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Abstract: This study has proposed a stochastic model for assessment of control measures on the intensity of 

bacterial spread over the plants of different types as well as of different age groups in the same species of the 

plant. Deriving the stochastic differential equations through bivariate point processes is the core objective of 

the study.  The developed differential equations are used for deriving several statistical measures based on the 

proposed parameters of bacteria growth, spread and loss. Sensitivity analysis is carried out for observing the 

patterns of statistical measures at changing values of one parameter and at fixed values of the remaining 

parameters.  
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I. Introduction: 

Studies on bacterial diseases in plants have significant importance for farmers for making its control 

and regulating with optimal management approaches. They are responsible for huge damage to crops. It makes 

the attention and lot of human concern to curb the spread of these diseases. Knowing the dynamic behavior of 

bacterial diseases will help the agricultural agencies in designing the effective treatment protocols and 

intervention methods. Due to several explained and unexplained reasons, the influencing factors of bacteria 

spread among plants are stochastic rather than deterministic. Thus probabilistic tools need to be used to study 

bacterial transmission dynamics.   

 This study has proposed a stochastic model on the assessment of bacterial intensity spread over the 

plants. Stochastic differential equations approach as an application of bivariate point processes has been 

considered here. The steps in the study includes (i) formulation of postulates with suitable mix of plant 

pathology and mathematical biology assumptions, (ii) development of difference equations for bivariate 

stochastic processes, (iii) deriving the differential equations, (iv) getting the probability functions through 

transient state of equations, (v) deriving the mathematical relations of various statistical measures through 

generating functions and (vi) sensitivity analysis with numerical data sets for better understanding of model 

behaviour.  

 Evidence on reporting the literature on this research work reveals that it was initiated in the beginning 

of the 20
th

 century as Kermack and McKendrick (1927) have introduced the mathematical theory of epidemics 

with deterministic model. The most important stochastic model from that era is that using the chain-binomial 

model on epidemiology by Reed and Frost (1928).  Using stochastic simulation model, Xu and Ridout (2000) 

demonstrated the importance of initial epidemic conditions, especially the spatial pattern of initially infected 

plants and the relationships of spatio-temporal statistics with underlying biological and physical factors. The 

area of epidemic modeling has grown rapidly and a good overview of other important works can be found in 

Baily (1975); Anderson and Britton (2000). Hofmann et al. (2004) developed a stochastic model based on a 

Poisson branching process for analyzing surveillance data of infectious diseases that allows making forecasts of 

the future development of the epidemic. They estimated the model in a Bayesian context using Markov Chain 

Monte Carlo (MCMC) technique. Tirupathi Rao and Srinivasa Rao (2006), Tirupathi Rao et al., (2011, 2012, 

2013) have developed several stochastic models on cancer growth using Poisson postulates and differential 

difference equations.  

When an individual plant becomes infected, the pathogen moves through the latent stage to become 

infectious at a rate which is the inverse of mean latent period. Infected plants lose infectiousness and proceed 

into the removed or post-infectious stage at rate which is the inverse of mean infectious period (Segarra et al., 

2001). Keeping the philosophy of epidemiology, cancer like disease spread, predicting the severity of disease 

with mathematical and stochastic models in the above reviewed literature, it has focused on stochastic modeling 

of infectious disease spread among the flora and fauna.   

More specifically this work is on invasion and expansion of the infectious diseases among plants. The 

plant has different ages/ stages from seed germination to its crop yielding. It has different levels of 

vulnerabilities of exposing to diseases at different age groups. The plants at nursery stage and transplantation 

stage were considered in this model for observing the growth, loss and transition of disease causing bacteria.  

The motive of this study is to assess the intensity levels of bacterial accumulation in the unit area of plant.  This 
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study will help in providing the indicators on lethality of bacteria so as the disease control management can be 

designed through interventions accordingly.   

Bivariate stochastic model with Poisson postulates is the basis of this work. There are two stages of 

plant namely nursery and transplantation. Logging of bacteria on the plant at nursery stage may be due to either 

immigration from other plants or from some vector influencing mechanism. The accumulation of bacteria after 

its latency during nursery stage of the plant may be done due to its own growth on the existing host plant also. 

