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Abstract : The effects of radiation and hall current on MHD free convection three dimensional flow in a 

vertical channel filled with a porous medium has been studied. We consider an incompressible viscous and 

electrically conducting incompressible viscous fluid in a parallel plate channel bounded by a loosely packed 

porous medium. The fluid is driven by a uniform pressure gradient parallel to the channel plates and the entire 

flow field is subjected to a uniform inclined magnetic field of strength Ho inclined at an angle of inclination   

with the normal to the boundaries in the transverse xy-plane. The temperature of one of the plates varies 

periodically and the temperature difference of the plates is high enough to induce radiative heat 

transfer. The effects of various parameters on the velocity profiles, the skin friction, temperature field, rate 

of heat transfer in terms of their amplitude and phase angles are shown graphically. 

Keywords - Optically thin fluid, parallel plate channel, porous medium, radiative heat transfer, steady hydro 

magnetic flows, three dimensional flows 

 

I. INTRODUCTION 
 The flow of fluids through porous media are encountered in a wide range of engineering and industrial 

applications such as in recovery or extraction of crude oil, geothermal systems, thermal insulation, heat 

exchangers, storage of nuclear wastes, packed bed catalytic reactors, atmospheric and oceanic circulations. 

Several scholars viz. Crammer and Pai [1], Ferraro and Plumpton [2], Shercliff [3] have studied such 

flows because of their varied importance. MHD channel or duct flows are important from its practical 

point of view. Chang and Lundgren [4]
 

have studied a hydro magnetic flow in a duct. Yen and 

Chang [5] analysed the effect of wall electrical conductance onthe magneto hydro dynamic Couette 

flow. From the technological point of view and due to practical applications, free convective 

flow and heat transfer problems are always important. This process of heat transfer is encountered in 

cooling of nuclear reactors, providing heat sinks in turbine blades and aeronautics. Ostrach [6] studied the 

combined effects of natural and forced convection laminar flow and heat transfer of fluids with and 

without heat sources in channels with linearly varying wall temperature. Jain and Gupta [7]
 
studied 

three dimensional free convection Couette flow with transpiration cooling There are numerous 

important engineering and geophysical applications of the channel flows through porous medium, 

for example in the fields of agricultural engineering for channel irrigation and to study the 

underground water resources, in petroleum technology to study the movement of natural gas, oil and 

water through the oil channels/reservoirs. Transient natural convection between two vertical walls 

with a porous material having variable porosity has been studied by Paul et al. [8]. Sahin [9] 

investigated the three-dimensional free convective channel flow through porous medium. In recent 

years, the effects of transversely applied magnetic field on the flows of electrically conducting viscous 

fluids have been discussed widely owing to their astrophysics, geophysical and engineering applications. 

Attia and Kotb [10]
 

studied MHD flow between two parallel plates with heat transfer. When the 

strength of the magnetic field is strong, one cannot neglect the effects of Hall current. The rotating flow 

of an electrically conducting fluid in the presence of a magnetic field is encountered in geophysical 

and cosmical fluid dynamics. It is also important in the solar physics involved in the sunspot 

development. Soundalgekar [11]
 
studied the Hall effects in MHD Couette flow with heat transfer. 

Mazumder et al. [12, 13] have studied the effects of Hall current on MHD Ekman layer flow and 

heat transfer over porous plate and on free and forced convective hydro magnetic flow through a 

channel. Hall effects on unsteady MHD free and forced convection flow in a porous rotating 

channel has been investigated by Siva Prasad et al. [14]. Singh and Kumar [15]
 

studied the 

combined effects of Hall current and rotation on free convection MHD flow in a porous channel. Ghosh 
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et al.[16]
 
studied the Hall effects on MHD flow in a rotating system with heat transfer characteristics. 

