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Abstract: In the present paper a prey-predator model with disease that spreads among the predator
species only is proposed and investigated. It is assumed that the disease is horizontally transmitted by
contact between the infected predator and the susceptible predator. The local and global stability
analyses are carried out. The persistence conditions of the model are established. Local bifurcation
analyses are performed. Numerical simulation is used extensively to detect the occurrence of Hopf
bifurcation and confirm our obtained analytical outcomes.
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I. Introduction

A prey-predator type of interaction among species can be clearly seen in many ecological
systems throughout the world, such as a deer-lion relation. In nature, prey and predator species exhibit
fluctuation of abundance or population increase and decrease. The study of this fluctuation that is in
apparently stable patterns has long been of interest to animal conservationists and mathematicians.
Consequently the dynamics of prey-predator interactions have been studied extensively in the last
three decades see for example [1-4] and the references therein.

The evolution of disease in natural populations has always been an important field of both
theoretical and experimental studies due to their effects on the existence populations. Although, most
of the previous studies have been focused on the interactions between the pathogen and its host [5-7],
it is obvious that populations are generally involved in complex trophic interactions with other
populations. Therefore, this should be taken in to account when one construct mathematical model of
the evolution of diseases in real ecosystems. Indeed it has been shown that predation of infected
populations can both increase and decrease the infection prevalence [8-9]. Accordingly, mathematical
epidemiology to study the dynamics of diseases spread has become an interesting topic of research
study and received much attention from scientists after the pioneering work of Kermack-McKendrick.
A number of mathematical models of disease spread have been introduced relevant to the type of
diseases, for example SI, SIS, SIR, SEIR, SEIRS [10-14] and references therein.

Eco-epidemiology is a rather new branch of study, merging features of interacting populations
among which a transmissible disease spreads. It can be viewed as the coupling of an ecological prey-
predator (or competition) model and an epidemiological SI, SIS or SIRS model. Following Anderson
and May (1982) who were the first to propose an eco-epidemiological model by merging the
ecological prey-predator model introduced by Lotka and Volterra, and the epidemiological SIR model
introduced by Kermack and McKendrick, many works have been devoted to the study of the effects of
a disease on a prey-predator system [15-18] and references therein.

Keeping the above in view, most of the previous studies focused on the disease in prey-
predator system with vertical transmitted of disease. However, in this paper an eco-epidemiological
model consisting of prey-predator model with horizontally transmitted of disease within predator
population is proposed and studied.

II. The Model Formulation
In this section a mathematical model, which describes the dynamical behavior of a prey-
predator system with horizontally transmitted infectious disease in predator, is proposed and analyzed.
Consequently, in order to formulates this model the following hypotheses are considered
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1. Let X(T) denotes the density of the prey species at time T, S(T) is the population density of the
susceptible predator at time 7 and I(T) represents the population density of the infected predator
at time T .

2. It is assumed that in the absence of the predators the prey species reproduces logistically with
intrinsic growth rate » > 0 and carrying capacity K > 0.

3. The predators S(T) and I(T) consume the prey according to the Holling type —II functional
response with attack rates ¢, >0 and a, >0 respectively and half saturation constant b > 0.

4. It is assumed that the disease is not transferred from parent to offspring rather than that it’s
transferred between the species in the same generation, which is known horizontally transmitted.
Therefore all the newborns of the predators, due to feeding process on the prey, are susceptible
specie with conversion rates 0<e; <1 withi =1,2. Furthermore, the disease is transmitted from
infected predator to susceptible predator by contact according to saturated incident rate with
infected rate ¢ >0 and the disease’s inhibitory effect ratea > 0.

5. The predators decay exponentially in the absence of the prey species with death rates ¢, >0 and

d, >0 for the susceptible and infected predator respectively.

Accordingly the dynamics of the prey-predator system with infectious disease in predator that
described above can be represented mathematically by the following set of nonlinear ordinary
differential equations:

d—erX 1_£ 4 XS ay Xl

dT K) b+X b+X

ﬁ: e ;S +eya,l X cSI 4,8 (1)
dT b+ X 1+ al

dl_ oS

dT  l+al *

With X(0) >0, $(0)>0, 1(0) > 0. Clearly, due to the biological meaning of the variables given in
system (1) the system defines on the following domain R? = {(X Y, Z)eR>:X>0,5>0,1> 0}. Now in
order to reduce the number of parameters and determine which set of parameters control the behavior

of the system, the following dimensionless variables and parameters are used in system (1).
X S 1 a, b a, cK d d,

t=rT, x="—, s=—,i=—w =—-, wy=—, w3 =—=, wy =—, ws =ak, wg =—, w, =—= (2
K K K ' KT T > oy Ty )
Accordingly the dimensionless form of system (1) becomes

dx W XS WsXi

—:x(l—x)_1—_3—

dt Wy+X W, +x

ds | ew;s+e,wsi Wy Si

w1 273 X — 4 -~ wgs (3)

dt Wy +X 1+ wsi

di  wysi .

—= - — Wi

dt 1+ wsi

with x(0) > 0,s(0) >0, i(0) > 0. Clearly the interaction functions in the right hand side of system (3) are
continuous and have continuous partial derivatives, and hence they are Liptchazian functions. Hence
system (3) has a unique solution. Moreover all solutions of system (3) are uniformly bounded as
shown in the following theorem.

Theorem (1): All the solutions of system (3) those initiate in the R® are uniformly bounded.