The similar mechanism can be observed on the plants of transplantation stage also.  The dynamics of growth, 

loss and transition of the bacteria within same aged plant and between different aged plants will be observed 

simultaneously due to birth, death and migration processes of it.   

 

Stochastic Model for Bacterial Diseases among Plants: 

The modeling activity is carried out under the assumptions of pathophysiology of bacterial diseases and 

the mathematical principles. As the transition of bacterial disease is purely random and influenced by complete 

chance factors, the developed model is categorized as stochastic model. The study his based on the assumptions 

and postulates of bivariate Poisson processes.  The following diagram will explain the processes behind the 

construction of model in more detailed way.    

 

 
Schematic Diagram for Spread of Bacterial Disease 

 

Assumptions and Postulates of the model:   

Let the events occurred in non-overlapping intervals of time are statistically independent. Let t  be an 

infinitesimal interval of time. Initially, let there be ‘n’ units of bacteria in stage-I (nursery) and ‘m’ units of 

bacteria in stage-II (transplantation) at time ‘t’. Here one unit denotes the number of bacteria in a square area 

(mm
2
). Let ‘ 1 2and  ’ be the rates of immigration of bacteria per unit time from external means to stage-I 

and stage-II respectively; 1 2and   are the rates of growth (birth) of bacteria per unit time in  stage-I and 

stage-II respectively; 1  is the rate of transition of bacteria per unit time from stage-I to stage-II; 1 2and   are 

the rates of emigration of bacteria per unit time from stage-I and stage-II respectively to the other area; 

1 2and   be the rates of loss (death) of bacteria per unit time in stage-I and stage-II respectively.   

 Assuming the above conditions the postulates of the model are as follows. The probability of (i) arrival 

of bacteria to the stage-I during t  through immigration from external sources is  1 t o t    ; (ii) arrival of 

bacteria to the stage-I during t  through internal birth process provided there exits ‘n’ units of bacteria at time 

‘t’ is  1n t o t    ; (iii) transition of bacteria from stage-I to stage-II during t  provided there exits ‘n’ 

units of bacteria at time ‘t’ in stage-I is  1n t o t    ; (iv) emigration of bacteria from stage-I to other areas 

during t  provided there exits ‘n’ units of bacteria at time ‘t’ is  1n t o t    ; (v) death of bacteria in stage-

I during t  time provided there exits ‘n’ units of bacteria at time ‘t’ in stage-I is  1n t o t    ; (vi) arrival 

of bacteria to the stage-II during t  through immigration from external sources is  2 t o t    ; (vii) 
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arrival/growth of bacteria to the stage-II during t  through internal birth process provided there exits ‘m’ units 

of bacteria at time ‘t’ is  2m t o t    ; (viii) emigration of bacteria from stage-II to other areas during t  

provided there exits ‘m’ units of bacteria at time ‘t’ is  2m t o t    ; (ix) death of bacteria in stage-II during 

t  provided there exits ‘m’ units of bacteria at time ‘t’ is  2m t o t    ; (x) no arrival of bacteria to stage-I 

and stage-II from outside,  no internal growth/birth of bacteria in stage-I and stage-II, no transition of bacteria 

from stage-I to stage-II,  no emigration of bacteria from stage-I and stage-II to other areas and  no death of 

bacteria in stage-I and stage-II during t  is 

1 1 1 2 2 1 1 2 21 { ( ) ( ) ( )}. t o( t)n m n m                    ; and (xi) occurrence of other 

than the above events during an infinitesimal interval of time t  is 
2( )O t .  

