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 Abstract: in this paper we present several kinds of methods that allow us to compute the exponential matrix

tA
e  exactly. These methods include calculating eigenvalues and Laplace transforms are well known, and are 

mentioned here for completeness. Other method, not well known is mentioned in the literature, that don’t 

including the calculation of eigenvectors, and which provide general formulas applicable to any matrix. 
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I. Introduction 

 The exponential matrix is a very useful tool on solving linear systems of first order. It provides a 

formula for closed solutions, with the help of this can be analyzed controllability and ob servability of a linear 

system [1]. There are several methods for calculating the matrix exponential, neither computationally efficient 

[7,8,9,10]. However, from a theoretical point of view it is important to know properties of this matrix function. 

Formulas involving the calculation of generalized Laplace t ransform and eigenvectors have been used in a large 

amount of text books, and for this reason, in this work is to provide alternative methods, not well known, 

friendly didactic. There are other methods [4] of at s interesting but not mentioned in the list of cases because of 

its practicality in implementation. Eight cases or develop methods to calculate  cases because of its practicality 

in implementation. Eight cases or develop methods to calculate the matrix exponential. Provide examples of 

how to apply the lesser-known methods in specific cases, and for the most known cases the respective 

bibliography cited. 

 

II.  Definitions And Results 

The exponential of an  nn   complex matrix A  denoted by
tA

e defined by  
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To set the convergence of this series, we define firstly the frobenius norm of a matrix of size nm  as follow 
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If ) (:, jA  denotes the j-th column of A, and  :)  ,( iA  the ith row, it is easy to see that is satisfy 
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We will use this standard for convenience, because in a finite dimension vector space all norms are equivalent.  

An important property is to know how to use narrows the Frobenius norm of a matrix product. Given the 

matrices 
nppm

BA


   and  then the product of them ABC
ij
 , with entries :) ,(:) ,( jBiAij  . If A  had 

complex entries, we obtain conjugate  ij
C  applied to row :)  ,( iA . Recall the Cauchy-Schwarz inequality 
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Formally we must examine the convergence of the following limit:  

lim
𝑛→∞
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It is sufficient to observe that satisfies: 
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and thus it demonstrated that  𝑒𝐴  already is well defined for any square matrix with constant entry. It is useful 

to remember how the matrix exponential behaves under derivation:  
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Using induction method and covenant condition  )()( tt    fo llows the formula: 
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Note that the formula for the first derivative implies that the function 
o

tA
xetx )(   is solution of initial value 

problem of the fo llowing first order system: 
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Two results known of linear algebra  that we used below are the fo llowing theorems.              

Theorem (2.1) Schur Triangularization Theorem.  

For any square matrix
nn

A


, there is an unitary matrix  U  such that 
1

 UTUA  is upper triangular. 

 In addition, the entries in a diagonal matrix T are the eigenvalues of A .   

Theorem (2.2 ((Cayley Hamilton theorem) 

  Let A  a square matrix and IA   )(  its characteristic polynomial then .0)(  A  

 

Now we will discuss several methods by details to calculate or compute and find the matrix 

exponential. 

 

III.   Diagonalizable Matrix 

Given a diagonal matrix nn   ),.......,,(
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It is also a diagonal matrix. Now, in the case that A  is a matrix diagonalizab le it is known that there exists an 

invertible matrix  P  formed by the eigenvectors of A and a diagonal matrix D  formed by the distinct 

eigenvalues  of A  such that  
1

 PDPA  . Now it is easy to verify the identity  
1

 PPDA
kk

  for all   


 Zk . Then we have: 
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Accordingly, it is trivial to find the exponential matrix of a d iagonalizable matrix, provided that previously we 

find all the eigenvalues of A with corresponding eigenvectors. This case is well known.  