Radiative convective flows have gained attention of many researchers in recent years. Radiation plays 

a vital role in many engineering, environment and industrial processes e.g. heating and cooling 

chambers, fossil fuel combustion energy processes astrophysical flows and space vehicle re-

entry. Raptis [17]
 

studied the radiation and free convection flow through a porous medium. 

Alagoa et al.[18] analysed the effects of radiation on free convective MHD flow through a porous 

medium between infinite parallel plates in the presence of time-dependent suction. Mebine [19]
 

studied the radiation effects on MHD Couette flow with heat transfer between two parallel plates. 

Singh and Kumar [20]
 
have studied radiation effects on the exact solution of free convective 

oscillatory flow through porous medium in a rotating vertical porous channel. Venkata Ramana [23] studied 

Hall current effect on magneto hydro dynamics free-convection flow past a semi infinite vertical porous plate 

with mass transfer. The effects of Hall current and rotation on MHD free convection flow in a vertical 

rotating channel filled with porous medium have been studied by Singh and Reena pathak [24]. 

M.V.Krishna and Irfan [26] investigated the unsteady MHD flow of Maxwell fluid through a porous medium in 

Rotating parallel plate channel and then extended taking hall current into account by M.V.Krishna and Irfan 

[25]. M.V.Krishna [27] discussed Hall currents on MHD flow of a couple stress fluid in a parallel plate channel 

bounded by a porous bed on the lower half in presence of inclined magnetic field. Syamala Sarojini [28] 

discussed the effects of hall currents on MHD flow of a couple stress fluid through a porous medium in a 

parallel plate channel in presence of effect of inclined magnetic field. Raju [29] studied the hall current effects 

on unsteady MHD three dimensional flow of a couple stress fluid through a porous medium in parallel plate 

channel. Recently, M.V.Krishna and J.Prakash [30] discussed the hall current effects on Unsteady MHD flow 

in a Rotating parallel plate channel bounded by Porous bed on the Lower half. Motivated from the above 

studies, in this paper, we discussed the MHD free convective flow with porous medium in a vertical 

channel filled. The transverse magnetic field applied is strong enough so that the hall currents are 

induced. The temperature difference between the walls of the channel is sufficiently high to radiate the 

heat. The fluid is driven by a uniform pressure gradient parallel to the channel plates and the entire flow field is 

subjected to a uniform inclined magnetic field of strength Ho inclined at an angle of inclination  with the 

normal to the boundaries in the transverse xy-plane. 

 

1.1. BASIC EQUATIONS 
 The equations governing the unsteady free convective flow of an incompressible, viscous 

and electrically conducting fluid in a vertical channel filled with porous medium in the presence of 

magnetic field are 

Equation of Continuity: 

 .V 0     (1.1.1) 

Momentum Equation: 

 2V
(V . )V p J B V V g T

t k


  
 

            

   (1.1.2) 

Energy Equation: 

 2
p

T
C (V . )T K T q

t


 
     

 
   (1.1.3) 

Kirchhoff’s First Law: 

 0div.J     (1.1.4) 

General Ohm's Law: 

 
0

1e e
e

e

J ( J B ) E V B p
B e

 




 
       

 
   (1.1.5) 

Gauss's Law of Magnetism: 

 0div .B     (1.1.6) 

Where, V  is the velocity vector, p the pressure,   the density, B is the magnetic induction vector, J  

the current density,   the coefficient of viscosity, t
 

the time, g the acceleration due to gravity, 

* 
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  the coefficient of volume expansion, k
     

is the permeability of the porous medium, Cp the 

specific heat at constant pressure, T the temperature, T
0      the reference temperature that of the 

left plate, K the thermal conductivity, q the radiative heat,   the electrical conductivity, B
0 the 

strength of the applied magnetic field, e the electron charge, e  the electron frequency, e  the electron 

collision time, ep  the electron pressure, E the electric field and e  is the number density of electron. 