 

Differential Equations of the Model:  

Let , ( )n mP t  be the joint probability of existence of ‘n’ and ‘m’ units of bacteria in stage-I and stage-II 

respectively per unit time ‘t’.   
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Other differential equations for n, m = 0,1 are  

     0,0 1 2 0,0 2 2 0,1 1 1 0,1( ) ( ) ( ) ( )
d

P t P t P t P t
dt
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       0,1 1 2 2 2 2 0,1 2 0,0 2 2 0,2 1 1 1,1( ) ( ) ( ) 2 ( ) ( )
d
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dt
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The initial conditions are , ( ) 0;n mP t  for nN0; mM0; for t=0  

  and , ( ) 1;n mP t  for n=N0; m=M0;  

Using the boundary conditions and differential-difference equations, the probability generating function (p.g.f.) 

is,  

  ,

0 0

, ; ( )n m
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Differentiating on both sides, we get  
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The above equation can be solved by multiplying the differential-difference equation with 
n mx y  on both sides 

and summing over n, m from 0 to ∞ and using the approaches of cumulant generating function (c.g.f.).   
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The statistical measures after solving the above differential equations using initial conditions and joint 

cumulant generating function are:  

Expected number of units of bacteria in stage-I at time ‘t’ is  

1,0 ( )m t  = . At

oN e            (2.2.1) 

 Expected number of units of bacteria in stage-II at time ‘t’ is  
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Variance of number of units of bacteria in stage-I at time ‘t’ is  
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Variance of number of units of bacteria in stage-II at time ‘t’ is  
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Covariance of number of units of bacteria in stage-I and stage-II at time ‘t’ is  

       

 

2 1 1 1 1 1 1 1 1

1,1

2

1 ( )

( ) . . . (2 ) .
( )

( ) ( )( ) ( ) ( )( )

.
.

( )

At At Bt At

o o o o

At

o A B t

o

N e N e M e N e
m t

B A B B A A B

C e
D e

A B

        




     
   



 


 (2.2.5) 

Where  

 

 

 

1 1 1 1

2 2 2

2 2 2

( ) ;

( ) ;

2  

A

B

J

   

  

  

   

  

  

  

o o o o oN , M  are initial values  and C , D , E  are constants which can be evaluated.  

 

II. Numerical Illustration: 
In order to verify model behavior,  a hypothetical numerical data set is obtained for various statistical 

measures from equations from 2.2.1 to 2.2.5, such as average number of bacteria units on first stage and second 

stage, variances of bacterial units in first and second stages and covariance between the number of bacterial 

units in first and second stages.  While computing the values of  m10(t), m01(t), m20(t), m02(t) and m11(t)  with 

MATHCAD, it is considered for changing values one parameter and for the fixed parameters of the remaining 

parameters among 1; 1; 1; 2; 2; 1; 1; 2; 2; N0; M0; and t.   
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Table-3.1:  Values of  m10(t), m01(t), m20(t), m02(t) and m11(t) for changing and fixed values of 1; 1; 1; 2; 2; 

1; 1; 2; 2; N0; M0; and t 
1 1 1 2 2 1 1 2 2 No Mo t m10 m01 m20 m02 m11 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 

2 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 4.52E+04 1.66E+05 4.28E+04 

3 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 5.09E+04 1.83E+05 4.98E+04 

4 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 5.65E+04 1.99E+05 5.67E+04 

5 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 6.22E+04 2.15E+05 6.36E+04 

6 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 6.78E+04 2.31E+05 7.05E+04 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 

1 9.5 3 4 5 2 1 3 1 200 100 0.65 1.95E+03 2.53E+03 7.04E+04 1.58E+05 5.78E+04 

1 10 3 4 5 2 1 3 1 200 100 0.65 2.69E+03 2.88E+03 1.26E+05 1.83E+05 9.44E+04 

1 10.5 3 4 5 2 1 3 1 200 100 0.65 3.73E+03 3.39E+03 2.26E+05 2.27E+05 1.56E+05 

1 11 3 4 5 2 1 3 1 200 100 0.65 5.16E+03 4.06E+03 4.09E+05 2.97E+05 2.59E+05 

1 11.5 3 4 5 2 1 3 1 200 100 0.65 7.14E+03 4.95E+03 7.43E+05 4.05E+05 4.36E+05 

1 9 2.5 4 5 2 1 3 1 200 100 0.65 1.95E+03 2.14E+03 6.55E+04 9.98E+04 4.64E+04 

1 9 2.75 4 5 2 1 3 1 200 100 0.65 1.65E+03 2.21E+03 5.09E+04 1.22E+05 4.09E+04 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3.25 4 5 2 1 3 1 200 100 0.65 1.20E+03 2.41E+03 3.08E+04 1.88E+05 3.15E+04 

