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On The A-, D- And E-Optimality of PBNB Designs 
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Mis Specialist,Coimbatore 
This paperextending to n-ary block of Soundarpandian  (1980a), a partially balanced n-ary Block (PBNB) 

design discussed. 

Keywords: A-,D- and E- Optimal N- ary designs. 

 

I. Introduction 
E-optimality of some statistical experiments (both BNB and PBNB designs) in additive one-way 

elimination of heterogeneity.  Here D (V.B.K.) represents the collection of all K x B arrays with treatments 

1,2… V.  Any such array d  D (V.B.K) is a n-ary design.  A design is said to be n-ary if each block of d 

consists of treatments; d is called equireplicated, if each variety occurs the same number of times throughout the 

whole array d. 

The additive model of elimination of heterogeneity in one direction, we assume that the expectation of 

an observation on variety i in the j-th block of d is i + j.  The observations are assumed uncorrelated with 

common variance (unknown) 
2. 

   

The information ;matrix of treatment effect is 

 KCd = K diag (Rd1 Rd2  …. RdV) -Nd N’d 

  

Where Nd = (ndij).  With ndij indicating the number of times treatment i appears in the block of d.  Our 

main interest is to compare the treatments (1, 2…….,v) of n-ary design d.  Here Rdi is replication of treatment i 

in d.  j denotes the matrix with as entries I and I is the identity matrix.  dij denote the (i.j)-th entry of NdN’d as 

known that for any d, Cd is nonnegative definite with row sums zero.  Let further 

0 = dod1 ….. dv –1   in the eigen values of Cd 

 

II. Preliminary Results 
Some inequalities and parameter relations of PBNB designs and further results have been worked out 

after considering the concepts of BNB, PBNB designs and E- optimality criterion. 

Following Tocher (1952) and later for inequality B  V by Soundarapandian (1980a),define a balanced 

n-ary block (BNB) design as an arrangement of V-treatments in B blocks each of size K, such as the i
th

 

treatment occurs in the j
th

 block nij times, and altogether R times, when nij can take values 0, 1, 2, …. (n-1).  We 

say that the design is variance balanced if the inner product of any two new vectors of the incidence matrix, 

NVxB of the n-ary design  


B

1i

kjij nn  is a constant and equal to  (say) for all i = k = 1,2,3,….,v. This implies 

also that 


B

1i

2

ijn  =   , (another constant) for all i=1,2,3,….v.  

 

According to Hedayat and Federer (1974), a n-ary block design is said to be pairwise balance if NN’ = 

D() +  J, when N’ is the transpose of the incidence matrix N, D a diagonal form of matrix with elements ,  

a scalar and J matrix with unit entries everywhere. 

Generalizing the definition of ternary block design of Paik and Federer (1973) and Mehta, Agarwal and 

Nigam (1975) and extending to n-ary block of Soundarpandian  (1980a), a partially balanced n-ary Block 

(PBNB) design is defined in the following lines. 

 

Definition:  
A block design with V treatments B blocks is said to be a Partially balanced n-ary block (PBNB) 

design with m associate classes if 

(i) the incidence matrix NVxB has n entries 0,1,2…..(n-1), 

(ii)  nij = K                                     for every    j=1,2……B. 

(iii)  nij  = R and   n
2

ij =  and,         for every     I=1,2,…..V.  
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(iv) there exists a relationship between the treatments defined as: 

(a) any two treatments are either 1
st
 2

nd
,……….or m

th
 associates, the relation of association being 

symmetrical 

(b) each treatment. ‘a’ has n-th  associates, then the number of treatments that are j-th associates of 

‘a’ and k-th associates of ‘d’ is  P


ij and is independent of the pair of -th associates ‘a’ and ‘d’. 

(v) the inner product of any two rows of N,   ie  


B

1j

kjij nn =  if i and i’ are mutually - th associate,   

=  1,2…….m. 

