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Abstract: in this paper we present several kinds of methods that allow us to compute the exponential matrix

e” exactly. These methods include calculating eigenvalues and Laplace transforms are well known, and are
mentioned here for completeness. Other method, not well known is mentioned in the literature, that don't
including the calculation of eigenvectors, and which provide general formulas applicable to any matrix.
Keywords: Exponential matrix, functions of matrix, Lagrange-Sylvester interpolation, Putzer Spectral
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I. Introduction

The exponential matrix is a very useful tool on solving linear systems of first order. It provides a
formula for closed solutions, with the help of this can be analyzed controllability and observability of a linear
system [1]. There are several methods for calculating the matrix exponential, neither computationally efficient
[7,8,9,10]. However, from a theoretical point of view it is important to know properties of this matrix function.
Formulas involving the calculation of generalized Laplace transform and eigenvectors have been used in a large
amount of text books, and for this reason, in this work is to provide alternative methods, not well known,
friendly didactic. There are other methods [4] of at s interesting but not mentioned in the list of cases because of
its practicality in implementation. Eight cases or develop methods to calculate cases because of its practicality
in implementation. Eight cases or develop methods to calculate the matrix exponential. Provide examples of
how to apply the lesser-known methods in specific cases, and for the most known cases the respective
bibliography cited.

1. Definitions And Results
The exponential ofan n x n complex matrix A denoted byetA defined by

£ k 2 n-1
At At At
¢(t):eAt: (At) :I+At+( )+ ...... +L ..........
o k! 21 (n —1)!
To set the convergence of this series, we define firstly the frobenius normof a matrix of size m x n as follow

o A
Jal, - (z 5 | ]

i=1 j=1

If A(;, j) denotes the j-th column of A,and A(i, :) theith row, itis easy to see that is satisfy

bl =[S e ol | =[S kel

We will use this standard for convenience, because in a finite dimension vector space all norms are equivalent.
An important property is to know how to use narrows the Frobenius norm of a matrix product. Given the

and B """ then the product of themC, = AB , with entries ij = A(i,)B(j,) . IfA had

%

mx p

matrices A

complex entries, we obtain conjugate C. applied to row A(i, :) . Recall the Cauchy-Schwarz inequality

1j
e.|< Gl feciolf
then we have :
2
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Applying this inequality to a square matrix Ais easy to deduce the next form:
|2

Formally we must examine the convergence of the following limit:

] < ||A||"F , for all n =1,2,3,....

It is sufficient to observe that satisfies:

sAl oy 2, ‘v I Al

o KUl ko k! i, k!

and thus it demonstrated that e already is well defined for any square matrix with constant entry. It is useful
to remember how the matrix exponential behaves under derivation:

d ([~ t“A"
m:—[z ]

o k!

n Ak

d tA  t2A? PA tfAt t°A°
=—| 1+ —+ + + + F o e
dt 1! 2! 3! 41 5!
2tA? 3t°A° kt“tAK
= A+ + F o + F o
2! 3! k!
tA tPA’
=All +—+ + o
11 21
= Ae” = e" A

Using induction method and covenant condition ¢'(t) = ¢ (t) follows the formula:

k
tA

e" =A'e" =e"A" kez (2.1)

k

6 (1) =
dt

Note that the formula for the first derivative implies that the function x(t) = e” x, is solution of initial value
problem of the following first order system:

x'(t) = Ax, x(0) = x,.

Two results known of linear algebra that we used below are the following theorems.

Theorem (2.1) Schur Triangularization Theorem.

For any square matrix A"*" , there is an unitary matrix U suchthat A = UTU " is upper triangular.

In addition, the entries in a diagonal matrix T are the eigenvalues of A .
Theorem (2.2 )(Cayley Hamilton theorem)

Let A asquare matrixand A(A) = |A - /1|| its characteristic polynomial then A (A) = 0.

Now we will discuss several methods by details to calculate or compute and find the matrix
exponential.

