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Abstract: The notion of 2 - metric spaces was introduced by Gähler in the year 1963 and since then 

researchers are trying to study the concept of 2 - metric spaces in the fuzzy structures. Very recently , Dey and 

Saha made a very good contribution in the form of a book to study fixed point theory in 2 - metric spaces. In the 

present paper , we state and prove some fixed point theorems on fuzzy 2 - metric spaces due to Sharma by 

introducing the notion of  𝜀 - chain and (𝜀 , 𝜆) uniformly locally contractive mappings on fuzzy 2 - metric 

spaces. Our results extend the famous fixed point theorems due to R. Caccioppoli and M. Edelstein on classical 

metric spaces. We prove an important Lemma and deduce the Banach contraction theorem on fuzzy 2 - metric 

spaces as a corollary and also illustrate our results with examples. 
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I. Introduction 
The concept of fuzzy metric spaces was introduced by Kramosil and Michalek [21] in the year 1975 by 

generalizing the notion of probabilistic metric spaces , introduced by Menger [22] to fuzzy settings. Deng [8 ,9] 

introduced the notion of fuzzy pseudo - metric spaces with the metric defined between two fuzzy points and 

developed its properties in the year 1982. Later in the year 1994 , George and Veeramani [14] modified the 

notion of fuzzy metric spaces of Kramosil and Michalek with the help of continuous 𝑡 - norm and obtained 

Hausdorff topology for this kind of fuzzy metric spaces. It may be recalled that there are several notions of 

fuzzy metric spaces introduced by various authors such as [8 ,11 ,20 ,21]. In recent years , the study of fixed 

point theorems satisfying some contractive - type conditions has been given immense interest and a large  

number of research papers devoted to the development of fixed point theorems and their applications appeared 

in the literature. To mention a few , we cite [16 , 17, 19 ,23]. In particular , Grabiec [15] extended the Banach 

contraction theorem and Edelstein contraction theorem on classical metric spaces to fuzzy metric spaces in the 

year 1988. Cho and Jung [2] proved a common fixed point theorem for four weak compatible mappings of an 𝜀 - 

chainable fuzzy metric space. For examples and elementary properties of fuzzy metric spaces , we refer to [25]. 

Recent literature on fixed point theory in fuzzy metric spaces may also be viewed in [5, 6, 7, 24]. 

Gähler investigated 2 - metric spaces in a series of his papers [12 ,13]. It may be recalled that a 2 - metric 𝑑 [12] 

on a non - empty set 𝑋 is a function 𝑑 ∶ 𝑋3 → ℝ satisfying some conditions that are analogous to the area 

function in Euclidean spaces. Sharma , Sharma and Iseki [28] investigated  , for the first time , the contraction 

type mappings in the 2 - metric spaces. A brief account of evolution of fixed point theory in 2 - metric spaces 

may also be viewed in [10]. This motivated the idea of 2 - metric spaces in the fuzzy settings.  Sharma [27] 

proved an interesting common fixed point theorem for three mappings in fuzzy 2 - metric spaces.  Han [18] 

extended the results of Cho [1] to fuzzy 2 - metric spaces which are a generalization of the results due to Sharma 

[27]. Das and Saha [3] proved the Banach contraction Theorem and Edelstein contraction Theorem in fuzzy 2 - 

metric spaces which are extensions of the results in fuzzy metric spaces due to Grabiec [15]. 

Motivated by our earlier work [3] , we have extended the Theorems due to Das and Saha [4] to fuzzy 2 - metric 

spaces. The structure of the paper is as follows. After the preliminaries in section 2 , we prove an important 

Lemma and then extend the Caccioppoli fixed point theorem and Edelstein fixed point theorem to fuzzy 2 - 

metric spaces in section 3. We also deduce the Banach contraction theorem in fuzzy 2 - metric spaces [3] as a 

corollary and construct examples to illustrate our results.  

 

II. Preliminaries 
In this section , we recall some definitions and known results which are already in the literature.  

Definition 2.1.[29] A fuzzy set 𝐴 in 𝑋 is a mapping 𝐴: 𝑋 → [0,1]. For 𝑥 ∈ 𝑋 , 𝐴(𝑥) is called the grade of 

membership of 𝑥. 

Definition 2.2. [26] A binary operation ∗ ∶  0,1 ×  0,1 → [0,1] is called a continuous t-norm , if (  0,1  ,∗)  is 

an abelian topological monoid with unity 1 such that 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 , whenever  𝑎 ≤ 𝑐 , 𝑏 ≤ 𝑑 , for all    

𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1]. 
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Definition 2.3. [27] The 3 - tuple (𝑋, 𝑀,∗) is called a fuzzy 2 - metric space , if 𝑋 is an arbitrary set , ∗ is a 

continuous 𝑡 - norm and 𝑀 is a fuzzy set in 𝑋3 × [0,∞[  ,  satisfying the following  conditions:  

For all 𝑥, 𝑦, 𝑧, 𝑢 ∈ 𝑋 , and 𝑡,  𝑡1, 𝑡2, 𝑡3 > 0 , 𝑀 𝑥, 𝑦, 𝑧, 0 = 0 , (2.3.1) 𝑀 𝑥, 𝑦, 𝑧, 𝑡 = 1 , for all 𝑡 > 0 , if and only 

if at least two of 𝑥, 𝑦, 𝑧 are equal  ,  (2.3.2) 𝑀 𝑥, 𝑦, 𝑧, 𝑡 = 𝑀 𝑥, 𝑧, 𝑦, 𝑡  = 𝑀 𝑦, 𝑧, 𝑥, 𝑡 = 𝑀 𝑦, 𝑥, 𝑧, 𝑡 = 