II. FORMULATION AND SOLUTION OF THE PROBLEM 

 Consider an unsteady MHD free convective flow of an electrically conducting, viscous, 

incompressible fluid through a porous medium bounded between two insulated infinite vertical plates in 

the presence of Hall current and thermal radiation. The plates are at a distance d apart. A Cartesian 

coordinate system with x-axis oriented vertically upward along the centre line of the channel is introduced. 

The z-axis is taken perpendicular to the planes of the plates as shown in Fig. 1. 

 

Fig 1. Physical Configuration of the Problem 

 We choose a Cartesian system O(x, y, z) such that the boundary walls are at 0z   and z d  are 

assumed to be parallel to xy-plane. The steady flow through porous medium is governed by Brinkman’s 

equations. At the interface the fluid satisfies the continuity condition of velocity and stress. The boundary plates 

are assumed to be parallel to xy-plane and the magnetic field of strength Ho inclined at an angle of 

inclination to the z-axis in the transverse xz-plane. The component along z-direction induces a secondary flow 

in that direction while its x-components changes perturbation to the axial flow. The steady hydro magnetic 

equations governing the incompressible fluid under the influence of a uniform inclined magnetic field of 

strength Ho inclined at an angle of inclination  with reference to a frame are 

 
2

2
e z 0μ J H Sinpu 1 u

u g T
t ρ x kz

 
 



 
     

  
      (2.1) 

 
2

2
e x 0μ J H Sinw w

w
t kz

 




 
  

 
      (2.2) 

Where, all the physical quantities in the above equation have their usual meaning. (u, w) are the 

velocity components along O(x, z) directions respectively.   is the density of the fluid, eμ  is the magnetic  

permeability,  is the coefficient of kinematic viscosity, k is the permeability of the medium, Ho is the applied 

magnetic field.  

When the strength of the magnetic field is very large, the generalized Ohm’s law is modified to include 

the Hall current, so that 

 e e
e

0

q
ω τ

J J H σ (E μ H)
H

           (2.3) 
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           Where, q  is the velocity vector,  H  is the magnetic field intensity vector, E  is the electric field , J  is 

the current density vector, e  is the cyclotron frequency, e  is the electron collision time,   is the fluid 

conductivity  and eμ is the magnetic permeability. In equation   (2.3) the electron pressure gradient, the ion-slip   

and thermo-electric effects are neglected. We also assume that the electric field E=0 under assumptions reduces 

to  

    SinwHσμSinJmJ
0ezx        (2.4) 

  z x e 0J mJ Sin σμ H uSin         (2.5) 

           Where e em ω τ   is the hall parameter.  

On solving equations (2.3) and (2.4) we obtain  

 
2 2

( )
1

e 0
x

σμ H Sin
J umSin w

m Sin





 


      (2.6) 

 
2 2

( )
1

e 0
z

σμ H Sin
J u wmSin

m Sin





 


      (2.7) 

Using the equations (2.6.) and (2.7), the equations of the motion with reference to frame are given by 
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2 2 2
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 
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      (2.8) 

 
2 22
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( )

e 0σμ H Sinw w
umSin w w

t k1 mz Sin

 
 

 

 
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      (2.9) 

 
2

2p

qT T
C K

t zz


 
 
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    (2.10) 

The boundary conditions for the problem are 

 0
2

d
u w T , z        (2.11) 

 0
2w
d

u w ,T T Cos t, z        (2.12) 

Where, wT  is the mean temperature of the plate at 2z d / and   is the frequency of oscillations. Following 

Cogley et.al [22], the last term in the energy equation (2.10), 

 24 ( )0

q
T T

z



 


    (2.13) 

Stands for radiative heat flux modifies to 

 24
q

T
z







    (2.14) 

In view of the reference temperature  0
0

T , where   α   is mean radiation absorption co-efficient.  

We introduce the following non-dimensional variables and parameters. 

                 
* *

2
w

z x u* v* q* tU d p T
z , x ,u , v , q , t* , * p , T*

d d U U U d U TρU


          

Where, U is the mean axial velocity. 