II. Diagonalizable Matrix

Given a diagonal matrix nxn D =diag (4,,4, s 4,) It is to say that
D" = diag (1), Ay e o A%)istrueforall k € Z " then we have
Y k o tk © tk
tD k - k k
e =) —D =diag | Y — A, s > —4
oo K! koo K! i-o K!
= diag (eh, ...... , e’ )
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It is also a diagonal matrix. Now, in the case that A is a matrix diagonalizable it is known that there exists an
invertible matrix P formed by the eigenvectors of A and a diagonal matrix D formed by the distinct

. Now it is easy to verify the identity A = pD “pP ' for all

-1

eigenvalues of A such that A = PDP
k e Z . Then we have:

o tk @ tk © tk
" =y —A" =y —(PD‘P)=P Y —D"|P"

o k! o k! o k!

- Pe tD p -1

Accordingly, it is trivial to find the exponential matrix of a diagonalizable matrix, provided that previously we
find all the eigenvalues of A with corresponding eigenvectors. This case is well known.

IV. Not Diagonalizable Matrix
Suppose A is not diagonalizable matrix which it is not possible to find n linearly independent

eigenvectors of the matrix A , In this case can use the Jordan form of A . Suppose j is the Jordan form of A ,
with p the transition matrix. Then e” = Pe P " Where

j=diag (j,4,, J,4, 0 J,4,) =diag (j,4, @ j,4, ® ... ® j,1)

Then

eJ=(ej1;"1€r>eM?® ...... @e’”“)

Thus, the problem is to find the matrix exponential of a Jordan block where the Jordan block has the form
J,(A)=A4, + N, eM , andin general N “ as ones on the k —th  upper diagonal and is the null

matrix if k > n the dimension of the matrix. By using the above expression we have

I, (1) “1 1 K o1 S (kK K—ing i
D I SL D SV STITELESD S 3l B CHRLY
k! — K J

k=0 k! s j=0
This can be written
J ., 2 N n-1
e’ =e I+ N + —+ ....... +
2! (n =1)!
Finally, we get the exponential matrix as fo llow:
e’ =pe'pP™
Then,
e” = Pdiag (e”l, ........ , e””)P’l

This case is also well known. One way to demonstrate this formula is to consider the system of first order
x" = Jx with initial condition x(0) = x_ . On the one hand, we know that the solution of this system is given

J

byx(t) = e’ x_ . Furthermore, this system is easy to solve, starting last equation, which is decoupled, then

o

every linear first-order equation is solved one by one, via the method of integrating factor.

V. Triangular Matrix:

Let S is an upper triangular matrix (lower triangular for a similar development is done) and write it as the sum
of a diagonal matrix with a nilpotent matrix:
S=D+N
Recall that a matrix N is called a nilpotent if there is a positive integer r such that N " = 0 . The smallest
positive integer, for which this equality holds, is called the index of nilpotent of ownership matrix. Assuming
the known property on exponential matrices see [1]
e® —e"e®if AB = BA,

Now, we can use the above formula

el — ot(P+N) _ qtoen  to calculate:
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tN

We know how to calculate the matrix exponential of a diagonal matrix, so we discuss how to get e
Sufficient to note that when N nilpotent, the series of this matrix becomes finite, since the number of a

quantity to be added to another is bounded by index of nilpotent of N . This at the same time is limited by the
degree of its minimal polynomial (remember that all nilpotent matrix has all zero) eigenvalues. We can

generalize this method to any parent. To do this, simply apply the theorem of Schur triangulation, A = Usu '
,Where U is aunitary matrixand S is upper triangular. These yields:
tsS -1

e’ =uUe U
and here we know how to proceed.

VI. Putzer’s Spectral Formula:

In [5], Putzer describes two methods to calculate e .These are based on the fact that e* is a polynomial in

A whose coefficients t are scalar functions that can be found recursively by solving a simple system of linear
differential equations of the first order. We show only the second method, because it is easier to understand and
implement.