 

Paik and Federer (1973) and Soundarapandian (1980a) introduced partially balanced n-ary block 

designs (PBNBD) as natural extension of BNBD’s which had intuitively attracted combinatorial properties and 

whose algebraic properties enabled efficiency factor to be easily calculated.  More attention has been paid to 

PBNBD’s with two associate classes, hereafter called PBNB (2) designs.  An alternative approximation to 

combinatorial balanced is to have precisely two non-trival concurrences, which differ by one or a scalar 

quantity.  Any such designs are called PBNB designs and not a BNB design. 

 In the above model, a design d* is called E-Optimal over D (V,B.K). if the  maximal variance of 

normalized best  linear unbiased estimators of treatment contrast is minimal under d*.  In terms of eigenvalues, 

it is well known that E-optimality deals with the association d  Cd d1 and with the objective of finding a 

design d with maximal d1 over all of D (V.B.K) – as per the extension of binary to n-ary from Eherenfeld 

(1955) or Kiefer (1959,1978). 

 

III. Various Bounds For BNBAnd PBNB Designs 
Following the contributions of Soundrapandian(1980 a,b) one can arrive various bounds for n-ary 

block design by using the bounds for binary design which have been discussed by Constantine (1982). 

 

Lemma:  
Let C be a (VxV) non-negative definite matrix with zero row and column sums.  The eigenvalues of C 

be 0 = 0 1 2…..V-1.  Then the sum of entries in any    (m x m) principal minor of C is at least. 

{m(V-m)/V}1;  1 m  (v-1)    

 

Proof:  

The leading principal minor M of C which has row and column permutation has the same eigenvalues  

in C. Then. 

 I’MI = 

























1

V

m

0

1
C 






















1

V

m

0

1
 



























1

V

m

0

1























1

V

m

0

1
1  = .

V

m)-m(V
1 

 

where 1 represents the column vector with all its entries 1. The inequality relies on the known fact that 

 1  =  Min x’1 =0 
xx'

Cxx'
 

Also   

























1

V

m

0

1
1 = 0 (since the 1 in  









0

1
  is m x 1).  

 

Thus we get the result proved. 

 

For an equireplicated n-ary  design d D (V,B,K,), we get the upper bound for d1 as in the following 

lemma. 

 

Lemma:          
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 If an equi-replicated n-ary block design d D (V,B,K) contains a block which consists of m treatments, 

2  m  K, then 

Kd1 
m)-m(V

V
 (K-1) (mR-K) 

 

Proof: 
Let the first block in d consists of nd11 1’s, nd21 2’s…… and ndm1 m’s.  Index the rows and columns of 

Cd by the treatments 1,2,3,…….V (in this order) 

 

Let Md be the (m x m) leading principal minor of Cd.  Here 


B

1j

n dij = R and that 

 
 


B

2j

B

1j

dij
2

dij
2

1di
2

B

1j

dij
2 Rnnnn   

  

Hence 

 



B

2j

1didij
2 nRn  

 

and so 

 



B

1j

1di1di
2

dij
2 nRnn  

 

Secondly 



m

1i

dij which is a sum of m(m-1) non-negative terms. 

Thus 

  
   


m

ji

m

ji

B

1u

m

ji

1djdijdjudiudij nnnn         

From the two inequalities, and using the fact that



m

1i

dij K , awe get, 

  
  


m

1i

B

1j ji

dijdij
2nmRKM'1K  

  



m

ji

1di1di

m

1i

1di

2 nnndilnmRK  

= mRK -    

2
m

1i
dij

n
















   -  mR +  


B

dij

1j
n  

 = (K-1)  (mR-k) 

  

Thus Kdl {V/m (V-m) } {K-1}(mR-k) follows from lemma (5.3.1).  Thus we proves the lemma. 

  

In future, let Rdl Rd2 Rd3 ….. RdV 

 

Then we have the following theorem: 

 

Theorem:  
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Let R = 
V

BK
be an integer.  A design d*  D (V,B,K), which satisfies 

Kdl
K-V

V
(R-1) (K-1) is E-Optimal over D (V,B,K) and its dual is E-Optimal over D (V.B.K). 