Proof: Let (x(¢),s(7),i(r)) be any solution initiate in R}. Since we have that
dx
—<x(I-x
" 1-x)
Then straightforward computation shows that x<1 as ¢—>o. Now consider the function

W =x+s+i, then we obtain that
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d—W+,uWS2
dt

. . . . 2
here x =min{l,wg,w,}. So, straightforward computation gives that W <= as t— . Hence all
y

solutions are uniformly bounded. m

II1.Local Stability Analysis And Persistence

In this section the existence conditions of all possible equilibrium points of system (3) are
established and then the local stability analyses of them are discussed. There are at most four non-
negative equilibrium points of system (3), these are described as follows:
The vanishing equilibrium point that denoted by E, = (0,0,0) and the predator free equilibrium point,
say E, =(1,0,0), which full down on the x—axis, are always exist. The disease free equilibrium point
E, =(X,5,0) where
WaWe . < _ eywy[eyw; = (1+w,)wy ] )

b
2
ew —Wwe wy(ew; —wg)

X=

exists uniquely in the interior of xs — plane if and only if the following condition holds
eyw; > (1+w, )wg (5)
Finally the positive equilibrium point E, = (x*,s*,i*) exists uniquely in the interior of R? provided
that there is a positive solution to the following algebraic system of equations.
W3

filns,i)=(1-x)-—22 W _y
Wy +X W, +Xx

. ew;s + e, wii Wy ST
fr(x,8,0) =| 2= 273 x4 - —Wes =0 (6)
w, + X

Wy

-—w; =0

X,8,1) =
£l ) 1+ wsi

Straightforward computation shows that system (6) has a unique positive solution given by
x*zﬂ’li:“‘?’z ;s*:W7(l+W5i*) (7a)
73l +yy Wy
while i* represents a positive root of the following equation
Ai* +Bi* +Ci+ D=0 (7b)
where  y; = wywy (wy +wswg) >0, ¥, =wywew; >0,

73 = wswy(ew; —we) + wyleyws —wy) , 74 = wy(eyw — we)

A=—~(wwswy +wywy)ys” <0,
2
B =(wywy —wiwy)ys” +((1=wy)73 =71 wayy = 20wiwswy +wywy )37,
2

C =2(wywy = wywy)y374 +wa(l=wy) (7174 +7273) = 2war172 = (wiwswy +wywy )y,

D = (wywy —wywy)yy” +wy(1=wy)74 =72 )12
Clearly, it is easy to verify that E, exists uniquely in the interior of R? if the following sufficient
conditions hold

ew; > wg

3wy > wy (7c)

B<0or C>0

D>0
Now the general Jacobian matrix DF =J(x,s,i) of system (3), where F=(F,,F,,F;)" with
F,=xf,F,=f, and F; =i f;, can be written as:
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J(X,S,i) = (a;'/')3><3 (8)
WS + wsi -wWix —W3X (eyws + ey w3i)w,
where ay =x —l+———=1+ f}, a;, = , aj; = , ay =———"
(W, +x) W, +Xx W, +Xx (W, +x)
_ewx Wyl _eywix WyS _ oWyl  WyWssi
ayp = - ST We s dp3 = - =5 a31=0, a5 =——, a3 =—""—"——"+f;.
wy+x  1+wsi wy+x (14 wsi) 1+ wsi (14 wsi)

Then the Jacobian matrix of system (3) at vanishing equilibrium point E, = (0,0,0) is

1 0 0
J(E)=|0 —ws 0 (9a)
0 0 -w
Clearly, the J(E,) has the following eigenvalues
Aox =1>0; Agy =—wg <0; Ag; =—w; <0 (9b)

where A,,;u =x,s,i represents the eigenvalue of J(E,) in the u — direction. Therefore the vanishing
equilibrium point E, is a saddle point with unstable manifold in the x— direction and stable manifold

in the si— plane.
The Jacobian matrix of system (3) at the predator free equilibrium point E, = (1,0,0) is given by

1 Wi "
wy +1 wy +1
ew e, W
JEN=| 0 —— —w, 22| =(by) (10a)
w, +1 w, +1
0 0 - Wy
Therefore the eigenvalues of J(E,) are
Ay =—1<0, A, =20 Ay =—wy (10b)
w, +1

It is easy to verify that all the above eigenvalues will be negative and hence E, is locally

asymptotically stable in the R?, if the following condition holds
oM . (10c)
w, +1

Otherwise the predator free equilibrium point £, is a saddle point with unstable manifold in the

s —direction and stable manifold in the xi— plane.

The Jacobian matrix of system (3) at the disease free equilibrium point £, = (X,5,0) can be written

- ws - WX —W3X
x| =1+ - =
(w2+x) W, +X W, +X
J(Ey=| A 0 2B _y5l=(c) (11a)
(wy, +X) wy +X
0 0 WyS — Wy

Then the characteristic equation J(E,) is given by
(A2 —TyA+Dy)(cy3 —A) =0 (11b)

ws
D —— ) al’ld Dz =—C1pCy1 =
(wy +X)

Agr gy = %(Tz iw/Tf -4D, ); A = Wy5 —w,y (11c)

Clearly, the eigenvalues 1,, and 4,; have negative real parts provided that

b —
here 7, =¢, = )_cl:—l+ SM W2 5 0. Thus, the eigenvalues of J(E,) are:

(w, +X)
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W5 < (wy +%)° (11d)
While the eigenvalue 1,; is negative provided that

WS < wy (11e)
Consequently, the disease free equilibrium point E, is locally asymptotically stable in R’ provided

that the conditions (11d) and (11e) are satisfied. Moreover it will be saddle point if we violate at least
one of these two conditions.