Theorem (6.1)

Given a matrix A of size nx n, suppose we know all its eigenvalues A , 4, ..., A, , hot necessarily

distinct, but listed in a specific arbitrary order. Then it holds

e” = (P, + 1, (1P, + e e +r (P,

where
k

P, = | where | identity mstrix , Pe =TT (A-% 1) k=12,.n-1
j=1

and r (t), r, (e ey r, (t) are solutions of the differential system

r,=A,rn r,(0)=1

r, =A,r, +r, r,(0)=0

r,o=A,r +r. . r.(0)=0

Proof:

put

n-1

® )= 1., (0P,

k=0
and define r (t) = 0.Given r, 6 =A4,.,r., + r,,compute

n-1 n-1

D(t)-4,®() = (OP, = A1 (P,

n-1 n-1 n-2

= (z AP+ Z rP, \] - (z AP+ 4, Pn—lw
k k=0 k=0 ) k k=0 }

since the first term we can extract A r P__, and the second term can be described as

n-1 n-1

n-1
z rP.= z rP.= z NP
k=0

k=0 k=1

the right side of equality It simplifies to

n-2
Z [(}”k+1 - ﬂ“n)Pk + Pk+1]rk+1'
k=0
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Now, as is true thatP,, = (A -2
Furthermore it has

n-2 n-1

Z (A=A, 1)P,r =Z (A-A )Pr, , —(A=-A 1P 1,
k=0 k=0

1) P, , the expression in brackets is reduced to (A -4 1)P,

k+1 k

| S —

P

=(A-4,1)® -Pr, .
But the Cayley-Hamilton theorem P, = 0.So, we obtained that @ -4 ® = (A - 2, 1) ® it implies that

® = A® . Finally,as ® (0) = r,(0)P, = I ,itis follow @ (t) = e” by uniqueness of solutions.m

As an application of this method, we find formulas for the exponential matrix of a matrix (2 x 2) in the form

A

e =rI+r,(O(A-A41),
with eigenvalues {4, 1, }.According to the nature of the eigenvalues we have three cases to study.
a)- Real and distinct eigenvalues: We must solve the system of equations

r,=A4,n r,(0)=1
r, =A4,r, +r r,(0)=20
At

Solving the first equation, which is always decoupled, we get r (t) = e
of integrating factor we obtain

. For the second, using the method

1

(A +2,)t 2t

1
r,(t)y= ——e —_—
/7'1 - 12 11 - /12
Consequently, we achieved the following formula

et

— (™ -1 A-a).
A -2

e

tA At
e =e'l+

1 "2
b) - Real and equal eigenvalues: In this case, to solve the system of equations we get r, (t) = e at
and r, (t) = te *". So, we get the formula
tA

e” =e"l +te™(A-2,1).

C)-Complex eigenvalues: In the case A e C %, with eigenvalues A, A,, no problem in using the same

2 1
formula as in the case of real and distinct eigenvalues. But if A has real entries and its eigenvalues would be
complex conjugates, let say 4, =a+ib, A, = a—ib ,with b= 0. In this case, to solve the system of

equations we get

gt

r(t) =e™ =e"[cos(bt) + isin( bt)],
At At .
et —e”? sin( bt

f () - e (bt)
A, -2, b

where x(t) = e” x_is a solution for system x = Ax, with initial condition x(0) = x_, x,
real entries, obviously we seek a real solution. So, the real part of the Spectral formula is to be considered
real solution, that is

x(1) = R{x(0)} = (R{r, (O + R{r, (1) (A=, 1)])x, =™ x,

and therefore it concludes that

sin( bt
e® =e® cos(bt)l +e™ ¥(A—al ).
b

and A having

Specific cases of Apostle:

In [2], Apostle shows how to obtain explicit formulas for the matrix exponential e in the following
cases:
a)- alleigenvalues of A are equal,
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b)- all eigenvalues of A are distinct,
c)- A has only two distinct eigenvalues, with one of multiplicity algebraic one.

While these cases do not cover all possible alternatives for all of eigenvalues of a matrix, these
formulas will show by simplicity and because they help us to find all possible formulas for exponential matrices
of less than or equal to size3 x 3. It should be noted that the putzer's spectral formula also help us to deduce
these formulas, but the way obtained by Apostolis more forceful.