𝑀 𝑧, 𝑥, 𝑦, 𝑡 = 𝑀 𝑧, 𝑦, 𝑥, 𝑡  ,(2.3.3)    𝑀 𝑥, 𝑦, 𝑧, 𝑡1 + 𝑡2 + 𝑡3 ≥ 𝑀 𝑥, 𝑦, 𝑢, 𝑡1 ∗ 𝑀 𝑥, 𝑢, 𝑧, 𝑡2 ∗ 𝑀 𝑢, 𝑦, 𝑧, 𝑡3  , 
(2.3.4)  𝑀 𝑥, 𝑦, 𝑧, .  : [0,∞[ → [0,1] is left continuous , and  (2.3.5)   lim𝑡→∞𝑀(𝑥, 𝑦, 𝑧, 𝑡) = 1. (2.3.6)   

Example 2.4. [27] Let (𝑋, 𝑑) be a 2 - metric space and 𝑎 ∗ 𝑏 = 𝑎𝑏 , for every 𝑎, 𝑏 ∈  0,1 . Let 𝑀𝑑  be a fuzzy set 

in 𝑋3 × [0,∞[ , given by 𝑀𝑑 𝑥, 𝑦, 𝑧, 𝑡 =
𝑡

𝑡+𝑑(𝑥,𝑦,𝑧)
 , if 𝑡 > 0 and 𝑀𝑑 𝑥, 𝑦, 𝑧, 0 = 0. Then (𝑋, 𝑀𝑑  ,∗) is a fuzzy  

2 - metric space and 𝑀𝑑  is called the standard fuzzy 2 - metric induced by the 2 - metric 𝑑. Thus every               

2 - metric 𝑑 induces a fuzzy 2 - metric 𝑀𝑑  on 𝑋.                        

Definition 2.5. [27]A sequence {𝑥𝑛} in a fuzzy 2 - metric space (𝑋,𝑀,∗) is said to be  

 𝑎  a Cauchy sequence , if lim𝑛→∞ 𝑀 𝑥𝑛 , 𝑥𝑛+𝑝 , 𝑧, 𝑡 = 1 , for all 𝑧 ∈ 𝑋 , 𝑡 > 0 , 𝑝 > 0. 

(𝑏) convergent to 𝑥 ∈ 𝑋  (in symbols , lim𝑛→∞ 𝑥𝑛 = 𝑥 or 𝑥𝑛 → 𝑥 ) , if  
lim𝑛→∞ 𝑀(𝑥𝑛 , 𝑥, 𝑧, 𝑡) = 1 , for all 𝑧 ∈ 𝑋 , 𝑡 > 0. 

Definition 2.6. [27] A fuzzy 2 - metric space (𝑋, 𝑀,∗) is said to be complete , if every Cauchy sequence in 𝑋 is 

convergent. 

Lemma 2.7.(a) [18] 𝑀(𝑥, 𝑦, 𝑧, . ) is non - decreasing for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

                    (b) [18] Let (𝑋, 𝑀,∗) be a fuzzy 2 - metric space. Let there exists 𝑞 ∈ ]0,1[ such that 

𝑀 𝑥, 𝑦, 𝑧, 𝑞𝑡 ≥ 𝑀 𝑥, 𝑦, 𝑧, 𝑡  , for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑡 > 0. If  𝑧 ≠ 𝑥, 𝑧 ≠ 𝑦 , then 𝑥 = 𝑦. 

 

Theorem 2.8. (Caccioppoli) Let (𝑋, 𝜌) be a complete metric space and 𝑇: 𝑋 → 𝑋 be a mapping. Suppose for 

each positive integer 𝑛 , 𝜌 𝑇𝑛𝑥, 𝑇𝑛𝑦 ≤ 𝑎𝑛𝜌 𝑥, 𝑦 , for all 𝑥, 𝑦 ∈ 𝑋 and 𝑎𝑛 > 0 is independent of 𝑥 , 𝑦. If the 

series  𝑎𝑛  is convergent , then 𝑇 has a unique fixed point.  

Theorem 2.9. Let (𝑋, 𝜌) be a complete metric space and 𝑇:𝑋 → 𝑋  be a continuous mapping. If for some 

positive integer 𝑚 ,  𝑇𝑚  is a contraction mapping , i.e., 𝜌 𝑇𝑚𝑥, 𝑇𝑚𝑦 ≤ 𝛼𝜌 𝑥, 𝑦  , for all 𝑥 , 𝑦 ∈ 𝑋  and 

some 0 < 𝛼 < 1 , then  𝑇 has a unique fixed point.                                      

Theorem 2.10. (Edelstein) Let  𝑋, 𝜌  be a complete , 𝜀 - chainable metric space and 𝑇: 𝑋 → 𝑋 

be  𝜀, 𝜆  uniformly locally contractive. Then there exists a unique fixed point of  𝑇.                   

Theorem 2.11. [3] Let  𝑋,𝑀,∗  be a complete fuzzy 2 - metric space and 𝑇:𝑋 → 𝑋 be a contraction , i.e., a 

mapping satisfying    𝑀(𝑇𝑥, 𝑇𝑦, 𝑧, 𝑘𝑡) ≥ 𝑀 𝑥, 𝑦, 𝑧, 𝑡  ,                                                                          (2.11.1)  

for all 𝑥 , 𝑦 , 𝑧 ∈ 𝑋 , 𝑡 > 0 and some 0 < 𝑘 < 1 . Then 𝑇 has a unique fixed point. 

 

III. Main Results 
In this section , we state and prove the main results of our paper. We extend the Theorems 2.8 , 2.9 and 2.10 to 

fuzzy 2 - metric spaces and deduce the Theorem 2.11 as a Corollary. We also illustrate our results with suitable 

examples. Before we proceed , let us state and prove an important Lemma which is used in all of our theorems. 