1 9 3.5 4 5 2 1 3 1 200 100 0.65 1.02E+03 2.56E+03 2.40E+04 2.44E+05 2.76E+04 

1 9 3.75 4 5 2 1 3 1 200 100 0.65 8.63E+02 2.78E+03 1.88E+04 3.32E+05 2.42E+04 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 5 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.48E+05 3.72E+04 

1 9 3 6 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.47E+05 3.85E+04 

1 9 3 7 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.45E+05 3.98E+04 

1 9 3 8 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.43E+05 4.11E+04 

1 9 3 9 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.42E+05 4.23E+04 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 6 2 1 3 1 200 100 0.65 1.41E+03 2.58E+03 3.96E+04 5.64E+05 4.81E+04 

1 9 3 4 7 2 1 3 1 200 100 0.65 1.41E+03 2.78E+03 3.96E+04 1.04E+06 5.30E+04 

1 9 3 4 8 2 1 3 1 200 100 0.65 1.41E+03 2.87E+03 3.96E+04 2.04E+06 5.93E+04 

1 9 3 4 9 2 1 3 1 200 100 0.65 1.41E+03 4.70E+02 3.96E+04 2.76E+06 8.87E+04 

1 9 3 4 10 2 1 3 1 200 100 0.65 1.41E+03 3.54E+02 3.96E+04 3.03E+06 1.29E+05 

1 9 3 4 5 1.5 1 3 1 200 100 0.65 1.95E+03 2.53E+03 6.79E+04 1.47E+05 5.60E+04 

1 9 3 4 5 1.75 1 3 1 200 100 0.65 1.65E+03 2.40E+03 5.18E+04 1.49E+05 4.47E+04 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 5 2.25 1 3 1 200 100 0.65 1.20E+03 2.24E+03 3.03E+04 1.56E+05 2.89E+04 

1 9 3 4 5 2.5 1 3 1 200 100 0.65 1.02E+03 2.22E+03 2.32E+04 1.70E+05 2.35E+04 

1 9 3 4 5 2.75 1 3 1 200 100 0.65 8.63E+02 2.21E+03 1.78E+04 1.99E+05 1.92E+04 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 5 2 1.15 3 1 200 100 0.65 1.28E+03 2.26E+03 3.37E+04 1.53E+05 3.15E+04 

1 9 3 4 5 2 1.3 3 1 200 100 0.65 1.16E+03 2.23E+03 2.87E+04 1.58E+05 2.77E+04 

1 9 3 4 5 2 1.45 3 1 200 100 0.65 1.05E+03 2.22E+03 2.45E+04 1.67E+05 2.45E+04 

1 9 3 4 5 2 1.6 3 1 200 100 0.65 9.52E+02 2.21E+03 2.09E+04 1.80E+05 2.16E+04 

1 9 3 4 5 2 1.75 3 1 200 100 0.65 8.63E+02 2.21E+03 1.78E+04 1.99E+05 1.92E+04 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 5 2 1 3.15 1 200 100 0.65 1.41E+03 2.14E+03 3.96E+04 1.37E+05 3.46E+04 

1 9 3 4 5 2 1 3.3 1 200 100 0.65 1.41E+03 1.99E+03 3.96E+04 1.30E+05 3.34E+04 

1 9 3 4 5 2 1 3.45 1 200 100 0.65 1.41E+03 1.86E+03 3.96E+04 1.28E+05 3.23E+04 

1 9 3 4 5 2 1 3.6 1 200 100 0.65 1.41E+03 1.75E+03 3.96E+04 1.25E+05 3.13E+04 

1 9 3 4 5 2 1 3.75 1 200 100 0.65 1.41E+03 1.65E+03 3.96E+04 1.14E+05 3.03E+04 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 5 2 1 3 1.15 200 100 0.65 1.41E+03 2.14E+03 3.96E+04 1.37E+05 3.46E+04 