Theorem (7.1):

If A isamatrix nx n with all its eigenvalues equalto A4 then we have
n-1 .k
tA

At k
e =e —(A - A1) .
gok!

Proof:
As the matrices Atl and t(A - A1) commute, we write

k
A Atl _t(A-Al)

e®e’''e —(e“I)Z\:'[k—(A—/ll)k .
ko K!

then the Cayley-Hamilton theorem implies (A — 41)* = 0 for k > n, and so the theorem is proven.
Theorem (7.2):
If A isamatrix nx nwith n distinct eigenvalues A,,4,,--- - . A, , thenwe have
n-1
e” =3 e'L, (A),

k=0

where L, (A) are the Lagrange interpolation coefficients given by

"OA- ﬂ,j |
Lk(A)=H— for k =1,2,3,....... ,n.
AT A
Proof:
Although this theorem is a special case of the interpolation formula of Lagrange-Sylvester which gives us

directs proof. We define the following matrix function of scalar variable as follow

F()y=Y e'™L,(A).

k=1
To prove F(t) =e” will show that F satisfies the differential equation F'(t) = AF (t) with initial
condition F (0) = I. In fact, we observed that satisfy

AF (1) - F'(t) =Y e ™ (A-2, 1)L, (A).

k=1
By the Cay ley-Hamilton theorem we have (A — A1)“L . (A) = 0 foreach k ,and so Fsatisfies
the differential equation. In addition to

F(O)=Y L (A)=1,
k=1
Finally, follow F (t) = e uniqueness of solutions.
Theorem (7.3):
Let A be a matrix nxn,(n >3) with two eigenvalues different 2 and x where 4 has n-1

mu ltiplicity and , has multiplicity1. Then it holds

n-2 .k ut at n-2 .k

¢ ¢ “ A)K]}(A ANy
”’1kzok!ﬂ J '

tA At t k
= —(A - 21 -
©e kz:ok!( ) Ht(u—z)“ (= 4)

Proof:
In scalar version, for fixed t,the expansion e ™ of Taylor series is centered on At is
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X i e“ ( ﬂdt)k
e = —(x - .
k=0 Kl
Now we evaluated tA and conveniently we partition this series
X - e/“ k At i tk k
e =) —(tA-Atl) =e" > —(A-1I)
o k! k—o K!
n-2 tk © tk
At k At k
=€ —(A - 11 + e —(A - 11
> ) > )
k=0 k=n-1
n-2 tk o n-1+i
At k At n-1+i
=e —(A-a)" +e —(A - Al) .
kzzo k! E(n-1+i)!

Now we rewrite the second termof the last expression. As observe A — ul = A— Al —(u - A1),

using the Cayley-Hamilton theorem, we have equality

0=(A-21)""(A-pul)=(A-21)" = (u-2)(A-21)"",

thatis (A - A1)" = (u - 2)( A—A1)""" .By induction, it follows
(A-21)"" = (u-2)" (A2,

and so too
(A= 21) "™ = (A=-21)"(A-21) = (A-A1)"(A -1
-1

1 n+i n-1

= A-2)"" =(u=-2)A-aD)"".
-1

By replacing this relationship in the second sum we obtain
4% e (n—-2 )i];( A-rl)'

—  (p- _ _
[mo (n=1+i)! J

1 k

(=t ) .
= —(p=A) A=)
(bn=2) [E_lkl ]

- {€“*) Ef“( x)@(A Ay
=7 - —(u - - ,
(n=2)"" o k! J

which completes the proof.
As we conclude the application of the matrix exponential formulas of any matrix A for size 3 x 3

according to the multip licity of its eigenvalues:
a-Foreigenvalue A with algebraic multiplicity three have

e :e“{[l +t(A -2l )+£t2(A—xI )2}.
2

b-For different eigenvalues &, ,%, ., ., have

i (A= 0)A=2 1) (A=R0) (A= 1), (A=a0)(A=1,l)

e +e +e .
(7“1_}‘2)(7“1_}‘3) (}\'2_}\'1)(7\‘2_}\'3) (7”3_}‘1)(}‘3_}‘2)