Lemma 3.1.  If {𝑥𝑛} is a sequence in a fuzzy 2 - metric space  𝑋, 𝑀,∗  , then for all  𝑧 ∈ 𝑋 ,   
 𝑡 > 0 , 𝑝 > 0 , 

𝑀(𝑥𝑛 , 𝑥𝑛+𝑝 , 𝑧, 𝑡) ≥ 𝑀(𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+𝑝 ,
𝑡

2 𝑝−1 +1
) ∗ 𝑀(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+𝑝 ,

𝑡

2 𝑝−1 +1
) ∗ …   

∗ 𝑀(𝑥𝑛+𝑝−2, 𝑥𝑛+𝑝−1 , 𝑥𝑛+𝑝 ,
𝑡

2 𝑝−1 +1
) ∗ 𝑀(𝑥𝑛 , 𝑥𝑛+1 , 𝑧 ,

𝑡

2 𝑝−1 +1
) ∗ 𝑀(𝑥𝑛+1 , 𝑥𝑛+2 , 𝑧 ,

𝑡

2 𝑝−1 +1
) ∗ …    ∗

𝑀(𝑥𝑛+𝑝−1 , 𝑥𝑛+𝑝 , 𝑧 ,
𝑡

2 𝑝−1 +1
) ∗ 𝑀(𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝 , 𝑧 ,

𝑡

2 𝑝−1 +1
)                                                                   (3.1.1)                                      

Proof. We shall prove the result (3.1.1) by induction on 𝑝. As 𝑀(𝑥, 𝑦, 𝑧, . ) is non - decreasing and 𝑎 ∗ 𝑎 ≤ 𝑎 , 

we get ,   𝑀(𝑥𝑛 , 𝑥𝑛+1 , 𝑧, 𝑡)  ≥  𝑀(𝑥𝑛 , 𝑥𝑛+1 , 𝑧,
𝑡

2
)                                                                                                                           

                                                                     ≥   𝑀  𝑥𝑛 , 𝑥𝑛+1, 𝑧,
𝑡

2
 ∗ 𝑀(𝑥𝑛 , 𝑥𝑛+1, 𝑧,

𝑡

2
).                                        

Therefore , (3.1.1) holds for 𝑝 = 1. To apply Induction , let 𝑝 > 1 and the result (3.1.1) hold for every 𝑗 < 𝑝. 

We get , 

𝑀(𝑥𝑛 , 𝑥𝑛+𝑝 , 𝑧, 𝑡) ≥ 𝑀(𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+𝑝 , 𝑡0) ∗ 𝑀(𝑥𝑛 , 𝑥𝑛+1, 𝑧, 𝑡0) ∗ 𝑀 𝑥𝑛+1 , 𝑥𝑛+𝑝 , 𝑧, 𝑡1  ,                                           

where 𝑡0 =
𝑡

2𝑝−1
 , 𝑡1 = 𝑡

2𝑝−3

2𝑝−1
 .   

                            ≥   𝑀(𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+𝑝 , 𝑡0) ∗ 𝑀(𝑥𝑛 , 𝑥𝑛+1, 𝑧, 𝑡0) ∗ 𝑀 𝑥𝑛+1 , 𝑥𝑛+2, 𝑥𝑛+𝑝 , 𝑡0 ∗  

𝑀 𝑥𝑛+2, 𝑥𝑛+3, 𝑥𝑛+𝑝 , 𝑡0 ∗...   ... ∗ 𝑀(𝑥𝑛+𝑝−2, 𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝 , 𝑡0) ∗ 𝑀(𝑥𝑛+1, 𝑥𝑛+2 , 𝑧 , 𝑡0) ∗

𝑀(𝑥𝑛+2 , 𝑥𝑛+3 , 𝑧 , 𝑡0)  ∗…    … ∗ 𝑀(𝑥𝑛+𝑝−1 , 𝑥𝑛+𝑝 , 𝑧 , 𝑡0) ∗ 𝑀(𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝 , 𝑧 , 𝑡0) , (by Induction hypothesis). 

= 𝑀(𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+𝑝 , 𝑡0) ∗ 𝑀(𝑥𝑛+1 , 𝑥𝑛+2, 𝑥𝑛+𝑝 , 𝑡0) ∗ …    ∗ 𝑀(𝑥𝑛+𝑝−2, 𝑥𝑛+𝑝−1 , 𝑥𝑛+𝑝 , 𝑡0) ∗  

∗ 𝑀(𝑥𝑛 , 𝑥𝑛+1, 𝑧 , 𝑡0) ∗ 𝑀(𝑥𝑛+1 , 𝑥𝑛+2, 𝑧 , 𝑡0) ∗ … ∗ 𝑀(𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝 , 𝑧 , 𝑡0)  ∗ 𝑀(𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝 , 𝑧 , 𝑡0) . 

Therefore , the result (3.1.1) holds for 𝑝 and hence by Induction , the result follows. □    
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3.2. Extension of R. Caccioppoli′s fixed point Theorem to fuzzy 2 - metric spaces 

We now state and prove the fuzzy analogue of R. Caccioppoli′s fixed point Theorem (Theorem 2.8) in fuzzy        

2 - metric spaces. Here we deduce the fuzzy Banach Contraction Theorem in fuzzy 2 - metric spaces [3] as a 

Corollary and also illustrate our results with an Example. 

Theorem 3.3. If  𝑋,𝑀,∗  is a complete fuzzy 2- metric space and 𝑇:𝑋 → 𝑋 is a mapping satisfying the 

followings:                                                                                                                                                                       

For every positive integer 𝑛 ,  𝑀(𝑇𝑛𝑥, 𝑇𝑛𝑦, 𝑧, 𝑘𝑛𝑡) ≥ 𝑀 𝑥, 𝑦, 𝑧, 𝑡  ,                                                             (3.3.1)                   

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑡 > 0  and 𝑘𝑛 > 0 being independent of 𝑥, 𝑦 and if  𝑘𝑛 → 0  ,  then 𝑇 has a unique fixed 

point. 