Finally, The Jacobian matrix of system (3) at the positive equilibrium point E; = (x",s",i") is given
by

J(E)=\d;) (12a)
*+ K3 * *
* WS+ wsi —wx —Wsx
- 1 3 _ 1 _ 3
here d,, =x =, dp = -, di3 = >
(wy +x) Wy + X Wy +X
( *+ *) * K3
_(ewys +eywsi w, _ewx Wyi
dy = ) s dy = P  Wo>
(wy, +x) Wy +x 1+ wsi
* * K * %
e, WX Wys Wyl WyWssS
_&6w" 4 _ __M _ 4Ws
d23_ - 25d31_09d32_ *5d33__

Wy +x" (1+wsi') 1+ wsi (+wsi")?

Thus the characteristic equation of J(E;) can be written as:

B+ 4,2+ 4,=0 (12b)
with A4 =—(d) +dy +ds53), Ay =dydy —dppdy +dydss —dyydy; +dyyds;,

Ay =—=d, (dpds3 —dy3dyy) = dy (dy3dsy —dypds3)

A= A dy = Ay = ~(dyy +dy)dyydyy = dipdoy )+ dyydys 4

—(dyy +d33)(dydss = dy3dsy) = dyydypdss + dy3dy sy

Therefore, by using the Routh-Hurwitz criterion the following theorem can be proved directly.
Theorem (2): The positive equilibrium point E, of system (3) is locally asymptotically stable in R?
provided that the following sufficient conditions are satisfied

wys” +wyi <R/ (13a)
* s 1 K
LN (W4i +w6] (13b)
e, W3R, Ry ewi Ry
x (e wywss” +eywyRy) < (Wswg +wy)s R| (13¢c)

% %2 * L %k % ) %2
Wss | Ry —wis —wii lewix Ry, +wywslewis +e,wsi R,

(13d)

* %2 * K3 Sk * ) ok
< Wwss (Rl WS — Wi j(w41 +W6R2)Rl
where R, =w, +x  and Ry =1+wsi .
Proof. Straightforward computation shows that 4, 4, and A are positive under the sufficient

conditions (13a)-(13d) and hence according to Routh-Hurwitz criterion all the eigenvalues of the
J(E;) have negative real parts . Thus E; is locally asymptotically and the proof is complete. ]

It is well known that, the persistence of an ecological system means the coexistence of all the
species for all positive time. Moreover the coexistence of all the species for all the positive time is
satisfied mathematically if the solution of the system doesn’t has omega limit set on the boundary
planes. Therefore the conditions of the persistence of the system (3) are established in the following
theorem.

Theorem (3): Suppose that the is no periodic dynamics in xs —plane and that

L (14a)

wy +1

WS > wy (14b)
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Then system (3) is uniformly persistence.
Proof. Let p be any point in the positive octant and let o(p) be the orbit through it. Let Q(p) denotes

the omega limit set of the orbit through the point p. Clearly Q(p) is bounded due to the boundedness
of the system (1). We claim that E, ¢ Q(p). If E; e Q(p) then according to the Butler-McGehe
lemma [19], there is a point g € Q(p) "W *(E,), where W*(E,) represents the stable manifold of E,.
Now since o(q) lies in Q(p) and W*(E,) is the si—plane, then the orbit through ¢, which denoted
by o(q), is unbounded orbit which leads to contradiction.

Now we claim that £, ¢ Q(p), otherwise E, e Q(p) . Since E, is saddle point due to condition (14a)
with stable manifold represented by xi - plane, hence again by Butler-McGehe lemma there is a point
qgeQ(p)nW?(E,), where W?(E,) is the stable manifold of E,. Moreover since o(q) lies in Q(p)
and W*(E)) is the xi—plane, then the orbit through ¢ that denoted by o(g) is unbounded orbit which
leads to contradiction too. Similarly we get contradiction if we assume that £, € Q(p) due to using
condition (14b) which guarantees that E, is saddle point with stable manifold xs—plane.

Therefore Q(p) doesn’t intersect any of boundary planes of the R?, then system (3) is persistent. In

addition to that since system (3) is bounded system then according to theorem of Butler et al [20],
system (3) becomes uniformly persistent. [

IV. Global Stability Analysis
In this section the region of global stability, that known as basin of attraction, of each
equilibrium point is determined with the help of Lyapunov method as shown in the following
theorems.
Theorem (4): Suppose that the predator free equilibrium point £, = (1,0,0) is locally asymptotically

stable, then it’s a globally asymptotically stable in the R?, Provided that

ﬂ<w6 (15a)
W2
M, (15b)
W2

Proof: Define the function

" :{x—f—fln(éﬂ+s+i
X

where X =1. Clearly the function ¥, is continuously differentiable, positive definite, real valued
function with 7,(¥,0,0)=0 and V,(x,s,i) >0 for all (x,s,i) # (¥,0,0) e R?. Now by differentiate v, with
respect to time and then simplifying the resulting terms we obtain that:

4 <—(x-1)? —[wé —ﬁ}"—(mq —&Ji
dt Wy Wy

Thus it is easy to verify that % is negative definite in the R’ under the conditions (15a) and (15b).

Therefore, for any initial point in the R? the solution of system (3) approaches asymptotically to E;.
Thus E, is a globally asymptotically stable in the R?, and the proof is complete. |
Theorem (5): Suppose that the disease free equilibrium point E, =(x,5,0) is locally asymptotically
stable, then it’s a globally asymptotically stable in the R?, provided that
W5 <wyR, (16a)
e wyx

5+ ——= 16b
Wy > W,S + R (16b)
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eawr
— < >e 16¢
e, (160)
here R =w, +¥.

