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Abstract: In this paper, we have mentioned some properties of radical ideals ring with nilpotent ideals. Mainly, 

we have focused on “the Jacobson radical of an Artinian ring R is nilpotent. In fact,  RJ  is the largest 

nilpotent (left or right or 2-sided) ideal of R and consequently,    RJRN 
”. Finally, we have discussed  

many of  theorem on nilpotent ideals.  
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I. Introduction 
There are several kinds of radicals in a ring. Among them, two radicals called the Nil radical and 

Jacobson radical. There are others like the Amitsur radical, the Brown-Mc Coy radical, the Levitzki radical, etc. 

Some basic properties of the first two of these radicals have been discussed. The 
radR

of 
R is defined to be its 

radical as a left module over itself: RradradR R: . The annihilator of a simple module (in other words, a 

primitive ideal) is evidently the intersection of the annihilator of the non-zero elements of the elements of the 

module; these beings all maximal left ideals, we get radR  of annihilators of simple (respectively 

semisimple) modules. For Artinian rings the radical is very special.     The Nil radical of a ring R is defined to 

be the radical ideal with respect to the property that “ A two – sided ideal is nil” and is denoted by  )(RN , i. e., 

)(RN is the largest two-sided ideal of R  such that every element of )(RN is nilpotent. The Jacobson radical 

of a ring 
R

 with 
1

is defined as the radical ideal of 
R

with respect to the property that “A two-sided ideal 
I

is 

such that 
a1

is a unit in 
R

for all 
Ia

” and it is denoted by 
)(RJ

. In other words, 
)(RJ

.is the largest 

two-sided ideal of 
R

such that 
a1

is a unit for all 
)(RJa

. The Jacobson radical of a ring 
R  consists of 

those elements in R  which annihilates all simple right R -module. One important property of Jacobson radical 

for Artinian ring is that let R be a left (or right) Artinian ring. Then,  RJ  is a nilpotent ideal of R (i.e. 

 n
RJ for some 0n  ) and is equal to the sum of all nilpotent ideals of R . Then we have talked about the 

ring with nilpotent ideals. 

 

II. Discussion 

In this section we have worked on radical ideals. Some properties and characterizations of Nil and 

Jacobson ideals have also been discussed. 

1.1 Radical ideal:  

  A two sided ideal I in a ring R  with 1is called a radical ideal with respect to a specified property p if 

1. The ideal I possesses the property p and 

2. The ideal I is maximal for the property p , i. e., if J is a two sided ideal of R having the property p , 

then IJ  . 

2.2 Nil radical:  
Now special cases have been discussed before proving the existence of the nil radical. 

Examples: 

1. If R has no non-trivial nilpotent elements, in particular, R an integral domain, then 0)( RN . 

2. If R is commutative, then the set )(RN  of all nilpotent elements of R which is an ideal, is the nil radical 

of R . ( If R has 1 , then )(RN  is the intersection of all prime ideals of R .) 
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3. If R is a nil ring. i. e., every element of R is nilpotent, then RRN )( . For instance, Z
ZR

4
2 or 

R strictly upper triangular matrices over any ring. 

4. )0())(( DMN r for any division ring D because )(DMR r is not a nil ring and it has no two-sided 

ideals other than )0( and R . ( Here we observe that R  has nilpotent element if 2r but they do not 

form an ideal.) 

2.1 Theorem:  

       For any ring R , the nil radical )(RN exists and it is characterized by /{)( RaRN  the principal two-

sided ideal )(a is a nil ideal} . 

Proof: 

        We have to first prove that )(RNN 
as above is a two-sided ideal and secondly that it is the largest for 

that property. 

1. Since N0
, 

N
. If 

Na
and 

Rx
, then 

)()( axa 
and

)()( aax 
and so both 

)(xa
and 

)(ax
are nil ideals and hence 

Nxaax ,
. Thus we have only to prove the following. 

2. N
is additive subgroup of 

R
. 