Proof. Let 𝑥 ∈ 𝑋, 𝑥𝑛 = 𝑇𝑛𝑥 , 𝑛 ∈ ℕ . Now {𝑥𝑛} is a sequence of points of 𝑋 such that                    

𝑥1 = 𝑇𝑥 ,  𝑥2 = 𝑇𝑥1 , …    … ,  𝑥𝑛+1 = 𝑇𝑥𝑛  , 𝑛 ∈ ℕ . We get by Lemma (3.1):                                                           

For all 𝑧 ∈ 𝑋 , 𝑡 > 0 , 𝑝 > 0 ,                                                                                                       

 1 ≥ 𝑀(𝑥𝑛 , 𝑥𝑛+𝑝 , 𝑧, 𝑡) ≥ 𝑀 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+𝑝 , 𝑡0 ∗ 𝑀(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+𝑝 , 𝑡0) ∗  …   …  ∗  

𝑀(𝑥𝑛+𝑝−2 , 𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝 , 𝑡0) ∗ 𝑀 𝑥𝑛 , 𝑥𝑛+1, 𝑧, 𝑡0 ∗ 𝑀(𝑥𝑛+1 , 𝑥𝑛+2 , 𝑧, 𝑡0) ∗  …     …           

∗ 𝑀(𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝 , 𝑧, 𝑡0) ∗ 𝑀(𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝 , 𝑧, 𝑡0) , where 𝑡0 =
𝑡

2 𝑝−1 +1
 .                                                                 

    ≥ 𝑀(𝑥, 𝑥1, 𝑥𝑛+𝑝 ,
𝑡0

𝑘𝑛
)  ∗ 𝑀(𝑥, 𝑥1, 𝑥𝑛+𝑝 ,

𝑡0

𝑘𝑛+1
)  ∗ …    … ∗  𝑀(𝑥, 𝑥1, 𝑥𝑛+𝑝 ,

𝑡0

𝑘𝑛+𝑝−2
) ∗  𝑀(𝑥, 𝑥1, 𝑧,

𝑡0

𝑘𝑛
)  ∗

𝑀(𝑥, 𝑥1, 𝑧,
𝑡0

𝑘𝑛+1
)  ∗…   … ∗ 𝑀(𝑥, 𝑥1, 𝑧,

𝑡0

𝑘𝑛+𝑝−1
)  ∗  𝑀(𝑥, 𝑥1, 𝑧,

𝑡0

𝑘𝑛+𝑝−1
) , by (3.3.1).                                                   

→ 1 ∗ 1 ∗… … ∗ 1 ∗ 1 ∗ 1 ∗  ...   … ∗ 1 ∗ 1 = 1 , as 𝑛 → ∞ ,  by (2.3.6).                                                              

Therefore  lim𝑛→∞ 𝑀(𝑥𝑛 , 𝑥𝑛+𝑝 , 𝑧, 𝑡) = 1 , for all  𝑧 ∈ 𝑋, 𝑡 > 0 , 𝑝 > 0 and so {𝑥𝑛} is a Cauchy sequence in 𝑋. 

As 𝑋 is complete , ∃𝑦 ∈ 𝑋 such that 𝑥𝑛 → 𝑦 as 𝑛 → ∞. We have for all 𝑧 ∈ 𝑋 ,   𝑡 > 0 ,                                                                                                                                            

1 ≥ 𝑀(𝑦, 𝑇𝑦, 𝑧, 𝑡) ≥ 𝑀(𝑦, 𝑇𝑦, 𝑥𝑛+1,
𝑡

3
) ∗ 𝑀(𝑦, 𝑥𝑛+1, 𝑧,

𝑡

3
) ∗ 𝑀(𝑥𝑛+1, 𝑇𝑦, 𝑧,

𝑡

3
)                                                                          

≥ 𝑀(𝑥𝑛+1, 𝑦, 𝑇𝑦,
𝑡

3
) ∗ 𝑀(𝑥𝑛+1, 𝑦, 𝑧,

𝑡

3
) ∗ 𝑀(𝑥𝑛 , 𝑦, 𝑧,

𝑡

3𝑘1
) , by (3.3.1).                                                                        

→ 1 ∗ 1 ∗ 1 = 1 , as 𝑛 → ∞

This gives  𝑀(𝑦, 𝑇𝑦, 𝑧, 𝑡) = 1 ,  for every 𝑧 ∈ 𝑋 , 𝑡 > 0 and thus 𝑇𝑦 = 𝑦 , a fixed point of  𝑇. To show 

uniqueness , let  𝑇𝑤 = 𝑤 , for some  𝑤 ∈ 𝑋. We get 𝑇𝑛𝑦 = 𝑦 , 𝑇𝑛𝑤 = 𝑤 , for every positive integer 𝑛. 

Therefore , for all 𝑧 ∈ 𝑋 , 𝑡 > 0 , we get ,                                                                                                                        

1 ≥ 𝑀(𝑦,𝑤, 𝑧, 𝑡)  =  𝑀(𝑇𝑛𝑦 , 𝑇𝑛𝑤, 𝑧, 𝑡) ≥ 𝑀(𝑦,𝑤, 𝑧,
𝑡

𝑘𝑛
) →  1 as 𝑛 → ∞. Therefore ,  𝑀(𝑦, 𝑤, 𝑧, 𝑡) = 1 ,  for 

all 𝑧 ∈ 𝑋 , 𝑡 > 0. Hence 𝑦 = 𝑤 and so the fixed point is unique.     

Remark 3.4. It may be noted that for 𝑛 = 1 , the condition (3.3.1) does not reduce to the condition (2.11.1) as 

𝑘1 < 1 and 𝑘1 → 0   are not assured. But we may deduce the Theorem (2.11) as a Corollary as follows. 