c- For different eigenvalues &, ,A, with A, has algebraic multiplicity two have

tA

Ayt At Ayt

e te
e =e" I+ t(A-d )+ ————(A-2,1) - ———(A-2,1)".
(7\'2_7‘1) 7‘2_7‘1

Inter polation Lagrange-Sylwester and algorithm Gantmacher:
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The next method, illustrated in Gantmacher [3], not only helps us to calculate the matrix exponential,
but also to evaluation of any analytic matrix function. First we mention the case where the eigenvalues of a
matrix are different, then the general case when there are multip licities.
Theorem (8.1):

If f(A) is apolynomial matrix A __ and if the eigenvalues of A are different, then f ( A) it can be
decomposed as

f(A)=3 f(r,)2(R,),

i=1

here {% }i:1‘2,.,.,., , are the eigenvalues of A and z( ) is a matrix n x n is given by
200 A
Proof: -

By the Cayley-Hamilton f ( A )can be reduced a polynomial of degreen — 1, let say

n-1 n-2

f(A)=c A +c A + o ~t+cl.

n-1 n-2

This expression polynomial can be factored via interpolation of Lagrange which

(A=Y pJ](A-2,1).

i=1 k=1

k=i

To calculate p,, we multiply it from the right both side of equality by the j -th eigenvector v, corresponding

to A ;. This procedure gives us

fFCAN, => P [T (A-2 ), =p ] (Av; -2 v)=p J] ;-2 )v,,
i=1 k=1 k=1 k=1

where the second equality is obtained by considering (A — 2,1 )v, = 0.

when the eigenvalues of A are different, we have f( A)v, = f(i,)v,, and equality is easily deduced by

comparison
f(x;)

H (A -2)

k=1
Therefore, all together it gives us
" A=

H(A)=Y f()]]

i=1 k:l}‘ika

p, =

When the eigenvalues are not distinct, algorithm of Gantmacher, see [3], can be used to expand the analytical
function f(A) as

mo ™)

(-3 3 ——2,

j=1 k=1 (k - J)I
where m is the number of distinct eigenvalues,, m ; is the multiplicity of the j-th eigenvalue.

f (&) is the derivative with respect to 2 evaluated in the j-th eigenvalue and Z , are the

constituent matrices that are once found fixed for any analytic function f( A). To illustrate the use of this
formula with an example .
Example 8.2: Let us find e” for the matrix
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()

3 2],

A, = 2 with multiplicity m, =1and 2, = 4 with multiplicity m, = 2 . Then we have
2 Mg (KD

f(A)_zz—ij
j=1 k=1 kf])l
L0 L0
:z—lzlk+z . sz
w1 (k=1)! 1 (k=1)
= f(x,)Z,+ T(X,)Z, +T'(A,)Z,

Recall that this expansion is valid for any analytic function. In our situation, we are interested in the matrix
version of f (1) = e'" . Here are the coefficients to be considered

f(r,)=¢e", f(n,)=e", fr(r,)=e"
To find the constituent matrices using known polynomial functions. As the matrix is of size 3 x 3, the Cayley -
Hamilton theorem states that e” must be have a polynomial function of 1, A,and A? then will use the
following criteria.
o |If f(A)=1 the scalar version isf(r)=1. The coefficients are
f(r,)=1 f(r,)=1, f'(A,)=0.Weobtain the equation | = Z , + Z,
o |If f(A)=A, the scalar version isf(r)=xr. The coefficients are
f(r,)=2, f(r,)=4, f'(,A,)=1. WeobtaintheequationA =272, +4Z, +7Z,,
o Iff(A)= A%, the scalar version is f(n)=2". The coefficients are
f(r,)=4, f(r,)=16, f'(1,)=8.WeobtaintheequationA® =4z +162, +8Z,, .

