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Abstract: Following the introduction of the concept of statistical monotonicity and upper (or lower) peak point
of real valued single sequences by Kaya et al in 2013, we shall in this paper investigate properties of
statistically convergent double sequences, introduce definitions of statistical monotonicity and lower (upper)
peak points of real valued double sequences. And establish the relationships between the statistical convergence
of double sequences and these notions. Finally, we generalised statistical monotonicity using an RH —regular
doubly infinite matrix transformation.
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I.  Introduction

Pringsheim (1900) introduced the concept of convergence for double sequences. Also Robison (1926)
and Hamilton (1936, 1938a, 1938b, 1939) studied the four dimensional matrix transformation (4x),,
:Z‘,’("j';o‘o Qmnky X eXtensively. Using the above concept of Patterson (1999 and 2000) formulated some
analogous of fundamental theorems of summability and double sequence core theorem. Later on many
researches have been done in the field of statistical convergence of double sequence [see for example Teripathy,
(2003)], Mursaleen & Edely, (2003), Siddiqui et al (2012), Brono and siddiqui (2013)] and many others.
Combining this studies and the concept of statistical monotonicity and statistical convergence as introduced in
Kaya et al (2013); we present analogous extension of the various concepts of Kaya et al (2013) to double
sequences theorems.
Definition1.1 Pringsheim (1900): A double sequence x = (xjk) is said to be Pringssheim’s convergent (or P-
convergent) if for given & > 0 there exists an integer N such that |, — €| < & whenever j,k > N. In this
case ¢ is called the Pringsheim limit of x = (x;, ) and it is written as P — limx = ¢.
Definition 1.2 [Mursaleen and Edely (2003)]: Let K = N x N be a two-dimensional set of positive integers
and let K,, , = {(j, k):j < m,k < n}. then the two-dimensional analogue of natural density can be defined as
follows:
In case the sequence K (m, n)/mn has a limit in the pringsheim’s sense, then we say that K has a double natural
density and is defined as
K(m,n)

mn

P —lim = 8,(K).
m,n
Example 1.1: Let K = {(i%,j?):i,j € N}. Then

K(m,n Vvmyn
3,(K) = P —lim ( )SP—lim Vn
m,n mn mn mn

i.e. the set K has doubled natural density zero, while the set {(i, 2j):i,j € N} has natural density %

Definition 1.3: A real double sequence x = (xjk) is said to be statistically convergent to the number ¢ if for
each e > 0, the set {(j, k),j < m k < n: |x;, — €| > €}

Has natural density zero. In this case we write St, —lim; , x;, = ¢ and we denote the set of all statistically
convergent double sequences by St,. Deeply connected with this definition is the concept of strongly Cesaro
summability for double sequences[see Mursaleen & Edely (2003)]

The following definitions of Cesdro summable double sequences is taken from [Moricz (1994)]
Definitionl.4:Let x = (xjk) be a double sequence. It is said to be Cesaro summable to ¢ if

=0

n m
o =
im— X, =
mn mn ik
=1k=1

We denote the space of all Cesaro summable double sequences by (C, 1.1).
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Similarly we can define the following as in case of single sequence
Definition1.5: Letx = (x;; ) be a double sequence and a be a positive real number. Then the double sequence
x is said to be strongly @ — Cesaro summable to ¢ if

M%ZEWW

j=1k=1
We denote the space of all strongly @ — Cesaro summable double sequence by w?.
Remark 1.1: The space of all complex valued sequencesx = (x,) will be denoted by CN. In many
circumstances we refer to CN as the space of arithmetical functions f: N — C, especially, when f reflects the
multiplicative structure of N.
Remark 1.2: An Orlicz function f is a mapping f:[0,] — [0, 0] such that it is continuous non-decreasing and
convex with f(0) =0,f(x) >0, for >0and f(x) >owas x —» . An Orlicz function f is said to
satisfyA, —condition if there exists a consant k > 0 such thatf (2u) < kf (u) for all values of u > 0.
Remark 1.3: Analogously, let a double Orlicz function f;, be a mapping fp:10,00) X [0,00) = [0,00)
such that it is continuous non-decreasing and convex with f,(0) =0, f; (xjk) >0,for xj, >0,j,k=