Corollary 3.5. If  𝑋,𝑀,∗  is a complete fuzzy 2- metric space and 𝑇:𝑋 → 𝑋 is a contraction , i.e., a mapping 

satisfying     𝑀(𝑇𝑥, 𝑇𝑦, 𝑧, 𝑘𝑡) ≥ 𝑀 𝑥, 𝑦, 𝑧, 𝑡  ,                                                                                           (3.5.1)  

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 , 𝑡 > 0 and some 0 < 𝑘 < 1 , then  𝑇 has a unique fixed point.   

Proof.  For any positive integer 𝑛 , we have, 𝑀(𝑇𝑛𝑥 , 𝑇𝑛𝑦 , 𝑧, 𝑘𝑛𝑡) ≥ 𝑀  𝑇𝑛−1𝑥 , 𝑇𝑛−1𝑦 , 𝑧, 𝑘𝑛−1𝑡 , by (3.5.1).                                                                                      

≥ 𝑀(𝑇𝑛−2𝑥 , 𝑇𝑛−2𝑦 , 𝑧, 𝑘𝑛−2𝑡) ≥ …   … ≥  𝑀 𝑥, 𝑦, 𝑧, 𝑡 , for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑡 > 0 and some 0 < 𝑘 < 1. Also 

𝑘𝑛 → 0 , as 𝑛 → ∞ . Therefore , by the Theorem (3.3) , 𝑇 has a unique fixed point.                                                                                                                                                             

The following Example illustrates the Theorem (3.3).                                                                     

Example 3.6. Let 𝑋 =  0 , 1 ,
1

2  
,

1

3
 , …     ,

1

𝑛
 , …    and 𝑑 𝑥, 𝑦, 𝑧 = 1 , if 𝑥, 𝑦, 𝑧 are distinct and   

1

𝑛
 ,

1

𝑛+1
 ⊆

{𝑥, 𝑦, 𝑧} ; 𝑑 𝑥, 𝑦, 𝑧 = 0 , otherwise. Now , (𝑋, 𝑑) is a complete 2 - metric space. Let 𝑀 be the standard fuzzy 2 - 

metric on 𝑋 induced by 𝑑. Then (𝑋, 𝑀,∗) is a complete fuzzy 2 - metric space. Let 𝑇:𝑋 → 𝑋 be given by    

𝑇𝑥 = 1. Now 𝑀 𝑇𝑛𝑥 , 𝑇𝑛𝑦 , 𝑧, 𝑘𝑛 𝑡 = 1 , for every 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑡 > 0, 0 < 𝑘 < 1. Also 𝑘𝑛 → 0 . Therefore , 𝑇 

satisfies all the conditions of the Theorem (3.3) and has a unique fixed point 1 ∈ 𝑋.   

 

3.7. Unique fixed point of a map which is not a Contraction 

In the following Theorem , we establish a unique fixed point of a self mapping of a fuzzy 2 - metric space 
 𝑋, 𝑀,∗  which is not necessarily a Contraction. This Theorem , in fact , is the extension to fuzzy 2 - metric 

space of our Theorem [4, Theorem 3.4].                                                                                                                                                                                                            

Theorem 3.8. Let  𝑋, 𝑀,∗  be a complete fuzzy 2- metric space and  𝑇: 𝑋 → 𝑋 be a continuous mapping. Let 

there exist a positive integer 𝑚 such that  𝑇𝑚  is a contraction , i.e. ,                                                                                                                                                                                                                          
𝑀(𝑇𝑚𝑥, 𝑇𝑚𝑦, 𝑧, 𝑘𝑡) ≥ 𝑀 𝑥, 𝑦, 𝑧, 𝑡  ,    for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑡 > 0 and some 0 < 𝑘 < 1.                                 (3.8.1)                                                                                

If 𝑥𝑛 → 𝑥 ,  𝑦𝑛 → 𝑦 implies   𝑀(𝑥𝑛 , 𝑦𝑛 , 𝑧, 𝑡) →  𝑀 𝑥, 𝑦, 𝑧, 𝑡 ,  for all 𝑧 ∈ 𝑋 , 𝑡 > 0 ,                                       (3.8.2)                                         

then 𝑇 has a unique fixed point. 

Proof. We put 𝐵 =  𝑇𝑚 .  Then for any 𝑥0 ∈ 𝑋 and any positive integer 𝑛 , we have                                                                     

𝑀(𝐵𝑛𝑇𝑥0, 𝐵𝑛𝑥0, 𝑧, 𝑘𝑛𝑡) ≥ 𝑀(𝐵𝑛−1𝑇𝑥0, 𝐵𝑛−1𝑥0, 𝑧, 𝑘𝑛−1𝑡) ,   by (3.8.1). 
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                                        ≥ 𝑀(𝐵𝑛−2𝑇𝑥0, 𝐵𝑛−2𝑥0, 𝑧, 𝑘𝑛−2𝑡)   

                                        ≥  …  …  

                                        ≥ 𝑀(𝑇𝑥0, 𝑥0, 𝑧, 𝑡) , for all 𝑧 ∈ 𝑋, 𝑡 > 0.                                                                 (3.8.3)     

As 𝐵 is a contraction , 𝐵 has a unique fixed point 𝑥 ∈ 𝑋. By the proof of the fuzzy Banach contraction Theorem , 
we get 𝐵𝑛𝑥0 →  𝑥 as 𝑛 → ∞. As 𝑇 is continuous, 𝑇𝐵𝑛𝑥0 = 𝐵𝑛𝑇𝑥0 → 𝑇𝑥. By (3.8.2) , we have  

        𝑀(𝐵𝑛𝑇𝑥0, 𝐵𝑛𝑥0, 𝑧, 𝑡)  →  𝑀(𝑇𝑥, 𝑥, 𝑧, 𝑡) , as 𝑛 → ∞ for all 𝑧 ∈ 𝑋, 𝑡 > 0.                                             (3.8.4)          

Using (3.8.3) , we get 1 ≥ 𝑀(𝐵𝑛𝑇𝑥0, 𝐵𝑛𝑥0, 𝑧, 𝑡) ≥ 𝑀(𝑇𝑥0, 𝑥0, 𝑧,
𝑡

𝑘𝑛)  → 1 , as 𝑛 → ∞ , for all  𝑧 ∈ 𝑋, 𝑡 > 0. 