1 9 3 4 5 2 1 3 1.3 200 100 0.65 1.41E+03 1.99E+03 3.96E+04 1.30E+05 3.34E+04 

1 9 3 4 5 2 1 3 1.45 200 100 0.65 1.41E+03 1.86E+03 3.96E+04 1.28E+05 3.23E+04 

1 9 3 4 5 2 1 3 1.6 200 100 0.65 1.41E+03 1.75E+03 3.96E+04 1.25E+05 3.13E+04 

1 9 3 4 5 2 1 3 1.75 200 100 0.65 1.41E+03 1.65E+03 3.96E+04 1.14E+05 3.03E+04 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 5 2 1 3 1 205 100 0.65 1.44E+03 2.35E+03 4.05E+04 1.54E+05 3.68E+04 

1 9 3 4 5 2 1 3 1 210 100 0.65 1.48E+03 2.41E+03 4.15E+04 1.57E+05 3.77E+04 

1 9 3 4 5 2 1 3 1 215 100 0.65 1.51E+03 2.46E+03 4.25E+04 1.61E+05 3.86E+04 

1 9 3 4 5 2 1 3 1 220 100 0.65 1.55E+03 2.51E+03 4.35E+04 1.65E+05 3.95E+04 

1 9 3 4 5 2 1 3 1 225 100 0.65 1.58E+03 2.56E+03 4.45E+04 1.68E+05 4.03E+04 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 5 2 1 3 1 200 105 0.65 1.41E+03 2.31E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 5 2 1 3 1 200 110 0.65 1.41E+03 2.32E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 5 2 1 3 1 200 115 0.65 1.41E+03 2.33E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 5 2 1 3 1 200 120 0.65 1.41E+03 2.34E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 5 2 1 3 1 200 125 0.65 1.41E+03 2.35E+03 3.96E+04 1.50E+05 3.59E+04 

1 9 3 4 5 2 1 3 1 200 100 0.65 1.41E+03 2.30E+03 3.96E+04 1.50E+05 3.59E+04 
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1 1 1 2 2 1 1 2 2 No Mo t m10 m01 m20 m02 m11 

1 9 3 4 5 2 1 3 1 200 100 0.75 1.90E+03 3.06E+03 7.52E+04 2.53E+05 7.41E+04 

1 9 3 4 5 2 1 3 1 200 100 0.85 2.56E+03 4.08E+03 1.41E+05 4.31E+05 1.49E+05 

1 9 3 4 5 2 1 3 1 200 100 0.95 3.46E+03 5.45E+03 2.63E+05 7.44E+05 2.94E+05 

1 9 3 4 5 2 1 3 1 200 100 1.05 4.67E+03 7.29E+03 4.87E+05 1.30E+06 5.72E+05 

1 9 3 4 5 2 1 3 1 200 100 1.15 6.30E+03 9.77E+03 8.97E+05 2.28E+06 1.10E+06 

 

III. Discussion And Analysis 
3.1. Observations with changing values of immigrant bacterial growth rate to stage-I: From the above table 

it is observed that m10 and m01 are invariant functions of 1; further m20 and m02 are increasing functions of 1; 

and m11 is positive and increasing function of 1.  Hence it may conclude that the growth of bacteria through 

immigrations have no impact on the average sizes in each stage; the variances of both stages have increasing 

patterns with immigrated growth of bacteria; further there  is a positive and increasing correlations between the 

sizes of bacteria in stage -I and stage-II, influenced by the arrivals through immigrations of bacteria from 

outside the plants group.  