1,2,. ande( k)—>ooasxk — o0,

Il.  Some results about statistical convergence of double sequence
Define the function p: CN x €Y — [0, 0) for all x;;, Yts € CN as follows,

p(x, y)—hm— Z oo = yie|)

jk<mn
where ¢:[0,0] — [0,0)
_(t, if t<1,
o(6) = {1, Otherwise

It is clear that p is a semi—metric on CN. Now we have
Theorem 2.1:The sequence x = (x;; ) is statistically convergent to £ if and only if p(x,y) = 0 where y = (y;.)
and y; = ¢forall j,k € N.
Proof : Let us assume p(x,y) = 0 where y;; = ¢forall j,k € N. Then, if ¢ > 0
1
hmsup— z 1<max{ }llm— Z (p(| —{]) = max{ }p( k,yjk)=0

m,n mn
jksmn

|x1k _f|
and x;;, = £(S).
Now, assume that x is statistically convergent to £. Then, for any € > 0,

1 1 1 1
— > ollm-D=— > wlm-+— > o(ge-t)ser— > 1

jk<mn jk<mmn k<n k<n
|xjk _{|<g Ixjk —€|2£ |xjk —[|2€
which implies immediately
plx,y) <eforanye >0
Where y = (y;,) and v = ¢ (jk € N). Hence the proof.
The following can be seen from the above proof.
Corollary 2.1: If x;; is strongly Cesaro summable to ¢ then x;, is statistically convergent to £.
Remark 2.1: The inverse of corollary 2.1 is not true in general. Consider the sequence x;;, :N X N - C as
B { jk jk=n% n=12,..,
Xjk = .
o, otherwise.

On the other hand, we have
Corollary 2.2: If x = (xjk) is a bounded sequence and statistically convergent to ¢, then x;; is strongly Cesaro
summable to £. Note a convergent double sequence need not be bounded.
The next theorem is well-known [see J.A. Fridy (1985)]
Theorem 2.2: A sequence x is statistically convergent to ¢ if and only if there exists H ¢ N with §(H) = 1 such
that x is convergentto £ in H, i.e.

lim x,,

n—oo

. neH

Analogously, we extend this result to double sequences as follow:
Theorem 2.2.1: A double sequence x = (xjk) is statistically convergent to ¢ if and only if there exists H ¢ N X
N with §,(H) = 1 such that x is convergentto £in H. i.e
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lim x;
Jk =0 ik
jkeH

Proof: Assume that x;, is statistically convergent to £. There is z; € N such that

1 Z 1< 1
mn -2t
jk<mn

1/2i<1/2¢
Is satisfied for all m,n > z;. Denote the set

. 1 1
H; Z{]kEN:ES |X]k —f| <§}

Then
1 Z 1< 1
mn , 21
j,keN

%<|x,k —€|<2%1and Jj,kEN/H;
holds for all jk € N. If we consider the set H = U7, H; U {jk : x;;, = ¢} then |x;, — ¢| > & hold only to finitely
many jk € H. This means that x is convergent to ¢ in the usual case. Now, let show that §,(N/H) = 0. Let
& > 0 be given and choose an arbitrary r € N such that

1 ¢
2t 72
. i=r+1
holds. For r, there exists a [, € N such that
1 1 e 1 1 ¢
o, Jksma I<gq7 and o8 gksnn  1<Rg
?<|xjk —f|<ZH and jkeN/H |xji =] >1 and jkeN/H

forallm,n > L. andi = {1,2, ..., r}. Therefore,
1 £ &

_Z i k< 1<=4+-=

mn j,]keN?H 2 2

Hold for all m,n > L,.

The inverse of theorem is easily obtained.

I1l.  Some results for double Orlicz functions
The following are some results for Orlicz functions. With M(f;,) we denote the mean-value of the Orlicz
function f, if the limit
1
M) = lim — " £,G,0)
j.k<n
Theorem 3.1: Assume that f: N — C is bounded and statistically convergent to £ and H c N x N is an arbitrary
set which possesses a double asymptotic density &6, (H). Then, M(1. f) exists and equal £. §,(H).
Proof: Consider the following inequality:

1 _ 1 1 , 1 _
e PG = Y e DGR = IR —

jk<n jk<n jk<n j.k<n
j,keN j,keN keH,|f (jk)—l|<e jkeH

Theorem 3.2: If a double Orlicz f}, is bounded and statistically convergentto ¢ # 0, fp = 1.