Therefore , lim𝑛→∞ 𝑀(𝐵𝑛𝑇𝑥0, 𝐵𝑛𝑥0, 𝑧, 𝑡) = 1 , for all 𝑧 ∈ 𝑋, 𝑡 > 0. Then by (3.8.4) ,  we obtain 

, 𝑀 𝑇𝑥, 𝑥, 𝑧, 𝑡 = 1 , for all 𝑧 ∈ 𝑋, 𝑡 > 0. Hence 𝑇𝑥 = 𝑥 , a fixed point of  𝑇. If 𝑇𝑦 = 𝑦 , for some 𝑦 ∈ 𝑋, then 

𝐵𝑦 = 𝑇𝑚𝑦 = 𝑇𝑚−1𝑦 =…     … = 𝑦 , and so 𝑦 is a fixed point of 𝐵. Hence 𝑥 = 𝑦 and so the fixed point of  𝑇 is 

unique.      

3.9. 𝛆 - chain , (𝜺 , 𝝀) uniformly locally contractive mapping in a fuzzy 2 - metric space 

We now introduce the notions of 𝛆 - chain and (𝜺 , 𝝀)  uniformly locally contractive mapping in fuzzy            

2 - metric spaces as follows: 

Definition 3.10.  Let (𝑋,𝑀,∗)  be a fuzzy 2 - metric space and 𝜀 > 0. A finite sequence                                          

 𝑥 = 𝑥0 , 𝑥1 , …  ... , 𝑥𝑛−1 ,  𝑥𝑛 = 𝑦 is called an  𝛆 - chain from 𝑥 to 𝑦 if 𝑀(𝑥𝑖−1, 𝑥𝑖 , 𝑧, 𝑡)> 1 − 𝜀 ,   for all 𝑧 ∈ 𝑋,
𝑡 > 0 , 𝑖 = 1 , 2 , …  …  , 𝑛. A fuzzy 2 - metric space  𝑋, 𝑀,∗  is said to be  𝛆 - chainable, if for every                   

𝑥, 𝑦 ∈ 𝑋 , there is an 𝜀 - chain from 𝑥 to 𝑦.                                     

Definition 3.11. Let (𝑋, 𝑀,∗) be a fuzzy 2 - metric space and 𝑇: 𝑋 →  𝑋 be a mapping.                                            
 𝑎  𝑇 is said to be continuous , if for every 𝑥 ∈ 𝑋 , 𝑥𝑛 → 𝑥 implies 𝑇𝑥𝑛 → 𝑇𝑥.                                                            

(𝑏) For 𝜀 > 0 , 0 < 𝜆 < 1 , 𝑇 is called (𝜀 , 𝜆) uniformly locally contractive if                           

           𝑀 𝑥, 𝑦, 𝑧, 𝑡 > 1 − 𝜀  implies   𝑀 𝑇𝑥, 𝑇𝑦, 𝑧, 𝑡 ≥ 𝑀  𝑥, 𝑦, 𝑧,
𝑡

𝜆
  ,                                                    (3.11.1)                                                                       

for all 𝑥 , 𝑦 , 𝑧 ∈ 𝑋 , 𝑡 > 0. Clearly a uniformly locally contractive mapping 𝑇 is continuous. 

Example 3.12. Let (𝑋, 𝑀,∗) be the complete fuzzy 2 - metric space of the Example (3.6) and 𝑇: 𝑋 → 𝑋 be given 

by 𝑇𝑥 = 1. Let 𝜀 > 0 , 0 < 𝜆 < 1 . Now  𝑀 𝑥, 𝑦, 𝑧, 𝑡 > 1 − 𝜀 gives 𝑥, 𝑦, 𝑧 are distinct and   
1

𝑛
 ,

1

𝑛+1
 ⊆  𝑥, 𝑦, 𝑧 , 

for some positive integer 𝑛. Therefore ,  1 = 𝑀 𝑇𝑥, 𝑇𝑦, 𝑧, 𝑡 ≥ 𝑀  𝑥, 𝑦, 𝑧,
𝑡

𝜆
  ,  for all 𝑥 , 𝑦 , 𝑧 ∈ 𝑋 , 𝑡 > 0. 

Therefore , 𝑇 is an (𝜀 , 𝜆) uniformly locally contractive map.   

3.13. Extension of M. Edelstein′s fixed point Theorem to fuzzy 2 - metric spaces   

Here we shall state and prove a fixed point Theorem in fuzzy 2 - metric spaces using the notions of ε - chain and 

(𝜀 , 𝜆) uniformly locally contractive mappings .This Theorem extends the fixed point Theorem due to M. 

Edelstein (Theorem 2.10) to fuzzy 2 - metric spaces.                                                                                    

Theorem 3.14. If  𝑋,𝑀,∗   is a complete , 𝜀 - chainable fuzzy 2- metric space and 𝑇: 𝑋 → 𝑋 is an 
 𝜀, 𝜆  uniformly locally contractive mapping  , then 𝑇 has a unique fixed point. 