 

Proof: 
 Let d be any design in D (V,B,K) 

 

 Let also that d is either equireplicated or it is not.  Suppose it is not equireplicated, then Rdi (R-1).  By 

Lemma (5.3.1) with m =1, we have, 

  

Kdl  
1-V

V
Rdl (K-1) 

1-V

V
 (R-1) (K-1) 

  <
K-V

V
 (R-1) (K-1)  Kd*1 

 

Thus, this kind of design is strictly E less Optimal than d* 

 

IV. Assume That D Is Equireplicated: 
 Let d has a 8 block which consists of m distrinct treatments, 2  m  K.  Then Cd is the zero matrix. 

 

 For such d, we have dl = 0 <d*1. 

 

By Lemma (5.3.2), we have 

 

 K dl   
m)-m(V

V
 (K-1) (mR-K) 

 

Let S (m) =   -Kd*1 m
2
 + {VK  d*1 – V (K-1)R} m+ VK (K-1) 

 

Note that 
m)-m(V

V
(K-1) (mR-K) K d*1 for all 2  K m, if and only if S (m) 0 for all 2  m k. 

 Since S(m) is a quadratic in m with negative leading coefficients and S(0) = VK (K-1) > 0.  Finding 

that S (K)  0, would give that S(m)  > 0 for all 2  m  K.  Form the assumption. 

 

 Kd*1









1)-K)(R-(V

V
  (R-1) (K-1), we get     

-K
2
d*1  + VKd*1 – V(K-1) R+V(K-1)  0 

 

In terms of S, the inequality simplifies to 

 K
-1

 S (K)   0 

 

Since K is positive, it follows that S(K)   0.  Then we can show that  

Kd1 
m)-m(V

V
  (K-1) (mR-K)  Kd*1.  for all 2  m  K. 

 This result shows the E-Optimality of d* on D (V,B,K) 

 

Corollary 
 The dual of d* of Theorem (5.3.3), is E-Optimal over D (V,B,K) 

 

Proof: 
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Following the binary results of Shah, Raghavarao, Khatri (1976) and Cheng (1980a) and extending to 

n-ary block designs of Soundapandian (1980a), we can prove that the dual of d* in Theorem (5.3.3) is E-

Optimal over D (V,B,K). 

V. E-Optimal PBNB Designs 
Cannor and Clatworthy (1954) found the non-zero eigenvalues of the information matrix of a PBIB 

design with two associate classes to be 

 K1  =  r (k-1) – ½ { (1-2) (-+   ) + (1+2 )} 

and   

K2  =  r (k-1) + ½  { (1-2) ( -  -  ) + (1+2)} 

Where    =  P
2

12  -  P
1

12  and   = ( P
2

12  -  P
1
12 ) 

2
 + 2(P

2
12  -  P

1
12) 

 

Now utilizing the result of PBNB  designs of Soundarapandian’s thesis (1981d), we get the two non-

zero eigenvalues of the information matrix of PBNB designs with two associate classes are: 

 K1  =  (RK-0)  - ½  { (1 - 2) (-  +  ) + 1+2 } 

and      

K2 =  (RK-0)  + ½  { (1 - 2) (-  -  ) + 1+2 } 

 

Where     =  P
2
12  -  P

1
12,  =  P

2
12  -  P

1
12  ,    =   

2
 + 2+1 

 (Difference between  and 0 can be noticed.) 

  

If 1 <2 we can easily see that 1<2, and now we get the following theorem. 

 

Theorem:  
(a) A partially Balanced n-ary block (PBNB) designs with 1 = 0,  2  =  a (a is a  scalar quantity m ay 

take any values) and 

 -   + a 
K)-(V

)V(RK)1(K2 
   is E-Optimal over all n-ary block designs 

(b) A partially Balanced n-ary block (PBNB) design with 1 = a, 2 =0 (where a is a scalar quantity may 

take value) and 

 a +  -   
K)-(V

)V(RK)1(K2 
is E-Optimal over all block designs. 

 

Proof: 
 Utilizing the theorem (5.3.3), the proof of the theorem follows for PBNB designs. 