To see this, for Nba ,
, we have to show that 

)( ba 
is a nil ideal. Since 

)()()( baba 
, every 

element 
)( bax 

can be written as 
zyx 

for some 
)(ay

and 
)(bz

. Since 
)(a

and 
)(b

are nil 

ideals, both 
y

and 
z

are nilpotent, say 
0ny

and 
0nz

for some 
0n

. Now look at

zzyzyx nnn  0)(
where

z
is  some of monomials in 

y
and 

z
in each of which

z
is a factor, 

i. e., 
)()( bzz 

and so 
z

is nilpotent and hence 
x

is nilpotent, i. e., 
)( ba 

is a nil ideal, as required. 

Finally, let 
I

be any two-sided ideal of 
R

. Then trivially,
Ia )(

, 
Ia

 and hence 
)(a

is a nil ideal, i. e., 

NI 
, as required. 

2.1 Corollary:     We have    0







RN
RN

for any ring 
R

. 

Proof:  

        Let 
 

N
RNNaa 

where 
)(RNN 

 and 
Ra

. Then the two-sided principal ideal 
)(a

is a 

nil ideal in N
R

, i. e., the two-sided ideal 
)(a

in 
R

is nil modulo 
N

. Hence it follows that 
)(a

is a nil ideal in 

R
(since 

N
is nil ideal), i. e., 

Na
and so 

0a
, i. e. 

Na
, as required. 

2.3 Jacobson radical:  
Before we prove the existence of the Jacobson radical, we mark the following special cases. 

Examples:  

1. 
)0()( ZJ

 

2. 
)0())(( DMJ r , 

Nr
and 

D
a division ring (since 

)(DM r  has no 2-sided ideals other than 
)0(

and 
)(DM r and the latter cannot be a candidate). 

3. If 
R is a commutative local ring with its unique maximal ideal M , then obviously MRJ )( . 

To prove the existence of the Jacobson radical, first we define the so called left and right Jacobson radicals 

)(RJ l and 
)(RJ r and show them to be equal. Secondly we show that 

)()()( RJRJRJ rl 
is the 

one we are looking for. 

2.3.1 Left Jacobson radical: 

    For any ring 
R with 1, intersection of all maximal left ideals of R  is called the left Jacobson radical or 

simply the left radical of R  and is denoted by )(RJ l . (In case 
R is commutative, )(RJ l  is the intersection of 

all maximal left ideals of R  ). 

Examples: 
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1. The left radical of a division ring is 
)0(

. More generally, the left radical of 
)(DM n  is 

)0( )( Nn

where 
D

is a division ring. 

2. The (left) radical of 
Z

is 
)0(

. 

3. The (left) radical of a local ring is its unique maximal ideal. 

4. The left radical of nZ
Z

is nZ
mZ

 where 
m is the product of all distinct prime divisors of n . For 

instance,  
Z

Z
Z

ZJ l 36
6

36
 ,  

Z
Z

Z
ZJ l 64

2
64

 and  
Z

Z
Z

ZJ l 180
30

180
 . 

2.2Theorem: 

     For any ring 
R , its left radical )(RJ l is the intersection of the annihilators of all simple left modules over 

R . In particular, 
)(RJ l is a 2-sided ideal of 

R . 

Proof:  

1. If 
m is a maximal left ideal of R , then m is the annihilator of the non-zero element m11  is the 

simple R -module m
RS  . 

2. If S is a left simple R -module and Sx is a non-zero element, then RxS  and the natural map 

SRf x : , defined by axaf x )( , Ra  is an endomorphism whose kernel is the annihilator of 

the element x . Thus we have SRx
f

R
x


)ker( which is simple and hence )ker( xx fM   is a 

maximal left ideal of R .  This shows that the annihilator of any non-zero element of a simple module is a 

maximal left ideal of R . In other words, the family of  all maximal  left ideals of R is  the same as that of 

the annihilators of non-zero elements of  all simple left modules over R . 

3. The annihilator of any left module M  is a 2-sided ideal of R and it is the intersection of the annihilators of 

all elements of M . 

4. If M is the set of all maximal left ideals of R  and L is the family of all simple left modules over R , then 

we have MRJ MMl )(
which in turn can be written as 

)()()( SAnnMRJ RLSxSxLSl  
( Where xM is the annihilator of the element Sx and 

so )(RJ L  is the intersection of the family  
 LSSAnnR )(

of 2sided ideals and hence 2-sided, as 

required. 