Proof: Consider the function

v, :c{x—f—fln(éﬂ+c{s—§—§ln(éﬂ+c3i
X N

where ¢;;;j=123 are positive constants to be determined. Clearly the function ¥, is continuously
differentiable, positive definite, real valued function with 7,(%,5,0)=0 and V,(x,s,i)>0 for all
(x,s,0) # (%,5,0) in the R?. Now by differentiate ¥, with respect to time and then simplifying the
resulting terms we obtain that:

& (1—%}@—2)2 —%(cl —c, elﬁwz J(x—)_c)(s—E)

dt 144 1 1

w W3 Xi €, W3 SXi Wy Si Wy Si
——3(cl—czez)xi+cl 3 —C, L—(CZ—Q) 4 +c, 4 —Cc3wqi
R, R, SR, R, R,
. . .. ew
where R, =w, +x and R, =1+ wsi. Consequently by choosing the positive constants as ¢, :IE—2
1

and ¢, =c; =1, then by substituting these values in the above equation and doing some algebraic
computation, we obtain that

Wy gevafy WS\ g mfems g f,  wS_avant)
dt R, R R, R R R, R,

Thus it is easy to verify that C;—Vtz is negative definite in the R? under the conditions (16a), (16b) and
(16¢). Therefore, for any initial point in the R’ the solution of system (3) approaches asymptotically
to E,. Thus E, is a globally asymptotically stable in the R?, and hence the proof is complete. ]
Theorem (6): Suppose that the positive equilibrium point E; = (x",s",i") is locally asymptotically
stable, then it’s a globally asymptotically stable in the region R?, provided that

wis™ +wyit < wyR/ (17a)
2
q12” <4ud» (17b)
2
q13 <4193 (17¢)
2
923" <q20933 (17d)
where, qdi2 = ezwzwil 5 qi13 = EIWZV,:}} P q2 = ezwfx*z P qr3 = ef - (W25 +x'5),
SRR, R\R, R ss R R,
a1 =61M:2 - wls* - d gy =2 with R =w, +x*, R; =1+wsi* while R, and R, as
R, RiRy  RiRy 215

given in theorem (5).
Proof: Consider the function

V3:c1* x—x*—x*ln(i*J +c; s—s*—s*ln(i*j +c; i—i*—i*ln(%j
X s i

where cj» ;j=1,2,3 are positive constants to be determined, 7 is continuously differentiable, positive
definite, real valued function with V;(x*,s*,i*)=0 and V;(x,s,i)>0 for all (x,s,i)#(x",s",i") in the

R?. So by differentiate ¥, with respect to the time and then simplifying the resulting terms we obtain
that
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dvy * ws® oy vy w WX 2 e WaWsST sy
—=—q|1- ———— |x-x )~y == (s—5 ) —c; ——=——(-i)
dt RiR - R s Ry 214

* k. ok 1 * 3 * * *
-q %(x—x )i—i )+;[cz%(qw}+eﬂ?l ]—Cﬂ"/]}(x_x Ns—s7)

1 1 1

* Wy * Wy W3 X * * NV
+leg—-c ————=——\w,s +xs|||(s=s)i—-i)
[ R, 2[R2R2 ss'RR, v )J]

Consequently by choosing the positive constants as ¢, =%,c; =1 and c; :%, then by

1 2
substituting these values in the above equation and doing some algebraic computation, we obtain that
dV * * . Jk
7; =—qn(x—x )2 —qyn(s—s )2 —q33(i—i )2
+ (X=X ) (s =) = qi3(x = x" )i =) +qp3(s =) —i")
Therefore by using the conditions (17a)-(17d), its obtain that

2 2 2 2
d * * * . oK
ﬁﬁ— %(x—x)— Q_éz (s=s)| — ﬂ(x—x)ww/% @i-i)

dt 2
2
92 * q33 . .
ZEE(s—5 )=, ]—== (i—i
5 ( )=/ 5 (i-1)
3

vy . . . . . .
Clearly, I is negative definite in the R?. Therefore, for any initial point in the R’ the solution of

system (3) approaches asymptotically to E;. Thus E, is a globally asymptotically stable in the R,
and hence the proof is complete. ]

V. Local Bifurcation

It is well known that the bifurcation occurs if and only if there is a qualitative change in the
behavior of the solution of a system as variations in the control parameter. Therefore in this section an
application to the Sotomoyor’s theorem [21] is performed to study the occurrence of local bifurcation
near the equilibrium points of system (3). Recall that the fact that the equilibrium point is a non
hyperbolic point is a necessary but not sufficient condition for occurrence of local bifurcation in the
neighbourhood of that point. Therefore the parameters, which change the equilibrium points from
hyperbolic to non hyperbolic equilibrium point, are considered as a candidate bifurcation parameters

of system (3) as shown in the next theorems.
Consider the Jacobian matrix of system (3) that is given in Eq.(8), then its easy to verify that for

any vector V = (v;,v,,v;)", we have that

DZF(S,i,Z)(V, V) = (uij)3><1 (18)
2 j 2 2
here  u;, =|-2+ WZ(WIS: #3) vi— WIZVZ Vv, — "o s ViVs,
R R R

_2(eyms +ezw3i)w2v12 N Zeywiwyvivy  2eWawaVivy 2w vyvy 2w4w5sv32
3 2 2 2 3
R R R R, R,