 

 Making use of non-dimensional variables, the governing equations reduces to (dropping asterisks), 

 
-12 22

2 2 2
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12 22

2 2 2

( )1

(1 )

-DM Sin umSin ww w
w
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    (2.16) 
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2

1 R qT T
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 
 
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    (2.17) 
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Where, 


Ud
Re  is the Reynolds number, 

2 2 2
2 0e d

M
σμ H

U
 is the Hartmann number, 

2d

K
D   is the 

permeability parameter (Darcy parameter),  
U

Tdg
Gr w



 2

  is the Grashof number, 
pC dU

Pe
U




  is the 

Peclet number, 
2 d

R
K


  is the radiation parameter. 

The corresponding transformed boundary conditions are  

 
1

0
2

u w T , z         (2.18) 

 
1

0
2

u w ,T Cos t, z        (2.19) 

For the oscillatory internal flow, we shall assume that the fluid flows only under the influence of a non-

dimensional pressure gradient oscillating in the in the direction of x-axis only which is of the form, 

 tCosP
x

p





     (2.20) 

In order to combine equations (2.15) and (2.16) into single equation, we introduce a complex function 

q u iw   , we obtain 

 -1

2 22

2 (1 )

M Sinq q
Re P Cos t i Re D q GrT

t imSinz


 



 
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 
 
 

 
      

 
    (2.21) 

The boundary conditions in complex form are  

 
2

1
,0  zTq     (2.22) 

 
1

0
2

i tq ,T e , z       (2.23) 

In order to solve the equations (2.17) and (2.21) making use of boundary conditions (2.22) and (2.23), we 

assume in the complex form the solution of the problem as 

 i t i t i t
0 0

p
q( z,t ) q ( z )e , T( z,t ) ( z )e , Pe

x
  


   


    (2.24) 

Substituting equations (2.24) in equations (2.17) and (2.21), we get 

 
2

2

2

0
0 0

d q
q P Re Gr

dz
         (2.25) 

 
2

2 00
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d q

dz
       (2.26) 

Where, 1

2 2
2

(1 )

-M Sin
i Re D

imSin


 


  


 and 2 2Ri Pe    

The boundary conditions given in equations (2.22) and (2.23) become 

 
2

1
,0  zq

00
     (2.27) 

 
2

1
,1,0  zq

00
     (2.28) 

  

 The ordinary differential equations (2.24) and (2.25) are solved under the boundary 

conditions given in equations (2.27) and (2.28) for the velocity and temperature fields. The solution of 

the problem is obtained as 
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2 2 2

1 1
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


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 Now from the velocity field, we can obtain the skin-friction at the left plate in terms of 

its amplitude and phase angle as 
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






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
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Where,  22 )(Im)(Re qqq   and 









q
q

Tan
Im
Re1

  
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
  

 From the temperature field, the rate of heat transfer Nu (Nusselt number) at the left plate in terms of its 

amplitude and phase angle is obtained 
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Where, 
22 )(Im)(Re HHH   , 








H
HTan

Im
Re1   and  





Sinh
HiH  ImRe . 

III. RESULTS AND DISCUSSION 

We consider an incompressible viscous and electrically conducting fluid in a parallel plate channel 

bounded by a loosely packed porous medium. The fluid is driven by a uniform pressure gradient parallel to the 

channel plates and the entire flow field is subjected to a uniform inclined magnetic field of strength Ho inclined 

at an angle of inclination  with the normal to the boundaries in the transverse xy-plane. The temperature of 

one of the plates varies periodically and the temperature difference of the plates is high enough to 

induce radiative heat transfer. The complete expressions for the velocity, q(z) and temperature, T(z) profiles as 

well as the skin friction, τ and the heat transfer rate, Nu are given in equations (2.28)-(2.31). In order to 

understand the physical situation of the problem and hence the manifestations of the effects of the material 

parameters entering into the solution of problem, To study the effects of these different parameters 

appearing in the governing flow problem, we have carried out computational and numerical calculations 

for the velocity field, skin-friction, temperature field and temperature in terms of its amplitude and the 

phase. The computational results are presented in Figures (2-19) for the velocity profiles (fixing 3/  ), 