  

IV. Not Diagonalizable Matrix 

Suppose A  is not diagonalizable matrix which it is not possible to find  n  linearly independent 

eigenvectors of the matrix A , In this case can use the Jordan form of A . Suppose j   is the Jordan form of A , 

with P  the transition matrix. Then  
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Thus, the problem is to find the matrix exponential of a Jordan block where the Jordan block has the form 
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This can be written  
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Finally, we get the exponential matrix as fo llow: 

1
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This case is also well known. One way to demonstrate this formula is to consider the system of first order 

Jxx   with initial condition 
o

xx )0(  . On the one hand, we know that the solution of this system is given 

by
o

Jt
xetx

 
)(   . Furthermore, this system is easy to solve, starting last equation, which is decoupled, then 

every linear first-order equation is solved one by one, via the method of integrating factor.  

 

V.   Triangular Matrix: 

Let S  is an upper triangular matrix (lower triangular fo r a similar development is done) and write it as the sum 

of a diagonal matrix with a n ilpotent matrix: 

NDS   

Recall that a matrix N  is called a nilpotent if there is  a positive integer r such that 0
r

N . The smallest 

positive integer, for which this equality holds, is called the index of n ilpotent of ownership matrix. Assuming 

the known property on exponential matrices see [1] 
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Now, we can use the above formula 
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We know how to calculate the matrix exponential of a d iagonal matrix, so we discuss how to get  
tN

e . 

Sufficient to note that when N nilpotent, the series of this matrix becomes fin ite, since the number of a 

quantity to be added to another is bounded by index of nilpotent of N .  This at the same time is limited by the 

degree of its min imal polynomial (remember that all nilpotent matrix has all zero) eigenvalues. We can 

generalize this method to any parent. To do this, simply apply the theorem of Schur triangulation, 
1

 USUA

, where U  is a unitary matrix and S  is upper triangular. These yields: 

1  
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and here we know how to proceed. 

 

VI.  Putzer’s Spectral Formula: 

In [5], Putzer describes two  methods to calculate 
tA

e  .These are based on the fact that  
tA

e   is a  polynomial in  

A  whose coefficients t  are scalar functions that can be found recursively by solving a simple system of linear 

differential equations of the first order. We show only the second method, because it is easier to understand and 

implement. 

 

Theorem (6.1) 

Given a matrix A  of size nn  , suppose we know all its eigenvalues  
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since the first term we can extract
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the right side of equality  It simplifies to 

  . )(
1

2

0

11 





 
k

n

k

kknk
rPP  



The Exact Methods To Compute The Matrix Exponential 

DOI: 10.9790/5728-12147286                                             www.iosrjournals.org                                    76 | Page 

Now, as is true that
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As an application of this method, we find formulas for the exponential matrix of a matrix   22   in the fo rm 
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Consequently, we achieved the following formula  
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where 
o

tA
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Specific cases of Apostle: 

 In [2], Apostle shows how to obtain explicit formulas for the matrix exponential 
tA

e in the following 

cases: 

a)-  all eigenvalues of A  are equal,   
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b)- all eigenvalues of A  are d istinct , 

 c)- A  has only two distinct eigenvalues, with one of mult iplicity   algebraic one. 

While these cases do not cover all possible alternatives for all of eigenvalues of a matrix, these 

formulas will show by simplicity and because they help us to find all possible formulas for exponential matrices 

of less than or equal to size 33  . It should be noted that the putzer's spectral formula also help us to deduce 

these formulas, but the way obtained by Apostol is more forceful. 

Theorem (7.1): 

If A   is a matrix nn  with all its eigenvalues equal to   then we have 
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then the Cayley-Hamilton theorem implies 0 )( 
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Proof:  

 Although this theorem is a special case of the interpolation formula of Lagrange-Sylvester which gives us 
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tA

etF )(  uniqueness of solutions. 