Proof: Let p, € P, P is the of primes jj, ko € N and let

H={neN:pl*"|n},

Be the set of all elements of N divisible exactly by pf)‘o , i.e. n can be written in the form n = pgoz where p, t z.
Itis clear from Theorem 3.1 that

M(1y.fp) = €5,(H) = fﬁ(l ‘i)
Po

po
holds. Since f;, is multiplicative, we have

fo (k) =f(pé°k°)-fp< J ) for j, k € H.

oko
Therefore,

Po
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1
M(1y.fp) = ml,ianw% 2 foGk)

jk=n
j.keH
‘ ) 1 1
. k . k
= Jim HG) Y h@ = lm e T ). A
S T
ploko 0 P{)Oko
1 Po¥#z 1 Potz
_ joko —
_fD(pO )p(])okof(l po)

This implies f(p{)(’k"). Since p, is a prime j,k, € N have been chosen arbitrarily it follows f, = 1(and ¢ =
1.

Remark 3.1: If f, is bounded and statistically convergent to ¢, then f, is Cesaro summable (C,1.1) (for
every p > 0). And we extend Theorem 3 of Indlekofer(1986) as follows:

Proposition 3.1: Let f;, be an Orlicz function and « > 0. Then the following results hold; (i) if f, is Cesaro
summable (C,1.1) for £ # 0, then £ = 1 and f, (jk) = 1 forall j,k € N.

(i) fp is Cesaro summable (C,1.1) for £ = 0 if and only if |f;|* € ¢" and one of the series

2 a
Z Pt (|fD|Pst||_1) ’ Z Ps (lfD|Pst||_1)

Dst Pst
Ifolpsell < ) Ifp Ipsel=11>5 )
Diverges or
» |fl)(pﬁ—)—ooasx- — 00 ik, s, t=1.2,..1
Pst <Xjk jk . LS t=1,.4,..,

Dst
In other words (i) above is the as theorem 3.2.

IV.  Statistical monotonicity for double sequences and some related results
Here we shall consider only real-valued double sequences and introduce the concept of statistical monotonicity.
Definition 4.1: (statistical monotone increasing (or decreasing) sequence)

A sequence x = (x]-k) is statistical monotone increasing (decreasing) if there exists a subset H ¢ N x N with
8, (H) = 1 such that the sequences x = (x]-k) is monotone increasing (or decreasing) on H.

A sequence x = (x;,) is statistical monotone if it is statistical monotone increasing or statistical monotone
decreasing.

In the following we list some (obvious) properties of statistical monotone sequences.

(i) Ifthe sequence x = (xjk) is bounded and statistical monotone then it is statistically convergent.

(i) Ifx = (x]-k) is statistical monotone increasing or statistical monotone decreasing then

limm‘n_mﬁﬂjk:j Smk Snixjpm < xjk}| =0 D
or
limm,n_mﬁ |{jk:j Smk Snixjq e > xjk}| =0 2)

respectively. The inverse of these assertions is not necessarily true because of the following example:
Define x = () by

I {1, if2t<j<2 —1, foreveni

jk 0, otherwise.
Then the relation (1) and (2) hold but x = (x]-k) is said to be statistical bounded if there exists a number M > 0
such that

§({jk € N:|x; | > M}) = 0.
Let {n'} and {k/} be a strictly increasing double index sequences of positive natural numbers and x =
(x;1. ), define x' = (xjiki) and K; = {j;k;:i € N}
For more on construction of subsequences of double sequences [see Patterson(1999) & (2000)].
Definition 4.3: (Dense subsequence) the subsequence x = (xjiki) of x = (x]-k) is called a dense subsequence,
if 5(K,)) =1.
(iii) Every dense subsequence of a monotone double sequence is statistical monotone.
(iv) The statistical monotone double sequence x = (x;; ) is statistical convergent if and only if x = (x;,) is
statistical bounded.
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Definition 4.4: The double sequence x = (x;; ) and y = (3, ) are called statistical equivalent if there is a subset

M of N with §(M) = 1 such that x; = y;, for each j, k € M. Itis denoted by xj, = y;.

(v) Let x = (x; ) and y = (y;,) be statistical equivalent. Then x = (x;; ) statistical monotone if and only if
y = (i) is statistical monotone.