Figures (20-22) for temperature profiles and Figures (24-26) for amplitude and phase angle of rate of heat 

tranfer with respect to different governing parameters and also tables (1-2) for shear stresses and rate of heat 

transfer at z = -1/2. We noticed that, from Figures ( 2 & 3) shows the variation of velocity profiles under 

the influence of the Reynolds parameter Re. The magnitude of the velocity u increases and w decreases 

with increase in Raynolds number R. It is evident from that increasing value of Re leads to the increase 

of resultant velocity. It is interesting to note that from figures (4 & 5) both the magnitude of velocity 

components u and w decreases with the increase of intensity of the magnetic field (Hartmann number M). 

This is because of the reason that effect of a inclined magnetic field on an electrically conducting 

fluid gives rise to a resistive type force (called Lorentz force) similar to drag force and upon 

increasing the values of M increases the drag force which has tendency to slow down the motion 

of the fluid. The resultant velocity also reduces with increase in the intensity of the magnetic field. The 

magnitudes of the velocity components u and w increase with the increase in permeability of the porous 

medium (D) is observed from Figures (6 & 7). Lower the permeability of the porous medium lesser the 

fluid speed is in the entire fluid region. It is expected physically also because the resistance posed by the 

porous medium to the decelerated flow due to inclined magnetic field reduces with decreasing 

permeability D which leads to decrease in the velocity. The resultant velocity also increases with increase 
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in D. The variation of the velocity profiles with hall parameter m is shown in Figures ( 8  &  9 ) . The 

magnitudes of the velocity components u, w and the resultant velocity increases with the increase of hall 

parameter m throughout the channel and there is no significant effect of hall parameter m on both the 

velocity components with the effect of inclined magnetic field. The variations of the velocity profiles 

with the Grashof number Gr are shown in Figures (10 & 11). The magnitude of the velocity 

components u enhances & w decreases with the increasing Grashof number Gr. The maximum of 

the velocity profiles shifts towards right half of the channel due to the greater buoyancy force in 

this part of the channel due to the presence of hotter plate. In the right half there lies hot plate at z = 1/2 

and heat is transferred from the hot plate to the fluid and consequently buoyancy force enhances 

the flow velocity further. In the left half of the channel, the transfer of heat takes place from the fluid to 

the cooler plate at z  = −1/2. Thus, the effect of Grashof number on the resultant velocity is reversed i.e. 

velocity decreases with increasing Gr. The velocity profiles with the Peclet number Pe are shown in 

Figures (12 & 13). The magnitude of the velocity components u enhances & w decreases with the 

increasing Peclet number Pe. We noticed that with increasing Peclet number Pe the resultant velocity 

decreases. The variation of velocity profile with radiation parameter R is shown in Figures (14 & 15). 

The magnitude of velocity components u and w decrease with increasing in Radiation parameter R. In the 

left half of the channel, the effect of R on velocity is insignificant while in the right half of the 

channel velocity decreases with increase of R. It is evident from the Figures ( 16 & 17) that, the 

velocity components u enhances w reduces with increase in pressure gradient P.  T he increasing pressure 

gradient P leads to the increase of resultant velocity. The velocity profiles with the frequency of 

oscillation ω are shown in Figures (18 & 19). The magnitude of the velocity component u enhances firstly 

and gradually decreases then experienced enhancement as observed with increase in the frequency of 

oscillation ω. Likewise the behaviour of the velocity component w experiences enhancement and then 

gradually decreases throughout the fluid region with increase in the frequency of oscillation ω. The resultant 

velocity decreases with increasing the frequency of oscillations ω. 