Theorem (7.3):  

 Let A  be a matrix   3)(n ,  nn   with two eigenvalues different    and    where  has 1n  

multip licity and   has mult iplicity1 . Then it holds  
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Proof:  

In scalar version, for fixed t , the expansion 
x

e of Taylor series is centered on t is 
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Now we evaluated tA  and conveniently we partit ion this series  
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Now we rewrite the second term of the last expression. As observe  ,I)(IAIA    

using the Cayley-Hamilton theorem, we have equality  

 ,)IA)(()IA()IA()IA(0
1nn1n 

   

that is . )IA)(()IA(
1nn 

  By induction, it follows  

                                             ,)IA()()IA(
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By rep lacing this relationship in the second sum we obtain 
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which completes the proof. 

As we conclude the application of the matrix exponential formulas of any   matrix A  for size 3 x 3 

according to the multip licity of its eigenvalues : 

a - For eigenvalue   with algebraic mult iplicity three have 

.)IA(t)IA(tIee
ttA







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b-For different eigenvalues  ,,,
321

 have 
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c- For different eigenvalues
121

  with   ,  has algebraic mult iplicity two have  
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 Interpolation Lagrange-Sylvester and algorithm Gantmacher: 
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The next method, illustrated in Gantmacher [3], not only helps us to calculate the matrix exponential, 

but also to evaluation of any analytic matrix function. First we mention the case where the eigenvalues of a 

matrix are different, then the general case when there are multip licities. 

Theorem (8.1): 

If )A(f  is a polynomial matrix 
nn

A


and if the eigenvalues of A  are d ifferent, then )A(f  it can be 

decomposed as 

, 

1






n

i

ii
)(z)(f)A(f

 

here 
n,.....,,ii 21

  are the eigenvalues of A  and )(z
i

 is  a matrix nn   is given by 
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Proof: 

By the Cayley-Hamilton )A(f can be reduced a polynomial of degree 1n , let say 
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1
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This expression polynomial can be factored via interpolation of Lagrange which 

j . 

1 1

 
 





n

i

n

k

ki

ik

)IA(p)A(f  

To calculate
i

p , we mult iply it from the right both side of equality by the j -th eigenvector 
j

v corresponding 

to 
j

 .This procedure gives us 

 
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where the second equality is obtained by considering . 0
ji

v)IA(  

when the eigenvalues of A are different, we have 
jjj

v)(fv)A(f  , and equality is easily deduced by 

comparison 
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Therefore, all together it gives us 

                   . 
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When the eigenvalues are not distinct, algorithm of  Gantmacher, see [3], can be used to expand the analytical 

function  )A(f  as 

, 

1 1

1

jk

m

j

m

k

j

)k(

Z
)!jk(

)(f
)A(f

j

 
 






  

where m  is the number of distinct eigenvalues , , j
m  is the multiplicity of the j-th eigenvalue. 

)(f
j

)k(
   is the derivative with respect to  evaluated in the j-th eigenvalue and jk

Z  are the 

constituent matrices that are once found  fixed for any analytic function  )A(f . To illustrate the use of this 

formula with an example . 

Example 8.2: Let us find 
tA

e for the matrix  
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   with multip licity 1

1
m and  4

2
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m . Then we have 
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Recall that this expansion is valid for any analytic function. In our situation, we are interested in the matrix 

version of



 t

e)(f . Here are the coefficients to be considered 

              ,          ,
4

2

4

2

2

1

ttt
e)(fe)(fe)(f 

 
To find the constituent matrices using known polynomial functions. As the matrix is of size 3 x 3, the Cayley -

Hamilton theorem states that  
tA

e  must be have a polynomial function of    
2

  and ,   , AAI  then will use the 

following criteria. 