 

3.2. Observations with changing values of internal growth of bacteria in stage-I plants: It is observed that 

m10 and m01 are increasing functions of 1; further m20 and m02 are increasing functions of 1; and m11 is positive 

and increasing function of 1.  Hence it may conclude that there is a positive relation between average size of 

bacterial units in stage-I plants and the internal growth of bacteria in stage-I plants; positive relation between the 

internal growth rate of bacterial units in stage -I plants and the average size of bacteria in stage-II plants; the 

variances of bacterial units in both stage plants are positively related with the internal growth rate of bacteria in 

stage-I plants; Further, there is a positive and increasing correlation between the sizes of the bacterial units in  

stage-I and stage-II plants influenced with the internal growth rate of plants in stage-I.  

 

3.3. Observations with changing values of transition of bacteria from stage-I plants: 

It is observed that m10 and m01 are decreasing and increasing functions respectively of 1; m20 and m02 are 

decreasing and increasing functions respectively of 1; m11 is positive and decreasing function of 1. Hence it 

may conclude that there is a negative relation between average size of bacterial units in stage-I plants and the 

transition of bacteria from stage-I plants to stage-II; positive relation between the average size of bacteria in 

stage-II plants and transition rate of bacterial units from stage -I to stage-II plants; the variance of bacterial units 

in stage-I plants is negatively related and the variance of bacterial units in stage-I plants is positively related 

with the transition rate of bacteria from stage-I plants to stage-II; Further, there is a positive and decreasing 

correlation between the sizes of the bacterial units in  stage-I and stage-II plants influenced with the transition 

rate of bacteria from stage-I plants to stage-II.  

 

3.4. Observations with changing values of immigrant bacterial growth rate to stage-II plants: 

It is observed that m10 and m01 are invariant functions of 2; m20 and m02 are invariant and decreasing functions 

of 2; m11 is positive and increasing function of 2. Hence it may conclude that the growth of bacteria through 

immigration to stage-II have no impact on the average sizes in each stage; the variance of stage-I has no impact 

with immigrated growth of bacteria to stage-II; the variance of stage-II has decreasing pattern with immigrated 

growth of bacteria; further there  is a positive and increasing correlations between the sizes of bacteria in stage -I 

and stage-II plants, influenced by the arrivals through immigrations of bacteria from outside the plants group.  

 

3.5. Observations with changing values of internal growth of bacteria in stage-II plants:  

It is observed that m10 and m01 are invariant and increasing functions respectively of 2; m20 and m02 are 

invariant and increasing functions respectively  of 2; m11 is positive and increasing function of 2; Hence it may 

conclude that there is no impact of the internal growth of bacteria in stage-II plants on average size of bacterial 

units in stage-I plants and it has positive relation with the average size of bacteria in stage-II plants; the variance 

of bacterial units in stage-I plants has no impact of the internal growth of bacteria in stage-II plants; the variance 

of bacterial units in stage-II plants is positively related with the internal growth rate of bacteria in stage-II 

plants; Further, there is a positive and increasing correlation between the sizes of the bacterial units in  stage-I 

and stage-II plants influenced with the internal growth rate of plants in stage-II.  

 

3.6. Observations with changing values of emigrant bacterial growth rate to stage-I plants: 

It is observed that m10 and m01 are decreasing functions of 1; m20 and m02 are decreasing and increasing  

functions respectively of 1; m11 is positive and decreasing function of 1; Hence it may conclude that the loss of 

bacteria through emigrations from stage-I plants have negative relation with the average sizes of bacteria in each 

stage; the variance of bacterial units in stage-I plants is negatively related with the loss of bacteria in stage-I 
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plants;  the variance of bacterial units in stage-II plants is positively related with the loss of bacteria in stage-I 

plants; further there  is a positive and increasing correlations between the sizes of bacteria in stage -I and stage-

II, influenced by the loss of bacteria from stage-I plants.   