Up = ’

2

2wyvavs 2wy wssvs
2 3
R, R,

Uz = >
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Theorem (7): If the death rate of susceptible predator w, passes through the value w; = aM

, then
wy +1

system (3) near the predator free equilibrium point E, undergoes transcritical bifurcation but neither
saddle-node nor pitchfork bifurcation can occur.
aw

Proof: Clearly the Jacobian matrix of system (3) at £, with wg = — is given by J(E,,wg) = (l;,-/-) ,
w, + :
where I;,-j =b; in J(E,) and by, =0, hence E, becomes a non-hyperbolic equilibrium point with zero

eigenvalue /TS =0.Let V = (\71,\72,73)T be the eigenvector corresponding to the zero eigenvalue A =0 of the

matrix J . Then the system JV =0 gives that

T
V=% %.,0| with % eR and % #0
w, +1

Let ¥ = (7,,,.05)" be the eigenvector corresponding to zero eigenvalue A =0 of the matrix J . Then the

system JT¥=0 gives that

T

~ D - o~ ~

b4 :[O,M%,%] with 3 e R and 3 #0
e W;

Now, since ‘T’TF% (El,w;) =0, then according to Sotomayor’s theorem saddle-node bifurcation can’t occur.

Further, straightforward computation shows that

~ . wo(wy + 1)V,
PTIDF, (E,.wo)V 1= _n v 5oL
€rWs
Also due to Eq. (18) we get that
~ S —2e,w} ~2~
PTD?F(E, wy)(V 7)) = ——LLE22T 520, 20
e;wy(w, +1)
Therefore transcritical bifurcation takes place but not pitchfork bifurcation and hence the proof is complete. =
Theorem (8): Assume that
ST 5 <wR> (19)
Wy R,

Thus if the death rate of infected predator w, passes through the value w; = w,s, then system (3) near the

disease free equilibrium point E, undergoes transcritical bifurcation but neither saddle-node nor pitchfork
bifurcation can occur.

Proof: Clearly the Jacobian matrix of system (3) at E, with w; =w,5 is given by J (Ez,w;) = (ci/-) where

C;;

j =y in J(E,) with a;3 =0, hence E, becomes non-hyperbolic equilibrium point with zero eigenvalue

ij
/TZ =0.Let V/ = (\71,\72,\73)T be the eigenvector corresponding to /Tz =0 in J . Then the system JV =0 gives
that

V = (@v3,@,v3,v;)" with v, € R and ¥, # 0

— c —
here @, =——2 and @,
€21 €12621

= w . Clearly condition (19) guarantees that o; >0 and a, <0.
Let ¥ = (i7,,,,i73)" be the eigenvector corresponding to /Tz =0 in J7. Then the system J' ¥ =0 gives
that

¥ =(0,0,i73)" with 73 € R and 73 #0
Now, since ¥’ F,. (Ez,w;) =0, then according to Sotomayor’s theorem saddle-node bifurcation can’t occur.
Further, straightforward computation shows that

_T * T _ —_——

VO [DF,, (Ey,wy)V]=—v3p3 20
Also due to Eq. (18) we obtain that

VI [D2F(Ey wy)(V V)] = 2wy (@~ ws5)v3 73 # 0
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Therefore transcritical bifurcation takes place but not pitchfork bifurcation and hence the proof is complete. =
Theorem (9): Assume that the conditions (13a) and (13b) hold along with the following conditions

(wswg + w4)s*R1* <x' (elwlwss* + ezw3R;) (20a)

* Jk * *
wylewis +e,wyi \wy Ry +wywss

2 (20b)
< x*i*(Rl* - (wls* + w3i*))[x* (elwlwss* + ezw3R;)— W4S*R1*]
Thus as the parameter w, passes through the value
[ *( *+ R*) *R*] ( *+ .*X R*+ *)
X \eyWWsS e yw — Wy S WH\eyw S EryWHl AW Wi Ws S
Wy = IWiWs 2W3 48 K] W e 2W) 34 T WWs (20¢)

* * 2
wss Ry w5x*s*i*((wls* +wyi )= R, )Rl*
system (3) near the positive equilibrium point E; undergoes saddle-node bifurcation but neither transcritical nor
pitchfork bifurcation can occur.

Proof: Clearly the Jacobian matrix of system (3) at E; with w, = wg, which is positive under the conditions

(13a), (20a) and (20b), can be written as J"(E;,w;)=J(E;) with d3, = e”}:{f —V;‘i —w; , which is
1 2

negative under the condition (13b). Now straightforward computation shows that 4; in the characteristic
equation (12b) vanishing ( 4; =0) at wg = wg and hence the Jacobian matrix J (E3,w2) has zero eigenvalue,
say A" =0. Thus E; is a non-hyperbolic point.