 If I)A(f  ,the scalar version is I)(f  . The coefficients are  

. 0      , 1     ,1
221

 )(f)(f)(f We obtain the equation . 
1211

ZZI   

 If A)A(f  , the scalar version is  )(f . The coefficients are  

. 1      , 4     ,2
221

 )(f)(f)(f  We obtain the equation . Z42
222111

 ZZA  

 If
2

A)A(f  , the scalar version is
2

 )(f . The coefficients are  

. 8      , 16     ,4
221

 )(f)(f)(f  We obtain the equation . Z8164
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2
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Consequently, we must solve the formal matrix system 
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Then the solution is  
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Now, Put it all together we see that 
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It is the desired exponential matrix. It should be emphasizing that found once the constituent matrices; we can 

find easily .,.........  , )Asin()Acos(  matrix functions of analytic functions. 

 

Use of fundamental  solutions of a linear differential equation with constant coefficients:  

The following method avoids wonder if the matrix is diagonalizab le, and its prerequisites just know 

Cayley Hamilton theorem and know how to solve linear homogeneous scalar differential equations of order n  

with constant coefficients, like 

0
1

2

2

1

1









xcxc.......xcxcx

o

n

n

n

n

)n(
 

Note that the method is not easy to implement if the roots of the polynomial equation (or characteristic 

equation) associated with the above equation are uninteresting to get algebraically.  The fo llowing theorems help 

us to understand how this   method works. The first theorem guarantees the existence and uniqueness of an 

initial value problem for a matrix d ifferential equation, while the second provides a method for constructing the 

solutions of matrix exponential based on initial value problems of scalar differential equations. 

 

Theorem 9.1: 

 Let A  be a nn  constant matrix with characteristic polynomial 

o

n

n

n
cc.......c)AIdet()(p 



 1

1

1
 

Then 
tA

e)t(   is the only solution of the matrix differential equation of order n given by 

0
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2

2

1

1
 







 o

n

n

n

n

)n(
cc.......cc                               (9.1) 

with init ial condition  

 (0....., ,0   ,(0 ,   0
1-n1-n20

A)A)(A)I)(
)(

                   (9.2) 

Proof: 

 First we prove the uniqueness. Suppose  )t()t(
21

 and    are two solutions for (9.1) satisfying the initial 

conditions given in (9.2). Define )t()t()t(
21

 -  . Because of linearity, this function satisfies (9.1) 

but with in itial condition 

0(0....., ,0  (0 0
1)-(n0

   ))())(
)(

 

This means that each entry )t(  satisfies the following initial value problem to be  

ox....)(x)(x)(x
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1
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2
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0
 

where it is obvious that the only solution is  )t(x 0  for all t , the trivial. Thus we have 0 )t( for all t , 

and obtain uniqueness. Now we prove the existence confirming that 
tA

e)t(   satisfies the initial value 

problem (9.1) - (9.2). Either the constant matrix with characteristic polynomial )(p   disclosed in hypothesis . 

Recall the fo rmula for k -th derivative of the exponential (see Equation (2.1))  
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We replaced on the right side of Equation (9.1) to obtain 
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supported by the Cayley-Hamilton theorem. Finally, the formula of k -th derivative is deduced 
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and )t( satisfies the initial conditions. This completes the proof. 

Theorem 9.2:  

Let A  be a nn  constant matrix with characteristic polynomial 
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and satisfying the initial conditions 
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solutions of initial 

value problems mentioned in the theorem. First we show that )t(  satisfies equation (9.1). Indeed, we have 
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Now we show that satisfies Initial condition which g iven in (9.2): 
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Then, of uniqueness, is satisfied 

.A)t(x............A)t(xA)t(xI)t(x)t(e
n

n

tA 12

321


  

for all t .Let us give this example to illustrate this method.    