V.  Peak points for double sequences and some related results
In this section upper and lower peak points for real valued double sequences defined and its relation with
statistical convergence of double sequences and statistical monotonicity will be given.
Definition 5.1: (Upper (or Lower) peak point for double sequences) the point x;, is called upper (lower) peak
point of the double x = (x;; ) if xp, = x
Theorem 5.1: If the index set of peak points of the double sequence x = (xjk) has asymptotic density 1, then
the sequence is statistical monotone.
Proof: Let us denote the index set of upper peak points of the double sequence x = (xjk) by
H= {jiki:xjikiupper peak point of (xjk)} c N.
Since 6,(H) = 1,and x = (x;, ) is monotone on H, the double sequence x = (x; ) is statistical monotone.
Remark 5.1: The inverse of theorem 5.1 is not necessarily true.
Consider x = (x;, ) where
—, jk=m>n?m,neN,
Xjp = ymn
jk, jk #=m?n?
ie.x=(x;) = (123356785, ..).
Since the set H = {m?,n?:m,n € N} possesses an asymptotic density §(H) = 0, [see Mursaleen (2003)] the
sequence x = (x]-k) is statistical monotone increasing. But, it has no any peak points.
Corollary 5.1: If x = (xjk) is bounded and the index set of upper (lower) peak points
H = {jik,-: xj,k,upper (lower)peak point of (xjk)}
Possesses an asymptotic density 1, then x = (x]-k) is statistical convergent.
Remark 5.2: In Corollary 5.1, ordinary convergence cannot replace statistical convergence.
Consider the sequence x = (x;, ) where
-1, j,k=m?n? mmneN
X =3 1
st
The index set of upper peak points of the square of the sequence x = (x]- k)
{st:s,t #m?n% m,n € N}. Itis clear that §(H) = 1 and x = (x;, ) is bounded.
So, the hypothesis of Corollary 5.1 is fulfilled. Then subsequence
1111111
Gu) = (33557570 )
Is convergence to zero. Also, x = (x,,) is statistical convergent to zero but it is not convergent to zero.
Remark 5.2: For an ordinary single dimensional sequence, any sequence is a subsequence of itself. However
this is not the case in the two-dimensional plane (double sequences) as seen in the following example
Example: The sequence

j, k #m?n?

1, ifn=k=0
= 1, ifn=0k=1
nk =) 1, ifn=1k=0

0 otherwise

Contains only two subsequences namely [ynk] = 0 for eachn and k and
7 ={1, ifn=k=0
Ao otherwise
neither subsequence is x,, .
The following proposition which can be easily verified is also worthy stating.
Proposition 5.1: The double sequence x = (x;;) is p —convergent to ¢ if and only if evry subsequence of x is
p —convergent
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VI. 24 —generalization of statistical monotonicity
Statistical monotonicity can be generalized by using 24 —density of a subset K of N for RH —regular non-

negative summability matrix A = [ ;Ok_o, mn=012,...

Recall 24 —density of a subset E = (i,j) S N x N of

P q
6,4(K) = lim ZZ%T,’}" exists
p,q—o®

j=0k=0
[see Brono et al., (2013)]

p,q—ox

lim z = lim Z "1 = lim (24 1,)00
Jj,k€EE j.ke

Exists and is finite.

The sequence x = (x;; ) is 24 —statistically convergent to 1, if for every £>0, the set

K. = {jk € N: |x;, — {| = €} posssesses 2A-density zero [see Brono et al (2013)].

Definition 6.1: A sequence x = (x, ]k) is called 2A-statistical monotone, if there exists a subset H of N x N
with 8,, (H) = 1 such that the sequence x = (x;; ) is monotone on H.

Let 24 = (aji™) and 2B = (bj™ ) be non-negative regular matrices.

Theorem 6.1. If the condltlon

14 q
p=lim swp ) D la" ~ bt | =0 @)
’ j=0k=0

holds. Then x = (x;, ) is 24 —statistical monotone if and only if x = (x;; ) is 2B —statistical monotone.
Proof: For an arbitrary H c N x N the inequality

0<1@A- 1)~ @B-L@I = | D @i = > b < D" lap — | < Zla]k — "

jk €H jkE€H jk€H jhk=1
holds. Under the condition (3) &,,(H) exists if and only if §,5(H) exists, and in the case 8,4 (H) = 8,5(H) .
Therefore, 24 —statistical monotonicity of x = (xjk) implies 2B —statistical monotonicity vice versa
Let us consider strictly increasing and non-negative sequence{l,,},ey and E = {A,,}o_o. If A = ( ") is an
RH—summability matrix, then 24,, = (amn)i)
Is the submatrix of A = (a/i ). Thus, the 4;, transformation of a sequence x = (x; ) as
(Alzx)n = Z;O',]:O:O‘O aﬂ(zn),gjk (x]'.k)'
Since, A, is a row submatrix of 24, it is clear that RH-regular whenever 24 is a RH-regular summability
matrix . For more on RH-regular summability matrices [see Patterson (1999) and (2000)].
Theorem 6.2 Let 24 be a RH-summability matrix and let E = {A,,} and F = {p,,} be an infinite subset of
N x N, if F/E is finite , then 24,, —statistical monotonicity implies 24,, —statistical monotonicity.
Proof: Assume that F/E is finite, andx = (xjk) is A,, —statistical monotone sequence. From the assumption