 

 

Fig. 2:  The velocity Profile for u against Re with                                                                                                       

5 0 7 1 1 1 5 1 5 1P ,Pe . ,Gr ,D ,R ,M ,m , ,t          

 

Fig. 3: The velocity Profile for w against Re with                                                                                                       

5 0 7 1 1 1 5 1 5 1P ,Pe . ,Gr ,D ,R ,M ,m , ,t          
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Fig. 4:  The velocity Profile for u against M with                                                                                                       

5 0 7 1 1 1 1 1 5 1P ,Pe . ,Re , Gr ,D ,R , m , ,t          

 

 

Fig. 5: The velocity Profile for w against M with                                                                                                       

5 0 7 1 1 1 1 1 5 1P ,Pe . ,Re , Gr ,D ,R , m , ,t          

 

 

Fig. 6: The velocity Profile for u against D with                                                                                                       

5 0 7 1 1 1 5 1 5 1P ,Pe . ,Re , Gr ,R ,M ,m , ,t          
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Fig. 7: The velocity Profile for w against D with                                                                                                       

5 0 7 1 1 1 5 1 5 1P ,Pe . ,Re , Gr ,R ,M ,m , ,t          

 

 

Fig. 8: The velocity Profile for u against m with                                                                                                       

5 0 7 1 1 1 1 5 5 1P ,Pe . ,Re , Gr ,D ,R ,M , ,t          

 

 

Fig. 9: The velocity Profile for w against m with                                                                                                       

5 0 7 1 1 1 1 5 5 1P ,Pe . ,Re , Gr ,D ,R ,M , ,t          
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Fig. 10: The velocity Profile for u against Gr with                                                                                                       

5 0 7 1 1 1 5 1 5 1P ,Pe . ,Re , D ,R ,M ,m , ,t          

 

 

Fig. 11: The velocity Profile for w against Gr with                                                                                                       

5 0 7 1 1 1 5 1 5 1P ,Pe . ,Re , D ,R ,M ,m , ,t          

 

 

Fig. 12: The velocity Profile for u against Pe with                                                                                                       

5 1 1 1 1 5 1 5 1P , Re , Gr ,D ,R ,M ,m , ,t          
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Fig. 13: The velocity Profile for w against Pe with                                                                                                       

5 1 1 1 1 5 1 5 1P , Re , Gr ,D ,R ,M ,m , ,t          

 

 

Fig. 14: The velocity Profile for u against R with                                                                                                       

5 0 7 1 1 1 5 1 5 1P ,Pe . ,Re , Gr ,D ,M ,m , ,t          

 

 

Fig. 15: The velocity Profile for w against R with                                                                                                       

5 0 7 1 1 1 5 1 5 1P ,Pe . ,Re , Gr ,D ,M ,m , ,t          
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Fig. 16: The velocity Profile for u against P with                                                                                                       

0 7 1 1 1 1 5 1 5 1Pe . ,Re , Gr ,D ,R ,M ,m , ,t          

 

 

Fig. 17: The velocity Profile for w against P with                                                                                                       

0 7 1 1 1 1 5 1 5 1Pe . ,Re , Gr ,D ,R ,M ,m , ,t          

 

                                                                                

Fig. 18: The velocity Profile for u against   with                                                                                                       

0 7 1 1 1 1 5 1 5 1Pe . ,Re , Gr ,D ,R ,M ,m , P ,t          
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Fig. 19: The velocity Profile for w against   with                                                                                                       

0 7 1 1 1 1 5 1 5 1Pe . ,Re , Gr ,D ,R ,M ,m , P ,t          

 The temperature profiles are shown in Figure (20-22). The temperature decreases with the 

increase of radiation parameter R , the Peclet number Pe (Figures 20-21). The temperature enhances 

initially and then gradually decreases with increase in the frequency of oscillations ω (Figure 22). We 

notice that the flow of heat tranfer is reversed with the increase in Peclet number Pe. The amplitude of the 

rate of heat transfer is shown in ( Fig. 23 & 24) which shows that the value of amplitude of the rate of 

heat transfer decreases with the increase of R and Pe. The phase angle   of the rate of heat transfer is 

shown in (Fig. 25 &26). It is noticed that phase angle   decreases with the increase in Pe and increases 

with increase in R. there is only phase log for the values of the frequency of oscillations ω. 