Example 9.3: We want to find the matrix exponential 
tA

e  
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
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







A

 
For this we calculate that characteristic polynomial of A  

.)AIdet()(p 323210
23

  

We assume, that the Theorem (9.2) is satisfied 

                                                  
2

321
A)t(xA)t(xI)t(xe

tA
                                      (9.5) 

The characteristic polynomial produces the following scalar d ifferential equation with constant coefficients 

0323210  xxxx
 

then the  general solution is found based on the characteristic equation 

042323210
223
 )m)(m(mmm  

thus, the general solution takes the form 
ttt

teee)t(x
4
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4

2

2

1
  

 To find )t(x
1

 we use the initial conditions  .)(x,)(x,)(x 000010  by using this information we 

obtain 

                                             .teee)t(x
ttt 442

1
434   

 To find )t(x
2

 we use the initial conditions .)(x,)(x,)(x 001000  by using this informat ion we 

obtain 

                                             .teee)t(x
ttt 442

2
322   

 To find )t(x
3

 we use the initial conditions .)(x,)(x,)(x 100000  by using this information we 

obtain 

                                             .teee)t(x
ttt 442

3

2

1

4

1

4

1
  

Finally, we replace these functions in formula (9.5) and got  
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4

1
)32e(-2e)e43e-(4ee

 

It can be verified that the matrix A  is not diagonalizable, but this is not relevant for calculat ions. 

We can avoid some calculations in the above example? The following theorem sets the stage. 

Theorem (9.4): 

Let A  be a nn  constant matrix with characteristic polynomial 

o

n

n

n
cc.......c)AIdet()(p 



 1

1

1  
then we get the solution  

,A)t(x............A)t(xA)t(xI)t(xe
n

n

tA 12

321


  

where 
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where 
o

B  is the evaluation here at t = 0, the matrix 
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provided that  )t(),......,t(),t(S
n


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is a fundamental set of solutions for the homogeneous linear 

differential equation 
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Proof: 
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is the characteristic equation of the differential equation 
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Due to Theorem (9.2) we have 
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where )t(x
k

 is solution of (9.7) with init ial conditions (9.4) for n,,.........,,k 321 . 

we note the set  )t(x),...,t(x),t(x
n21

 It is also a fundamental set of solutions of (9.3), since the Wronskian 

))t(x),....,t(x),t(x(W
n21

 is set takes the value 1 at t = 0. Furthermore, when using the known theorem of 

uniqueness of solutions to the initial value problem (9.3) {(9.4), we have 
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for each n,,.........,,k 321 , which we deduce 
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 As 
o

B  is invert ible it is equal (9.6), which completes the proof. 

Consider the matrix of Example (9.3) to appreciate the simplification to the calculations for the tabulation of 
tA

e . Recall that the characteristic polynomial of A  is 

.)AIdet()(p 323210
23


 

which we associate the linear differential equation 

0323210  xxxx  
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Such as characteristic equation is  042
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as a fundamental set of solutions. With these we form the matrix  
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where it is calcu lated 
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By rep lacing these functions in the formula o f 
tA

e , the exponential matrix of Example 9.3 is recovered. 

 

Laplace Transform: the Lap lace transform method  is usual use  in engineering  to solve initial value problems 

of scalar linear equations of order n with constant coefficients. This method is generalized to solve the problem 

of in itial value  .Axx
o

x x(0),   Applying Laplace transform we obtain  

),(x)s(X)AsI()s(AX)(x)s(sX 0 that  implies  0   

such that we get . 0
1

)(x)AsI()s(X


   After taking inverse  Laplace  transform we obtain 

 . 0
11

)(x)AsI(L)t(x


  

Thus, for uniqueness is achieved 

 . 
11 

 )AsI(Le
tA

 

in applications of engineering, the exponential matrix is called the state transition matrix . For examples and 

interesting properties of the exponential matrix, see [1].  

 

VII. Conclusion 

It illustrated several methods to calculate the exponential matrix of a square matrix. Most of them do 

not use the calculation to eigenvalues (generalized) matrix, which has been a standard method of tackling the 

problem in several kinds at the level o f init iation. While these methods can be applied to any matrix, all of them 

are ineffective if dealing with large matrices or inaccurate entries (decimals truncated or numbers accompanied 

with some error). This is where it is preferable to use the computer, but as the Work-Van Loan   there is no 

suitable method to numerical implementation.  
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