Consequently, we must solve the formal matrix system

(2 oYz (]

|2 4 101z, |=

el

Then the solution is

(4I—2A+%A2)
(2a) [ - Y ™
|Z, |=—|-12 8 -1][A |=|-31+2A-=A"
(z,) ‘Ll 12 2 )lar) | .
22 (A ) 1

L4I3A+;A J

Now, Put it all together we see that
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z

9 9 -5 -9 3

(00 ) (g (21

|4 4 | | 4 4 | |2 2 |

-7 1 7 3 -5 -1
_etl I 2 glienl L 2 gl 22 22y

| 4 4 | | 4 4 | | 2 2 |

|l 9 9 | -9 —9 | | 7 7 \

| — — 0 - = 4

I R S N U

1 1
( Ze?(e’(6t-5)+9) —e (e®(14t-9)+9) e“(3—4t)—3921w
| 4 4 |
‘ 1 2t 2t 1 4t 2t 4t 2t|
=, ——e (e (10t-7)+7) —(e (3-2t)+e") e (3-4t)-3e
| 4 4 |
‘ l 2t 2t 1 2t 2t 4t 2t |
L—e (e" (14t-9)+9) —e (e" (14t-9)+9) 4t + e J
4 4

It is the desired exponential matrix. It should be emphasizing that found once the constituent matrices; we can
find easily cos( A),sin( A),........ . matrix functions of analytic functions.

Use of fundamental solutions of a linear differential equation with constant coefficients:

The following method avoids wonder if the matrix is diagonalizable, and its prerequisites just know
Cayley Hamilton theorem and know how to solve linear homogeneous scalar differential equations of order n
with constant coefficients, like

(n) n-1 n-2 ’ _0
X +C, X +C, X + e +C,x ' +¢c X =

Note that the method is not easy to implement if the roots of the polynomial equation (or characteristic
equation) associated with the above equation are uninteresting to get algebraically. The following theorems help
us to understand how this method works. The first theorem guarantees the existence and uniqueness of an
initial value problem for a matrix differential equation, while the second provides a method for constructing the
solutions of matrix exponential based on initial value problems of scalar differential equations.

Theorem9.1:
Let A bea n x n constant matrix with characteristic polynomial
p(r)=det( Al —A)=2"+c A"+ ... +C,A+

Then @ (t) = e" is the only solution of the matrix differential equation of order n given by

@M yc, " 0" 4 +c,®d'+c @ =0 (9.1)
with initial condition

®0)=1 ,d'0)=A, ®"(0)=A", .., ®""'0)=A"" 9.2)
Proof:

First we prove the uniqueness. Suppose @ ,(t) and @ ,(t) are two solutions for (9.1) satisfying the initial
conditions given in (9.2). Define®(t)= @ (t)- @ ,(t). Because of linearity, this function satisfies (9.1)
but with initial condition

®°(0)y=0'0)= ®"(0)=,.., =0 Y @©0)=0

This means that each entry @ (t) satisfies the following initial value problemto be

() +e, XY e, X E(E) + e, +e,x'(t)+c, x(t)=0

-1 -2

x(0)=x(0)=x"(0)=..=x"" =0

where it is obvious that the only solution is x(t = 0) forall t, the trivial. Thus we have ® (t) = 0 forall t,
and obtain uniqueness. Now we prove the existence confirming that @ (t) = e" satisfies the initial value
problem (9.1) - (9.2). Either the constant matrix with characteristic polynomial p( A ) disclosed in hypothesis.

Recall the formula for k -th derivative of the exponential (see Equation (2.1))
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" (t)y=A"%", k=021,23..
We replaced on the right side of Equation (9.1) to obtain

(A" +c, A" 4c, ,A" 4. +c,Atc, l)e” = p(A)”" =0

supported by the Cayley-Hamilton theorem. Finally, the formula of k -th derivative is deduced
®0)y=1 ,0'0)=A, ®"(0)=A’ .., o"'0)=A""

and @ ( t ) satisfies the initial conditions. This completes the proof.