 

3.7. Observations with changing values of bacterial loss (death) rate in stage-I plants: 

It is observed that m10 and m01 are decreasing functions of 1; m20 and m02 are decreasing and increasing  

functions respectively of 1; m11 is positive and decreasing function of 1; Hence it may conclude that the loss of 

bacteria due to death in stage-I plants have negative relation with the average sizes of bacteria in each stage; the 

variance of bacterial units in stage-I plants is negatively related with the loss (death) of bacteria in stage-I plants;  

the variance of bacterial units in stage-II plants is positively related with the loss (death) of bacteria in stage-I 

plants; further there  is a positive and decreasing correlations between the sizes of bacteria in stage -I and stage-

II plants, influenced by the loss (death) of bacteria from stage-I plants.   

 

3.8. Observations with changing values of emigrant bacterial growth rate to stage-II plants: 

It is observed that m10 and m01 are invariant and decreasing functions respectively of 2; m20 and m02 are 

invariant and decreasing functions respectively of 2; m11 is positive and decreasing function of 2; Hence it may 

conclude that the loss of bacteria through emigrations from stage-II plants has no impact on the average size of 

bacteria in stage-I plants; the loss of bacteria through emigrations from stage-II plants has negative relation with 

the average size of bacteria in stage-II plants; the variance of bacterial units in stage-I plants is not influenced by 

the loss of bacteria in stage-II plants;  the variance of bacterial units in stage-II plants is negatively related with 

the loss of bacteria in stage-II plants; further there  is a positive and decreasing correlations between the sizes of 

bacteria in stage -I and stage-II, influenced by the loss of bacteria from stage-II plants.   

 

3.9. Observations with changing values of bacterial loss (death) rate in stage-II plants: 

It is observed that m10 and m01 are invariant and decreasing functions respectively of 2; m20 and m02 are 

invariant and decreasing functions respectively of 2; m11 is positive and decreasing function of 2; Hence it may 

conclude that the loss of bacteria due to death in stage-II plants has no impact on the average size of bacteria in 

stage-I; the loss of bacteria due to death in stage-II plants have negative relation with the average size of bacteria 

in stage-II; the variance of bacterial units in stage-I plants is not influenced by the loss (death) of bacteria in 

stage-I plants;  the variance of bacterial units in stage-II plants is negatively related with the loss (death) of 

bacteria in stage-II plants; further there  is a positive and decreasing correlations between the sizes of bacteria in 

stage -I and stage-II, influenced by the loss (death) of bacteria from stage-II plants.  

 

3.10. Observations with changing values of initial number of bacterial units in stage-I plants: 
It is observed that m10 and m01 are increasing functions of N0; m20 and m02 are increasing function of N0; m11 is 

positive and increasing function of N0.  Hence it may conclude that there is a positive relation between the initial 

number of units of bacteria in stage-I and average size of bacterial units in each stage; the variances of bacterial 

units in both stage plants are positively related with the initial number of units of bacteria in stage-I plants; 

Further, there is a positive and increasing correlation between the sizes of the bacterial units in  stage-I and 

stage-II plants influenced with the initial number of units of bacteria in stage-I.  

 

3.11. Observations with changing values of initial number of bacterial units in stage-II plants: 
It is observed that m10 and m01 are invariant and increasing functions respectively of M0; m20 and m02 are 

invariant functions of M0; m11 is invariant function of M0. Hence it may conclude that there is no impact of 

initial number of bacteria in stage-II on average size of bacterial units in stage-I; positive relation between the 

initial number of units of bacteria in stage-II and average size of bacterial units in stage-II; the variances of 

bacterial units in both stage plants are not influenced by the initial number of units of bacteria in stage-II plants; 

Further, there is a no correlation between the sizes of the bacterial units in  stage-I and stage-II plants influenced 

with the initial number of units of bacteria in stage-I.  

 

3.12. Observations with changing values of time period: 
It is observed that m10 and m01 are increasing functions of time t; m20 and m02 are increasing functions of time t; 

m11 is positive and increasing functions of time t. Hence it may conclude that there is a positive relation between 

average size of bacterial units in each stage and the time; the variances of bacterial units in both stage plants are 

positively related with the time. Further, there is a positive and increasing correlation between the sizes of the 

bacterial units in stage-I and stage-II plants influenced by the time.  
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