there exists a n, € N such that

{p2U, k)i ji ke = jo, ko} S E.
It means that there is a monotone increasing sequence i(j, k) such that p,(j, k) = 45;(j, k). So, the 24,,
asymptotic density of the set Z := {jk € N: p,(j, k) = 1,;(j, k)} is

lim a iy = lim a iy = 1.
pq -0 pZ(n)kl,Z(]k) pq-o® lZ(n)kl.Z(]k)
ik j,k=0,0

=0, k=

This gives us, x = (xjk) is a A,, —statistical monotone sequence.

By the Theorem 6.2 we have the following corollaries:

Corollary 6.1: 24 —statistical monotone sequence is 24,, —statistical monotone.

Corollary 6.2: Under the condition of Theorem 6.2, if EAF is finite, then the sequence x =
(xjk ) 24,, —statistical monotone if and only if A,, —statistical monotone.

DOI: 10.9790/5728-12134551 www.iosrjournals.org 50 | Page



On Statistical Convergence Of Double Sequences And Statistical Monotonicity

[1].
[2].

[3].
[4].

[5].

[71.
[8].

[10].

[11].
[12].
[13].

[14].
[15].
[16].
[7.
[18].
[19].
[20].
[21].

[22].

Reference
Armitage D.H. and Maddox, 1.J. (1989). A new type of Cesaro mean, Analysis, 9(1-2), 195-206.
Birch, B.J. (1967). Multiplicative functions with non-decraasing normal order, Journal of London Mathematical Socociety, 42, 149-
151.
Buck, R.C. (1953). Generalized asymptotic density, American Journal of Mathematics, 75, 335-346.
Brono, A. M. & Siddiqui, Z. U. (2013). Generalized statistical convergence for double sequences. IOSR Journal of Mathematics,
6(2), 1-4.
Fridy, J.A. (1978). Submatrices of summability matrices, International Journal of Mathematical Sciences, 1(4), 519-524.
Fridy, J.A. (1985). On statistical convergence, Analysis, 5, 301-313.
Goffman, C. & Peterson, G.M. (1956). Submethods of regular matrix summability methods, Canad. J. Math., 8, 40-46.
Hamilton, H.J. (1938). A generalization of multiple sequences transformation. Duke Math. J., 4, 343-358.
Hamilton, H. J. (1938). Change of dimension in sequence transformations. Duke mathematical Journal, 4(2): 341-342.
Hamilton, H. J. (1939) Preservation of partial limits in multiple sequence transformations. Duke Mathematical Journal, 5(2): 293-
297
Indlekofer, K. H. (1986). Cesaro means of additive functions, Analysis, 6, 1-24.
Katai, 1. (1968). A remark on number-theoretical functions, Acta Arith., 14, 409-415.
Kaya, E. Kucukaslan, M. & Wagner, R. (2013). On statistical convergence and statistical momotonicity. Annales Univ. Sci.
Budapest, Sect. Comp. 39, 257-270.
Moricz, F. (1991). Extentions of the spaces ¢ and ¢, from single to double sequences. Acta. Math. Hung., 57(1-2), 129-136.
Mursaleen, M. & Edely, O. H. H. (2003). “Statistical convergence of double sequences,” J. Math. Anal. Appl., 288(1), 223-231.
Osikiewicz, J.A. (2000). Equivalence results for Cesaro submethods, Analysis, 20(1), 35-43.
Patterson, R. F. (1999). Double sequence core theorems, Int. J. Math. Math. Sci. 22 (4), 785-793.
Patterson, R. F. (2000). Analogues of some fundamental theorems of summability theory, Internet. J. Math. Math. Sci. 23, 1-9.
Pringsheim, A. (1900). “On the theory of doubly infinite sequences of numbers”. Math. Ann., 53, 289-321.
Robison, G.M. (1926). Divergent double sequences and series. Amer. Math. Soc. Trans, 28, 50-73.
Siddiqui, Z. U., Brono, A. M. & Kiltho, A. (2012). Cisaro statistical core of double sequences. Far East Journal of Mathematical
Science, 69(2), 261-274.
Tripathy, B. C. (2003). “Statistically convergent double sequences,” Tamkang J. Math., 34(3), 231-237.

DOI: 10.9790/5728-12134551 www.iosrjournals.org 51 | Page