 

 

Fig. 20: The Temperature Profile for T against R with 0 7 5 1Pe . , ,t    

 The skin-friction at the plate 2/1z  is obtained in terms of its amplitude |q| and the phase 

angle . The amplitude |q| is presented in Table 1. The amplitude |q| increases with increase in 

Reynolds number Re, pressure gradient P, Grashof number Gr and the Hall parameter m. The 

amplitude |q| increases with increase of permeability of the porous medium D  for small values of ω 

)5(   but decreases for large values of ω )5(  . However, the effect of D is insignificant for large 

values of frequency of oscillations ω. The amplitude |q| decreases with increase in the intensity of the 

magnetic field (Hartmann number M). The amplitude |q| increases with increase in Peclet number Pe or 

Radiation parameter R for the values of 15  but decreases for large values of 15 . A decrease in 

|q| is noticed with increasing frequency of oscillations ω. 
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Fig. 21: The Temperature Profile for T against Pe with 1 5 1R , ,t    

 

 

Fig.22: The Temperature Profile for T against   with 0 7 1 1Pe . ,R , t    

 

 

Fig. 23: Amplitude  H  of Rate of Heat transfer profile against Pe with R=1 
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Fig. 24: Amplitude  H  of Rate of Heat transfer profile against R with Pe=0.7 

 

 

Fig. 25: Phase angle ( )  of Rate of Heat transfer profile against Pe with R=1 

 

 

Fig. 26: Phase angle ( ) of Rate of Heat transfer profile against R with Pe=0.7 
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Table 1: Amplitude ( q ) of Skin friction ( L ) at lower plate 

 

Re M m D Gr Pe R P 5  10  15  20  

1 2 1 1 1 0.7 1 10 0.74175 0.799029 0.622992 0.513032 

1.5 2 1 1 1 0.7 1 10 1.59843 0.879376 0.643293 0.502725 

2 2 1 1 1 0.7 1 10 1.75104 0.90803 0.645668 0.494522 

1 5 1 1 1 0.7 1 10 0.45904 0.356544 0.339405 0.306986 

1 8 1 1 1 0.7 1 10 0.19977 0.173817 0.179968 0.171313 

1 2 2 1 1 0.7 1 10 1.50641 0.859331 0.651048 0.530602 

1 2 3 1 1 0.7 1 10 1.61843 0.900872 0.671557 0.543758 

1 2 1 2 1 0.7 1 10 1.23184 0.770207 0.611035 0.506134 

1 2 1 3 1 0.7 1 10 1.13851 0.739593 0.597566 0.498285 

1 2 1 1 3 0.7 1 10 1.40054 0.863886 0.633323 0.58511 

1 2 1 1 5 0.7 1 10 1.49245 0.930019 0.65862 0.65719 

1 2 1 1 1 0.9 1 10 1.31844 0.803141 0.631482 0.507125 

1 2 1 1 1 1.2 1 10 1.33554 0.812094 0.638265 0.498909 

1 2 1 1 1 0.7 5 10 1.30839 0.850364 0.638895 0.487542 

1 2 1 1 1 0.7 10 10 1.35168 0.862647 0.642625 0.479671 

1 2 1 1 1 0.7 1 1 0.17854 0.021697 0.077568 0.083739 

1 2 1 1 1 0.7 1 5 0.68079 0.365671 0.313108 0.274536 

 

 