Theorem9.2:

Let A bea nx n constant matrix with characteristic polynomial
p(A)=det( Al - A)=2"+¢c A" + ... +C,A+cC,

Then we have

e” =, (t) + X, (t)A+ X, (t)A" + e X (DA™

where x, (t),1< k < n ,are the solutions of scalar differential equations n given by

x Mo x MY e +c,x=0 (9.3)
and satisfying the initial conditions
X, (0)=1, x,(0)=20,"----- X, (0)=0
X[(0)=0, X,(0)=1, - X1(0)=0
: (9.4)

xl(nfl)(O): e e, , xr(]"fl) =1
Proof:
Define @ (t) = x,(t)l + X,(t)A + x,(t)A” + .. +x,(t)A"™", where x,(t)solutions of initial
value problems mentioned in the theorem. First we show that @ (t) satisfies equation (9.1). Indeed, we have
@ "(t)y+c, @ "(t)+c, ,d" () H +c,0'(t)+c d(t)

(n) (n-1) (1)
=(x, +c, X + o +c, X, +c x )+
w0, e, xS e, e x, )A+
+(x3(n)+cn_1 3(”71) ....... +c1x3( )+cox3 YAS +
e s i i e s seeeeees +
w(x, e, x T rex P re x JAT!
=01 +0A +0A % + e . +oA"?

Now we show that satisfies Initial condition which given in (9.2):

®(0)= X, (0)L+ X,(0)A + oo e +x (0)A" =1
D'(0)= X/ (0) + X, (0)A + o ooe +x/(0)A" = A

" 0) = x,"0) +x, T 0)A +x (o)A = A
Then, of uniqueness, is satisfied

e” = d(t)= x, (1) + x,(t)A+ X, (t)A® + e L+ X, ()A"T

forall t.Letus give this example to illustrate this method.

Example 9.3: We want to find the matrix exponential e "
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(1 —12\

A=| 1 3 2],

k—l -1 GJ

For this we calculate that characteristic polynomial of A
p(h)=det( Al —A)=2" 100" + 321 -32.

We assume, that the Theorem (9.2) is satisfied
tA

e” = x, ()l + x,(t)A + x,(t)A” (9.5)

The characteristic polynomial produces the following scalar differential equation with constant coefficients
x"-10x"+32x'-32x=0

then the general solution is found based on the characteristic equation
m®-10m’+32m-32=(m-2)(m-4)>=0

thus, the general solution takes the form

x(t)=oae” +a,e’ +a,te”
To find x, (t) we use the initial conditions x(0)=1,x'(0)=0,x"(0) = 0.by using this information we
obtain

2t 4t 4t
X,(t)=4e” —3e + 4te .

To find x,(t) we use the initial conditions x(0) = 0,x'(0)=1,x"(0) = 0.by using this information we
obtain

t

x,(t)=-2e"" +2e" —3te".

To find x,(t) we use the initial conditions x(0) = 0,x'(0) = 0,x"(0) = 1.by using this information we
obtain

t t t

1 4 4
- —e  +—te .

4 2
Finally, we replace these functions in formula (9.5) and got

1 2
X,(t)=—e
4

1
e = e @-3e M +4te™)l +e’ (2 +2e —3te)A+ —e(L-e + 2te?)A?
4
( 1 2t 2t 1 2t 2t 4t ZtW
—e (e (6t-5)+9) —e " (e"(14t-9)+9) e (3-4t)-3e
| 4 4 |
| 1 5 2t 1 4t 2t 4t 21|
= ——e (e (10t-7)+7) —(e (3-2t)+e" ) e (3-4t)-3e
| 4 4 |
| 1 2t 2t 1 2t 2t 4t 2t |
L—e (e" (14t-9)+9) —e (e"(14t-9)+9) 4te  + e J
4 4

It can be verified that the matrix A is not diagonalizable, but this is not relevant for calculations.
We can avoid some calculations in the above example? The following theoremsets the stage.
Theorem (9.4):