 From the above Theorem (5.4.1), we can see the following PBNB designs with 2 associate classes with 

the following parameters are E-Optimal. 

 

(a) 1 = a, 2 = 0, t = K (K-1) (R-1) (V-K) an integer an P
1
11 = (t-1) (R-1) + (K-2) and P

2
11 = Rt. 

(b) Bose’s (1963) partial geometries with two associate classes are E-Optimal PBIB designs, which can be 

extended to E-Optimal PBIB designs. 

(c) 1=a, 2 = 0 and B< V. 

(d) 1 = a, 2 = 0 triangular scheme of size n and block size K  n-1. 

(e) 1 = 0, 2 = a, L1 association scheme and block size K  V  

(f) 1 = a, 2 = 0, L1 association scheme and block of size K satisfying either    (i-1)  V   K (or) K  

V   (i-1) 

 

For ( c ), it is very difficult to find PBNP design but for PBIB designs, we can find from Bose and 

Clatworthy (1955).  Examples of E-Optimal PBIB design are found from tables of PBIB designs compiled by 

Clatworthy (1973) and this can be used. 
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Example: 
Blocks Treatments Blocks Treatments Blocks Treatments 

1 1   1   3   6 16 6   6   9  15 31 11  11  13  9 

2 1   3   3   6 17 6   9   9  15 32 11  13  13  9 

3 1   3   6   6   18 6  9  15  15   33 11  13    9  9 

4 2   2   8   3    19 7  7  14  11 34 12  12    5  4 

5 2   8   8   3 20 7  14 14 11 35 12    5   5   4 

6 2   8    3   3 21 7  14 11 11  36 12    5   4   4 

7 3    3   11  5 22 8  8  12  13 37 13  13  10  1 

8 3   11  11  5 23 8 12 12  13 38 13  10  10   1 

9 3   11    5   5 24 8  12 13 13 39 13  10    1   1 

10 4     4    1   7 25 9   9   4   2 40 14  14    6   12 

11 4     1    1   7 26 9   4   4   2 41 14   6   12   12 

12 4     1    7   7 27 9   4   2   2 42 14   6  12    12 

13 5     5   15  10 28 10 10 2  14 43 15  15   7      8 

14 5   15   15  10 29 10  2  2  14 44 15   7    7      8 

15 5   15   10  10 30 10  2 14 14 45 15   7    8      8 

 

VI. Further PBNB Designs 
 Let D (V.B.K) be the set of n-ary equireplicate incomplete block designs for V treatments in B blocks 

of size K.  For any d  D (V,B,K), let Nd be the V x B treatment block incidence matrix of d.  Then the 

information matrix of d in a new form can be given as: 

 Cd = RI – K
-1

 Nd N’d 

 

The matrix Nd N’d is called the concurrence matrix of d and its off-diagonal entries as nontrivial 

concurrences.  Cd is symmetric, non-negative definite and has zero row sums. 

  

Let 0 = d0 dl  ……. dv be the eigenvalues of Cd.  Then Commonly used A, D and E-Optimality 

criterion seek to minimize. 




1-V

1i
(dl)

-1
,  



1-V

1i

(dl)
-1

  and (dV –1)
-1

 respectively.  

  

As per Kiefer (1975) if D (V,B,K) has d* is having non-trivial concurrences equal, then d* is 

universally optimal n-ary block designs over D (V,B,K), in particular, they are A, D and E-Optimal over D 

(V,B,K). 

  

We have already defined a Partially Balanced n-ary.  Block (PBNB) design.  Now we proceed to prove 

some theorems which are associating with a vector x in K-dimensional real space.  The co-orintes of such a 

vector are x1, x2 , ….xk. 

 

Theorem  

Let  ,  be a subset of R 
k
 .  Suppose  that there is a constant C such that if   x   , then 



k

1i
X i = C 

and Xi 0 for I = 1, 2, …. K.  If  i  contains an element X* such that 

 

i. X i *>0     for   i   = 1,2,….k. 

ii. there are two distinct values among X*1, X*2 … X*k  

iii. X* minimized   


k

1i
x

2

i over   

iv. X* maximizes  Max 


k

1i

ix over  . 