Table 2: Phase angle ( ) of Skin friction ( L ) at lower plate 

 
 Re M m D Gr Pe R P 5  10  15  20  

1 2 1 1 1 0.7 1 10 -0.968351 -1.23578 -1.278810 -1.43403 

1.5 2 1 1 1 0.7 1 10 -1.165925 -1.36156 -1.398440 -1.50892 

2 2 1 1 1 0.7 1 10 -1.264428 -1.42965 -1.453360 -1.53187 

1 5 1 1 1 0.7 1 10 -0.955126 -1.00185 -1.038550 -1.19757 

1 8 1 1 1 0.7 1 10 -0.928135 -0.87620 -0.898628 -1.03272 

1 2 2 1 1 0.7 1 10 -1.119362 -1.31771 -1.342920 -1.48771 

1 2 3 1 1 0.7 1 10 -1.132782 -1.33859 -1.361470 -1.50357 

1 2 1 2 1 0.7 1 10 -0.949917 -1.16214 -1.222660 -1.38714 

1 2 1 3 1 0.7 1 10 -0.873865 -1.09131 -1.167210 -1.34025 

1 2 1 1 3 0.7 1 10 -1.157523 -1.27146 -1.321500 -1.45603 

1 2 1 1 5 0.7 1 10 -1.267641 -1.32527 -1.472756 -1.49762 

1 2 1 1 1 0.9 1 10 -1.034021 -1.22182 -1.289411 -1.44721 

1 2 1 1 1 1.2 1 10 -1.232442 -1.32076 -1.305121 -1.45667 

1 2 1 1 1 0.7 5 10 -0.982762 -1.25016 -1.337091 -1.45547 

1 2 1 1 1 0.7 10 10 -0.991132 -1.27391 -1.353022 -1.47119 

1 2 1 1 1 0.7 1 1 -1.484871 -1.74928 -1.865452 -1.69033 

1 2 1 1 1 0.7 1 5 -1.097251 -1.25197 -1.359513 -1.53511 
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 The phase angle   of the skin-friction is presented in Table 2. Since all the values presented 

in Table 2 are negative, therefore, there is always a phase lag. The phase angle   increases with 

increasing Reynolds number Re, hall parameter m, Peclet number Pe, radiation parameter R  and 

Grashof number Gr, while it decreases with increase in permeability of the porous medium D, 

Hartmann number M  and pressure gradient P.  

 

IV. CONCLUSIONS  
 

 The effects of radiation and hall current on MHD free convection three dimensional flow in a 

vertical channel filled with porous medium has been studied. The conclusions are made as the following. 

1. The velocity component for primary flow enhances with increasing in Re, D, m, Gr, Pe and P; and 

reduces with increasing in the intensity of the magnetic field M (Hartmann number) and Radiation 

parameter. 

2. The velocity component for secondary flow enhances with increasing in D and m; and reduces with 

increasing in Re, M, Gr, Pe, P and Radiation parameter R. 

3. The resultant velocity enhances with increasing in Re, D, m and P; and reduces with increasing in M, 

Gr, Pe, R and the frequency of oscillation ω. 

4. Temperature reduces with increase in R or Pe while it enhances initially and then gradually reduces 

with increase in frequency of oscillation ω. 

5. The amplitude of rate of heat transfer decreases with the increase of R and Pe. 

6. Phase angle   decreases with the increase of Pe and increases with increase in R. there is only 

phase log for the values of the frequency of oscillations ω. 

7. The amplitude |q| increases with increase in Reynolds number Re, pressure gradient P, 

Grashof number Gr and the Hall parameter m.  

8. The amplitude |q| increases with increase of permeability of the porous medium D  for small 

values of ω but decreases for large values of ω. However, the effect of D is insignificant for 

large values of frequency of oscillations ω. 

9. The amplitude |q| decreases with increase in M. The amplitude |q| increases with increase in 

Peclet number Pe or Radiation parameter R for the values of ω but decreases for large values of 

ω. 

10. The phase angle  increases with increase in Re, m, Pe, R and Gr, while it decreases with 

increase in D, M  and P. 
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