Proof. Let 𝑥 ∈ 𝑋 be arbitrarily fixed. Let 𝑇𝑥 ≠ 𝑥 (otherwise a fixed point is assured). Let 

 𝑥 = 𝑥0 , 𝑥1 , …    … , 𝑥𝑛−1  ,  𝑥𝑛 = 𝑇𝑥 be an 𝜀 - chain from 𝑥 to 𝑇𝑥. We get ,  𝑀 𝑥𝑖−1, 𝑥𝑖 , 𝑧, 𝑡 > 1 − 𝜀 , for all 

 𝑧 ∈ 𝑋, 𝑡 > 0, 𝑖 = 1 , 2 , … , 𝑛.                                                                                                                                   

Let us first prove the result: 

                𝑀 𝑇𝑚𝑥𝑖−1 , 𝑇𝑚𝑥𝑖 , 𝑧, 𝑡 ≥ 𝑀  𝑥𝑖−1, 𝑥𝑖 , 𝑧,
𝑡

𝜆𝑚   ,                                                                               (3.14.1)  

 for every positive integer 𝑚 and every 𝑧 ∈ 𝑋, 𝑡 > 0, 𝑖 = 1 , 2 , …    … , 𝑛. By (3.11.1) we get ,  

𝑀(𝑇𝑥𝑖−1 , 𝑇𝑥𝑖 , 𝑧, 𝑡) ≥ 𝑀(𝑥𝑖−1, 𝑥𝑖 , 𝑧,
𝑡

𝜆
) for all 𝑧 ∈ 𝑋 , 𝑡 > 0, 𝑖 = 1 , 2 , …  … , 𝑛. So , (3.14.1) holds for 𝑚 = 1. To 

apply induction , let 𝑚 > 1 and assume (3.14.1) for all 𝑗 < 𝑚. We get ,                    

1 − 𝜀 < 𝑀  𝑥𝑖−1, 𝑥𝑖 , 𝑧,
𝑡

𝜆𝑚  ≤ 𝑀  𝑇𝑚−1𝑥𝑖−1, 𝑇𝑚−1𝑥𝑖 , 𝑧,
𝑡

𝜆
  , by induction hypothesis.   

                                             ≤ 𝑀 𝑇𝑚𝑥𝑖−1, 𝑇𝑚𝑥𝑖 , 𝑧, 𝑡  , by (3.11.1)  ,                                                                                                                                                                               
for all 𝑧 ∈ 𝑋, 𝑡 > 0, 𝑖 = 1 , 2 , …  … , 𝑛. Therefore , (3.14.1) holds for 𝑚. Hence by induction (3.14.1) holds for 

all 𝑚 ∈ ℕ. Using Lemma (3.1) , we get , for all 𝑧 ∈ 𝑋 , 𝑡 > 0 ,                                                                                                                                                                                                  
 

1 ≥ 𝑀 𝑇𝑚𝑥, 𝑇𝑚+1𝑥, 𝑧, 𝑡 = 𝑀 𝑇𝑚𝑥0, 𝑇𝑚𝑥𝑛 , 𝑧, 𝑡 = 𝑀 𝐵𝑥0, 𝐵𝑥𝑛 , 𝑧, 𝑡  , writing 𝐵 = 𝑇𝑚 .  
    ≥ 𝑀 𝐵𝑥0, 𝐵𝑥1, 𝐵𝑥𝑛 , 𝑡0 ∗ 𝑀 𝐵𝑥1, 𝐵𝑥2, 𝐵𝑥𝑛 , 𝑡0 ∗ …   … ∗ 𝑀 𝐵𝑥𝑛−2, 𝐵𝑥𝑛−1, 𝐵𝑥𝑛 , 𝑡0 ∗  

        𝑀 𝐵𝑥0, 𝐵𝑥1, 𝑧, 𝑡0 ∗ 𝑀 𝐵𝑥1, 𝐵𝑥2, 𝑧, 𝑡0 ∗ …    … ∗ 𝑀 𝐵𝑥𝑛−1 , 𝐵𝑥𝑛 , 𝑧, 𝑡0                                                            

         ∗ 𝑀 𝐵𝑥𝑛−1, 𝐵𝑥𝑛 , 𝑧, 𝑡0  ,  where 𝑡0 =
𝑡

2 𝑛−1 +1
 .                                                                

≥ 𝑀(𝑥0, 𝑥1, 𝐵𝑥𝑛 ,
𝑡0

𝜆𝑚 ) ∗  𝑀(𝑥1, 𝑥2, 𝐵𝑥𝑛 ,
𝑡0

𝜆𝑚 ) ∗…  

… ∗ 𝑀(𝑥𝑛−2, 𝑥𝑛−1, 𝐵𝑥𝑛 ,
𝑡0

𝜆𝑚 ) ∗  𝑀(𝑥0, 𝑥1, 𝑧,
𝑡0

𝜆𝑚 ) ∗  𝑀(𝑥1, 𝑥2, 𝑧,
𝑡0

𝜆𝑚 ) ∗…   
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…∗  𝑀  𝑥𝑛−1, 𝑥𝑛 , 𝑧,
𝑡0

𝜆𝑚  ∗  𝑀  𝑥𝑛−1 , 𝑥𝑛 , 𝑧,
𝑡0

𝜆𝑚   , by (3.14.1).                                                                                             

→ 1 ∗ 1 ∗ …  …  ∗ 1 ∗ 1 ∗ 1 ∗ …   …  ∗ 1 ∗ 1 = 1 , as 𝑚 → ∞.  Therefore , 
                    lim𝑚→∞ 𝑀 𝑇𝑚𝑥, 𝑇𝑚+1𝑥, 𝑧, 𝑡 = 1 , for all 𝑧 ∈ 𝑋 , 𝑡 > 0.                                                         (3.14.2) 