Let V' = (vl* ,v;,v; )" be the eigenvector corresponding to A° =0 in J" . Then we get that:

* * . * *
V* =(ayvy,a;vi,vi)" with v; € R and v 20

o diadyy —disd, o djsdy —dy\d; s e .
here o = =122 TI3%2 ) and oy =—B22L T3 et 9t = () ws,w3)! be the eigenvector
dyydy, —dyyd;, dyydy —dyydy,

corresponding to A° =0 in J ! . Then we obtain that:
W=y Biwd BT with i € R and yy %0

diydsy — d12d33 and g = dizd% —d1:3d{2

dydy; - d23d32 dydyy —dydy,

* .
here g, = > 0. Now since

W, (Eywi)=—Bsyi %0
Then according to Sotomayor’s theorem the first condition of saddle-node bifurcation is satisfied. Moreover,
due to Eq. (18), we have
« T % * * *2 WIiWH O
W D2FE,, WV V=2 v | —a 1—21(1 e f Xal s" —asR, )
1

w2w3a1 (1 e[ Xalz -R, )+—(ﬂ ,b’l Xaz Wss )

l 2

T * PR ..
Straightforward computation shows that ¥* [D*F(E 1, W),V )] #0 under the above conditions. Thus
saddle node bifurcation occurs but neither transcritical nor pitchfork bifurcation can occur. ]

VI. Numerical Simulation
In this section, the global dynamics and the possibility of the occurrence of bifurcation of system (3)
are investigated numerically. The objective is to confirm our obtained analytical outcomes. Consequently, for
the following hypothetical set of biologically feasible data, system (3) is solved numerically starting at different
sets of initial conditions and then the obtained trajectories along with their time series are drawn in Fig. (1) and
Fig. (2) respectively.
w; =03, wy, =0.2, w3 =0.3,w, =0.75, w5 =0.5,wg =0.05,w,; =0.L,e;, =0.5,e, =04 (21)
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(2 (b) ©
Initial point Stable point
(0.95,0.8,0.6) (0.54,0.19,0.93)
1 Stable point 1 1 Stable point
(0.54,0.19,0.93) (0.54,0.19,0.93)
A
_ 05 / . 05 _ 05
A
Initial point
(0.75,0.6,0.4)
0 0 0 A
) 1 1 Initial point
(0.55,0.4,0.2)
1 1
0.5
0.5 05 05 03 0.5
500 X S0 0 X s 00 X

Fig.1: Globally asymptotically stable positive equilibrium point E; = (0.54,0.19,0.93) of system (3) at the set of
data (21); (a) Starting from (0.75,0.6,0.4) . (b) Starting from (0.95,0.8,0.6). (c) Starting from (0.55,0.4,0.2) .

According to these figures for the data given by Eq. (21), system (3) has a globally asymptotically
stable positive equilibrium point that shows the persistence of the system in the form of point attractor.
(a)

(b)
1 T T T 0.8 T T T
x started at 0.75 s started at 0.6
N — x started at 0.95 s started at 0.8
( N — x startedat 0.55 || s started at 0.4
081, N
N AN 0.6
AN 5
= ~ =
S N ~
g 06 \\L\\ ~ 3
E = = 5
o
5 \ | £ o4
> a
goar ‘\ ‘ 3 \
. 2 I\
02+t 3‘ “ o \\ - —
4 | } \ /
! \/
4 \/
0 . L . 0 . . .
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Time <10 Time <10
(©)
1.4
istarted at 0.4
— istarted at 0.6
istarted at 0.2
< —
< -
3 /
= /
a
5 4
51
51
&
S
0 . . .
0 0.5 1 1.5 2

Time x10
Fig. 2: Time series of the point attractor given in Fig. (1); (a) Trajectories of prey population starting from

different points. (b) Trajectories of susceptible predator population starting from different points. (c)
Trajectories of infected predator population starting from different points.

Now in order to investigate the occurrence of bifurcation in system (3), the numerical solution of
system (3) is determined as a function of one parameter at a time and then the obtained trajectory is drawing in a
form of 3D attractor and / or time series as shown below. So by varying the parameter w, in the range
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0<w, £0.12, it is observed that the solution of system (3) approaches asymptotically to the predator free
equilibrium point E; as shown in the typical figure given by Fig. (3). However varying the parameter w; in the
range 0.46 <w, <1.55 leads to approaching to the periodic dynamics in the interior of R? as shown in the
typical figure given by Fig. (4). Moreover varying this parameter in the range w; >1.55 causes extinction in the

infected population and the solution approaches asymptotically to the periodic dynamics in the interior of
xs —plane as shown in the typical figure given by Fig. (5).

1

Populations
g
n

0 215 5
Time X 104
Fig. 3: The time series of the trajectory of system (3) for the data given in Eq. (21) with w; =0.05 in which the

solution approaches asymptotically to E; = (1,0,0) .

b
@ (‘)

1.2
2
.2
~ 07 05
=
o
o
~
0.2
0.8 1 \
0.4 0.5 X s i
0 .
s 0 0 . 3 4

Time

x10'
Fig. 4: The trajectory of system (3) for the data given in Eq. (21) with w; =0.5. (a) Periodic attractor in the

interior of Ri. (b) Time series for the attractor in (a).

x i (a

s

1 08 @

. | . | \ L |
5 I .

1IN AN L A

4
x 10

Fig. 5: The trajectory of system (3) for the data given in Eq. (21) with w, =1.7
periodic attractor. (b) Periodic attractor in the interior of xs —plane.

x

5. (a) The time series of the
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Now, varying the parameter w, in the range 0 < w, <0.15 leads to destabilizing of system (3) and the
solution approaches asymptotically to the periodic dynamics in the interior of Ri as explained in the typical
figure given by Fig. (6). However by varying the parameter w, in the range w, >1.9, it is observed that the
solution approaches to the predator free equilibrium point E| .

(b)
@ 12 :

~ 05

Populations

i Time <10
Fig. 6: The trajectory of system (3) for the data given in Eq. (21) with w, =0.1. (a) Periodic attractor in the

interior of R i . (b) Time series for the attractor in (a).