Let A bea n x n constant matrix with characteristic polynomial

p(r)=det( Al —A)=2"+c A"+ ... +C,h+cC,
then we get the solution

e” = x () + X, (t)A + X, (t)A" + e a+ X (LA™
where
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()
| X, (1) ]

| | o, (t)]

g ol (0.6
B I’ '
B | } }

' t

anmJ L)

where B is the evaluation here at t = 0, the matrix

X, (t) , (n-1)
€07 [0.(t) oi(t) o, (1) )
| Xz(t) | ‘ , (n-1) |
| | ¢ (1) @ (L) ¢, (1)

x,(t) N |
| -8, ‘ : .
| : | B |
. | |

' , (n-1)

t t t

LM“J Lo, (D) o) 0, (D))
provided that S = {¢,(t),¢,(t).... o, (t)}is a fundamental set of solutions for the homogeneous linear
differential equation

x e, x M e +c,x=0
Proof:

Note that

p(r)=2"+c¢c, A" + +cA+c, =0
is the characteristic equation of the differential equation

x e xY ~+Cx' +c x=0 (9.7)
Due to Theorem (9.2) we have

e” = x, () + X, (t)A + x,(t)A" + e w+ X (DA™
where x, (t) is solution of (9.7) with initial conditions (9.4) fork =1,2.3,......... ,n.

we note the set {xl(t ) X, (t ) X (t )} It is also a fundamental set of solutions of (9.3), since the Wronskian
W (x,(t), x,(t),... x, (t)) is set takes the value 1 at t = 0. Furthermore, when using the known theorem of
uniqueness of solutions to the initial value problem (9.3) {(9.4), we have

¢, (1) =0, (0)x,(1)+ 0, (0)x,(1)+ oL (0)x,(t)+ ..+, (0)x,(t)

foreach k =1,2,3,......... ,n, which we deduce

((pl(t))
I(pz(t)l
|E
|
|

| _
=
|
\@n(t))'

X, ()|

B |

1)
\
\
°|
| |

x,(0)

As B isinvertible it is equal (9.6), which completes the proof.

Consider the matrix of Example (9.3) to appreciate the simplification to the calculations for the tabulation of
e” . Recall that the characteristic polynomial of A is

p(h)=det( Al —A)=2°-102" +321-32.

which we associate the linear differential equation

x"-10x"+32x'-32x=0
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Such as characteristic equationis (A — 2)(A — 4)° = 0, we obtain

{eZI ,e“ te 4{}

as a fundamental set of solutions. With these we formthe matrix

(eﬂ 262[ 4eZt w

B . =]e 4e™ 16 e [
Lte“ e (1+ 4t) 8e“(1+2t))|

where it is calcu lated

(1 2 4} (16 -12 16)

1
B,=|1 4 16 | with inverse B, =—|-8 8 -12 .
4

LOl 8J Ll -1 ZJ

thenwe get e™ = x,(t)1 + x,(t)A + x,(t)A’, by Theorem 9.4 we have to be satisfied

) ()

| x,(t)| =B, le* |=

(
ol e o

4e’ e’ + 4te’ )

—3te’

+ —te
2

By replacing these functions in the formula of e , the exponential matrix of Example 9.3 is recovered.

Laplace Transform: the Laplace transform method is usual use in engineering to solve initial value problems
of scalar linear equations of order n with constant coefficients. This method is generalized to solve the problem

ofinitial value x = Ax ,x0 = x . Applying Laplace transform we obtain
sX (s)—x(0)= AX (s) implies that (sl — A)X(s)= x(0),
suchthatwe get X (s) = (sl — A) 'x(0). Aftertakinginverse Laplace transform we obtain

x(t)y=L (sl = A) " x(0).

Thus, for uniqueness is achieved

e = L7 {(sl - A)]

in applications of engineering, the exponential matrix is called the state transition matrix . For examples and
interesting properties of the exponential matrix, see [1].

VIl.  Conclusion
It illustrated several methods to calculate the exponential matrix of a square matrix. Most of them do
not use the calculation to eigenvalues (generalized) matrix, which has been a standard method of tackling the
problem in several kinds at the level of initiation. While these methods can be applied to any matrix, all of them
are ineffective if dealing with large matrices or inaccurate entries (decimals truncated or numbers accompanied
with some error). This is where it is preferable to use the computer, but as the Work-Van Loan there is no
suitable method to numerical implementation.
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