrete log problem on Lucas 

sequences as generalization of discrete log problem to group of Lucas sequences and adapt the Shank’s Baby-

step Giant-step attack and described the fast computation method with an algorithm that may be used in the 

computations of Lucas sequences. 
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