Moreover, varying the parameter wjy in the range w; > 0.34 leads to losing the stability at the positive

equilibrium point and the solution approaches asymptotically to the periodic dynamics in the interior of Ri as
explained in the typical figures given by Fig. (7) and Fig. (8) respectively. Clearly these figures show that
increasing the value of w; leads to increase in the size of periodic, which indicate to occurrence of Hopf

bifurcation.
(a) (b)

2 X
. 06 8 —
<05 ] .
[=9
o
(=W
02
1
1 PN
0.5
0.5
0 L
500 x 0 2.5 5

Time 4
x 10
Fig. 7: The trajectory of system (3) for the data given in Eq. (21) with w; =0.34 . (a) Periodic attractor in the

interior of Ri. (b) Time series for the attractor in (a).
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(2) (b)

0.5

0.5

Populations

0.5

S 00 x 0 2.5 5
Time X 104

Fig. 8: The trajectory of system (3) for the data given in Eq. (21) with w; = 0.4 . (a) Periodic attractor in the

interior of Ri. (b) Time series for the attractor in (a).

Now varying the parameter w, in the range 0.14 < w, < 0.43 causes occurrence of Hopf bifurcation

too, as shown in the typical figure give by Fig. (9). However varying this parameter in the range 0 < w, <0.14
leads to extinction in the infected population and the solution approaches asymptotically to the periodic
dynamics in the interior of xs — plane as explained in the typical figure given by Fig. (10).

(a) X K i ®)
1 1
2] L - AAAAAA A
2 8
= 3]
2 W&: 3% KMW‘W:
s 2,
: £
0 0
0 5 10 0 5 10
Time 4 . .
x 10 Time <10
(©) (d)
1 1
. WMWY
2 R
E 05 =05
2 >
S .
- o
~ [
0 0
0 5 10 0 5 10
Time x 104 Time X 104

Fig. 9: The time series of the trajectory of system (3) for the data given in Eq. (21) with different values of wy,.
(a) Asymptotically stable point for w, = 0.45. (b) Small periodic attractor for w, = 0.43. (c) Periodic attractor
for w, =0.41. (d) Large periodic attractor for w, =0.39 .
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S0 0 x 0 25 5
Time x104

Fig. 10: The trajectory of system (3) for the data given in Eq. (21) with w, =0.1. (a) Periodic attractor in the
interior of xs —plane. (b) Time series for the attractor in (a).

Similarly varying the parameter ws in the range ws >1.78 leads to occurrence of Hopf bifurcation and
the solution approaches asymptotically to periodic dynamics in the interior of Ri, as shown in the typical figure

given by Fig. (11).

(2) (b)
1 T
X
| ) \ |
0.8 0.7
a
S
- =
0.6 2
o
(=W
0.4+
0.4
0.8 J
06 0.8
04 0.4
0.1 :
5020 x 0 25 5

Time 4
x 10
Fig. 11: The trajectory of system (3) for the data given in Eq. (21) with wy =1.9. (a) Periodic attractor in the

interior of Ri. (b) Time series for the attractor in (a).

Now varying the parameter w, in the range w, >0.13 leads to losing the stability of the positive
equilibrium point and the solution approaches asymptotically to the predator free equilibrium point E, as

explained in the typical figure given by Fig. (12).
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Fig. 12: The trajectory of system (3) for the data given in Eq. (21) with wg =0.15. (a) E,; is asymptotically
stable point of system (3). (b) Time series for the attractor in (a).

Moreover varying the parameter w; in the range 0 <w,; <0.08 leads to occurrence of Hopf

bifurcation in the interior of Ri as shown in the typical figure given by Fig. (13). On the other hand varying this
parameter in the range w,; > 0.69 causes extinction in the infected population and the solution approaches
asymptotically to periodic dynamics in the interior of xs—plane as shown in the typical figure represented by
Fig. (14).
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25
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Time X 104

Fig. 13: The trajectory of system (3) for the data given in Eq. (21) with w; = 0.05 . (a) Periodic attractor in the

interior of Ri. (b) Time series for the attractor in (a).
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Fig. 14: The trajectory of system (3) for the data given in Eq. (21) with w; =0.69 . (a) Periodic attractor in the

interior of xs —plane. (b) Time series for the attractor in (a).

Now varying the parameter e; in the range 0 < e, <0.2 leads to extinction in predator species and the

solution approaches asymptotically to the predator free equilibrium point E, as shown in the typical figure

represented by Fig. (15). However varying this parameter in the range e, > 0.75 causing destabilizing of the
positive equilibrium point and the solution of system (3) approaches asymptotically to periodic dynamics in the

interior of Ri , which indicates to occurrence of Hopf bifurcation, as shown in the typical figure given by Fig.

(16).
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i
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Fig. 15: The trajectory of system (3) for the data given in Eq. (21) with e¢; =0.1. (a) E, is asymptotically stable

point of system (3). (b) Time series for the attractor in (a).
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Fig. 16: The trajectory of system (3) for the data given in Eq. (21) with e¢; = 0.8 . (a) Periodic attractor in the

interior of RE. (b) Time series for the attractor in (a).

Finally varying the parameter e, in the range e, > 0.46 leads to destabilizing the positive equilibrium
point and the solution of system (3) approaches to the periodic dynamics in the interior of Ri as shown in the

typical figure represented by Fig. (17).
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Fig. 17: The time series of the trajectory of system (3) for the data given in Eq. (21) with different values of e, .
(a) Asymptotically stable point for e, = 0.45. (b) Periodic attractor for e, = 0.46 .