 Proof of the Theorem is omitted because it is an extension to n-ary block designs cases from binary 

design.  For the binary design cases proof is given in Cheng, and Bailey (1991). 
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Consider the criteria of the form 


1-V

1i

(fdi), where f satisfies the conditions given in the above 

Theorem (5.5.1).  The A and D criteria are covered by choosing f(x) = x
-1

 and –log(x) respectively.  Our most 

important interest i.e.  E-Optimal criteria is covered as a point –wise limit of criteria derived from functions 

satisfying the condition in the Theorem (5.5.1). 

 

Theorem: 
If D (V,B,K) contains a connected PBNB (2) design d* whose concurrence  matrix is singular, then d* 

is optimal over D (V,B,K) with respect to any criterion of the form  


1-V

1i

f(di) , where f satisfies the conditions 

given in Theorem (5.5.1).  In particular, d* is A, D and E-Optimal over D (V.B.K). 

 

Proof: 

 Let K = V-1,  For d  D (V,B,K), put 

 d = (dl , d2 ,…….. dk ).  Let   = { d  ; d  D(V,B,K) }.  For each d  D (V,B,K), we have 

 Cd = RI-K
-1

 Nd N’d     where R = 
V

BK
 

Since d is n-ary, every diagonal entry of Cd = 
K

-RK 
and so                                          dl + d2 + dk 

= tr (Cd) = B(K-1). 

 Moreover, Cd has no negative eigenvalues.  Thus  satisfies the conditions of Theorem (5.5.1). 

  

Let  *l and* be for d*l and d*. Because d* is connected, all l*, 2* ….k * are positive.  Because 

d* is PBNBD (2),  there are two distinct values among  l*, 2* ….k * [Connor and Cltworthy (1954) for 

binary, Soundarapandian (1980a) for n-ary designs]. 

 The trace of C*d is equal to 


k

1i
 (di )

2 
and this is minimized [Cheng (1978)] in D (V,B,K) in particular 

by d*. 

 

 We have 1ddi

k

1i
maxR 


 

If Nd N’d is singular, then Cd has atleast one eigenvalue equal to R.  Hence* maximizes dl over  . 

Therefore, conditions (i), (ii), (iii) and (iv) of Theorem (5.51) are satisfied. 

 

From Theorem (5.5.1), Theorem (5.5.2)   is proved. 

 

Corollary: 
The dual of the design d*.  in Theorem (5.5.2) is also optimal over D (V,B,K) with respect to the same 

criteria. 

 

Proof: 
 Let dual of d* be d. Then we have NdN’d = N’d* Nd* which has the same non-zero eigenvalues as 

Nd*N’d*. Since Nd*N’d* is singular and Cd* has two distinct non-zero eigenvalues, it is clear that Cd has at most 

two distinct non-zero eigenvalues. 

 If Cd has only one non-zero eigenvalue, then the optimality of d  is obvious. 

 If Cd has two distinct non-zero eigen values, then Nd N’d must be singular. 

 Thus from Theorem (5.5.1) it is sufficient to show tr c
2

d is minimized over   d  D (V,B,K). Since tr. 

(Nd N’d) = tr. (N’d Nd )
2
 and that d* minimizes tr. c

2

d  over d  D (V,B,K). 
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Hence proved. 

 

VII. Applications 
The above theorems and corollary can be utilized to establish the optimality of PBNB(2) designs of the 

following types. 

(i) All the PBNB designs with 2 = 1 + a (a is a scalar) and B < V. 

(ii) All the resolvable PBIB (2) with 2 = 1 a and B < V + K – 1. 

(iii) All the singular group divisible designs with 2 = 1 – 1. 

(iv) All the semi-regular group divisible designs with 2 = 1 + a. 

 

For various types of PBNBD (2), the reference may be made to the thesis of Soundarapandian (1981d).  

A Table of these types of balanced n-ary and partially balanced n-ary design are under preparation by 

Soundarapandian for publication. 
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