We now get , for all 𝑧 ∈ 𝑋 , 𝑡 > 0 , 𝑝 > 0 ,    1 ≥ 𝑀 𝑇𝑚𝑥, 𝑇𝑚+𝑝𝑥, 𝑧, 𝑡 ≥ 𝑀 𝑇𝑚𝑥, 𝑇𝑚+1𝑥, 𝑇𝑚+𝑝𝑥, 𝑟0 ∗
𝑀 𝑇𝑚+1𝑥, 𝑇𝑚+2𝑥, 𝑇𝑚+𝑝𝑥, 𝑟0 ∗ …   … ∗ 𝑀(𝑇𝑚+𝑝−2𝑥, 𝑇𝑚+𝑝−1𝑥, 𝑇𝑚+𝑝𝑥, 𝑟0) ∗ 𝑀 𝑇𝑚𝑥, 𝑇𝑚+1𝑥, 𝑧, 𝑟0 ∗
𝑀 𝑇𝑚+1𝑥, 𝑇𝑚+2𝑥, 𝑧, 𝑟0 ∗… …∗  𝑀 𝑇𝑚+𝑝−1𝑥, 𝑇𝑚+𝑝𝑥, 𝑧, 𝑟0 ∗  𝑀 𝑇𝑚+𝑝−1𝑥, 𝑇𝑚+𝑝𝑥, 𝑧, 𝑟0  , where                   

𝑟0 =
𝑡

2 𝑝−1 +1
 .                           

  → 1 ∗ 1 ∗ …  … ∗ 1 ∗ 1 ∗ 1 ∗ …  … ∗ 1 ∗ 1 = 1 , as 𝑚 → ∞ , by (3.14.2) . Hence 

lim𝑚→∞ 𝑀 𝑇𝑚𝑥, 𝑇𝑚+𝑝𝑥, 𝑧, 𝑡 = 1 , for all 𝑧 ∈ 𝑋 , 𝑡 > 0 , 𝑝 > 0 and so { 𝑇𝑚𝑥} is a Cauchy sequence in 𝑋. As 

𝑋 is complete , ∃𝑦 ∈ 𝑋 such that lim𝑚→∞ 𝑇𝑚𝑥 = 𝑦. As  𝑇 is obviously continuous , we get                  

lim𝑚→∞ 𝑇𝑚+1𝑥 = 𝑇𝑦. Hence 𝑇𝑦 = 𝑦 , a fixed point of  𝑇.  To show uniqueness , let 𝑇𝑤 = 𝑤 , for some 𝑤 ∈ 𝑋 . 
Let 𝑦 = 𝑤0 , 𝑤1 , …  … ,𝑤𝑘−1 ,   𝑤𝑘 = 𝑤 be an  𝜀 - chain. Now for any positive integer 𝑙 , we get , 
1 ≥ 𝑀 𝑦, 𝑤, 𝑧, 𝑡 = 𝑀 𝑇𝑙𝑦, 𝑇𝑙𝑤, 𝑧, 𝑡 = 𝑀 𝑇𝑙𝑤0, 𝑇𝑙𝑤𝑘 , 𝑧, 𝑡 = 𝑀 𝑆𝑤0 , 𝑆𝑤𝑘 , 𝑧, 𝑡 , where , 𝑆 = 𝑇𝑙 . 

  ≥ 𝑀(𝑆𝑤0 , 𝑆𝑤1, 𝑆𝑤𝑘 , 𝑠0) ∗  𝑀(𝑆𝑤1, 𝑆𝑤2 , 𝑆𝑤𝑘 , 𝑠0) ∗…     … 

∗  𝑀 𝑆𝑤𝑘−2 , 𝑆𝑤𝑘−1 , 𝑆𝑤𝑘 , 𝑠0 ∗        𝑀(𝑆𝑤0 , 𝑆𝑤1, 𝑧, 𝑠0) ∗  𝑀(𝑆𝑤1, 𝑆𝑤2 , 𝑧, 𝑠0) ∗…       …    

∗  𝑀 𝑆𝑤𝑘−1 , 𝑆𝑤𝑘 , 𝑧, 𝑠0   ∗   𝑀 𝑆𝑤𝑘−1, 𝑆𝑤𝑘 , 𝑧, 𝑠0 ,  where 𝑠0 =
𝑡

2 𝑘−1 +1
 .                                                                          

≥ 𝑀(𝑤0, 𝑤1 , 𝑆𝑤𝑘 ,
𝑠0

𝜆𝑙) ∗  𝑀(𝑤1, 𝑤2 , 𝑆𝑤𝑘 ,
𝑠0

𝜆𝑙) ∗…    …∗ 𝑀  𝑤𝑘−2, 𝑤𝑘−1, 𝑆𝑤𝑘 ,
𝑠0

𝜆𝑙 ∗                                                   

        ∗ 𝑀  𝑤0 , 𝑤1 , 𝑧,
𝑠0

𝜆𝑙  ∗ 𝑀(𝑤1, 𝑤2 , 𝑧,
𝑠0

𝜆𝑙) ∗…   … ∗ 𝑀  𝑤𝑘−1, 𝑤𝑘 , 𝑧,
𝑠0

𝜆𝑙 ∗  𝑀  𝑤𝑘−1 , 𝑤𝑘 , 𝑧,
𝑠0

𝜆𝑙  ,  by (3.14.1). 

   → 1 ∗ 1 ∗ …  … ∗ 1 ∗ 1 ∗ 1 ∗ …   … ∗ 1 ∗ 1 = 1 , as 𝑙 → ∞, for all 𝑧 ∈ 𝑋 , 𝑡 > 0. Therefore , 
𝑀 𝑦, 𝑤, 𝑧, 𝑡 = 1 , for all 𝑧 ∈ 𝑋 , 𝑡 > 0 and so 𝑦 = 𝑤. Hence the fixed point is unique.  

3.15. Remarks. A huge amount of work is done on the development and application of fuzzy metric spaces and 

considerably a rich literature is available by now for the fixed point theory in the fuzzy structures. But the theory 

of fuzzy 2 - metric spaces is still in the embryonic stage and is in the developing process and there is a huge 

scope of works in this field. We sincerely hope that the works incorporated in the paper and in [3] be useful in 

the development of the fixed point theory in fuzzy 2 - metric spaces.          
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