Keeping the above in view, it is observed that for the data given by Eq. (21) with w; =0.2, w, =04,
wy =0.15 and w,; =0.4 the solution of system (3) approaches asymptotically to the disease free equilibrium

point E, as shown in the typical figure given by Fig. (18).

DOI: 10.9790/5728-12142141 www.iosrjournals.org 38 | Page



Modeling And Analysis Of A Prey-Predator System With Disease In Predator

(a) (b)
25 —
Initial point /
0.4 (0.75,0.6,0.4) /
T
X
@ S
=} .
- 02 g ‘ i
S 125} / ]
=2
o
o
(=¥
0w
25 stable point
(0.4,2.4,0) 1
125 06
0 ‘
$ 0 02 «x 0 1 2

Time 4
x 10
Fig. 18: The trajectory of system (3) for the data given in Eq. (21) with w; =02, w, =0.4, w, =0.15 and
w; =04 . (a) E, is asymptotically stable point of system (3). (b) Time series for the attractor in (a).

VII. Conclusions And Discussion

In this paper an eco-epidemiological model, consisting of a prey — predator system with disease in
predator, has been proposed and analyzed analytically as well as numerically. It is assumed that the disease is
horizontally transmitted within predator population. It is observed that this model has at most four nonnegative
equilibrium points. The local and global stability of all possible equilibrium points are investigated. The
conditions that guarantee the persistence of the model are established. The local bifurcation analyses near the
equilibrium points are carried out. Finally numerical simulation is used to investigate the global dynamics of the
model and specify the set of control parameters in the proposed model in addition to occurrence of Hopf
bifurcation. It is observed that, for the chosen hypothetical set of data given by Eq. (21), system (3) is rich in the
dynamics and sensitive to varying in their parameters. Indeed the system undergoes different types of
bifurcations including Hopf bifurcation. In the following we summarize the obtained results for the data given
by Eq. (21):
1. The system (3) has only two types of attractors: asymptotically stable point and periodic dynamics.
2. For the set of data given in Eq. (21), system (3) has a globally asymptotically stable positive equilibrium

point and hence the system is persists.

3. Decreasing the susceptible predator attack rate (w;) under a specific value causes extinction in predator

species and the system approaches to predator free equilibrium point. However increasing this parameter
above a specific value leads to destabilized the positive equilibrium point and the solution of system (3)

approaches asymptotically to periodic dynamics in interior of R?, which indicates to occurrence of Hopf
bifurcation and persistence of the system in the form of periodic attractor. Further increasing the value of
this parameter above another specific value causes extinction in the infected population and the system
approaches asymptotically to a periodic dynamics in the interior of xs —plane.

4. Decreasing the predator half saturation parameter (w,) under a specific value leads to destabilized the
positive equilibrium point and the solution of system (3) approaches asymptotically to periodic dynamics in
interior of R?, which indicates to occurrence of Hopf bifurcation and persistence of the system in the form

of periodic attractor. However increasing this parameter above a specific value causes extinction in predator
species and the system approaches to predator free equilibrium point.
5. Decreasing the infected predator attack rate (w;) do not has effects on the dynamics of system (3) and the

solution still approaches to a positive equilibrium point. However increasing this parameter above a specific
value leads to destabilized the positive equilibrium point and the solution of system (3) approaches

asymptotically to periodic dynamics in interior of Ri, which indicates to occurrence of Hopf bifurcation
and persistence of the system in the form of periodic attractor.
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10.

11.

Decreasing the predator infected rate (w,) under a specific value leads to destabilized the positive equilibrium point

and the solution of system (3) approaches asymptotically to periodic dynamics in interior of Ri, which indicates to

occurrence of Hopf bifurcation and persistence of the system in the form of periodic attractor. Further decreasing this
parameter under another specific value causes extinction in the infected population and the system approaches
asymptotically to a periodic dynamics in the interior of xs — plane. However increasing this parameter has no effects on
the dynamics of the system and the solution still approaches to positive equilibrium point.

It is observed that varying the disease’s inhibitory effect rate represented by ws and the infected predator conversion

rate e, have the same effect on the dynamical behavior of system (3) as that occurred by (ws) .

Decreasing the susceptible predator death rate (wg) do not has effects on the dynamics of system (3) and the solution

still approaches to a positive equilibrium point. However increasing this parameter above a specific value leads to
extinction in predator species and then the system changes its stability from the positive equilibrium point to the
predator free equilibrium point, which means a bifurcation in the system take place.

Decreasing the infected predator death rate (W) under a specific value leads to destabilized the positive equilibrium

point and the solution of system (3) approaches asymptotically to periodic dynamics in interior of Ri , which indicates

to occurrence of Hopf bifurcation and persistence of the system in the form of periodic attractor. However increasing
this parameter above a specific value causes extinction in the infected population and the system approaches
asymptotically to a periodic dynamics in the interior of xs — plane.

Decreasing the susceptible predator conversion rate (e;) under a specific value causes extinction in predator species

and the system approaches to predator free equilibrium point. However increasing this parameter above a specific value
leads to destabilized the positive equilibrium point and the solution of system (3) approaches asymptotically to periodic

dynamics in interior of Ri, which indicates to occurrence of Hopf bifurcation and persistence of the system in the form
of periodic attractor.
Finally, for the data in Eq. (21) with w; =0.2, w, =04, w, =0.15 and w; = 0.4, the solution of system (3)

approaches asymptotically to the disease free equilibrium point, which indicates to losing the persistence of the system
too.
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