II. Radical of  Artinian Ring: 

1Corollary: If R is commutative, then    RJRN  . 

Proof: Equality need not in the corollary. For example if  pR  then   0RN and    pRJ  . 

1 Theorem: Let R be Artinian. Then radR
 is the largest two-sided nilpotent ideal of 

R
. 

Proof: Any nil ideal (one sided or two-sided) is contained in the radical. It suffices to prove therefore that 

radR  is 

 nilpotent (we have also observed that radR  is a two-sided ideal, being the annihilator of all simple modules). 

Set radR: . Choose n  large enough so that ann :1    . It suffices to assume that 0a  and 

arrive at a contradiction. Assume 0a . Choose a minimal left ideal I  with the property that 0aI  (such an 

ideal exists by the Artinian hypothesis: observe that 0 aaR , so the collection of ideals with the property 

is non-empty). Now, on the one hand,     0 aIIaIa  , so that I  has the property; on the other, 

II  . So II   by the minimality of I . We claim now that I is finitely generated. It will then follow, by 

Nakayama’s lemma, that  0I , which is a contradiction, since 0aI  by choice of I , and the proof will be 

over. 

If I is an ideal in the Artinian ring R , then IR is an Artinian ring. 
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An Artinian integral domain is a field. 

If R is an Artinian ring, then every prime ideal of R  is maximal. Therefore, the nil radical  RN coincides 

with the Jacobson radical  RJ . 

2 Theorem: If R is Artinian, then  RJ  is a nilpotent ideal. 

Proof: 

 Let  RJJ  ; consider the descending chain of right ideals   nJJJ 2
. Since R  is 

Artinian there is an integer n  such that    nnn JJJ 21
. Hence if  02 nxJ  then 0nxJ . 

We want to prove that  0nJ ; suppose it is not. Let   0 nxJJxW ;   W  is an ideal of R . If 

nJW  then   0nn JJ which would yield that   
nn JJ  20  the desired outcome. Suppose that 

WJ n  . Therefore in  WRR  ,  0nJ . If  0nJx  then WxJ n  hence 

  nnnn xJxJJxJ  20  placing x  in W  and so implying that 0x . That is,  0nJx forces  

0x . Since  0nJ  it contains a minimal right ideal  0 of R . But in that event   is an irreducible

R -module hence is annihilated by  RJ . Since  RJJ n   we get  0nJ . As we have seen above this 

forces a contradiction  0 . The theorem is proved. 

Now we try to prove the following theorem. 

3 Theorem: The Jacobson radical of an Artinian ring R is nilpotent. In fact,  RJ  is the largest nilpotent (left 

or right or 2-sided) ideal of R and consequently,    RJRN  . 

Proof:  

Since R is Artinian, the descending chain of ideals   nJJJ 2

is stationary where 

 RJJ 
. Say, 

   nnn JJJ 21

for some 0n . Write 
nJI  . Now we have 

2II  and 

IJI  . (If we know that I is finitely generated then Nakayama’s lemma would have implied that  0I  

which is what we are looking for. But there seems no way to ensure this crucial fact.) The following is an 

elementary but a subtle argument to achieve the goal. Assume, if possible, that  0I . Consider the family 

F  of all left ideals K of R  such that   0IK . Since  02  II ,  FI   and so  0F . Note that 

  F0 . Since R is Artinian, F has a minimal member, say K . i.e., K is a left ideal of   R  such that 

 0IK  and K is minimal for this property. On the other hand, since  0IK ,  we can find Ia  and 

Kb  such that 0ab which implies that    0RbI , i.e., FRb . But KRb   and so KRb  by 

minimality of K . Thus K is a principal left ideals of R . Finally, we have    0 IbRbIRbIJ  and  

RbbJRbJ  and  0RbJ  which give, (again by minimality of RbK  in F  ), that 

RbRbJ  . Now Nakayama’s lemma gives that  0 RbK , contradiction to the assumption that 

 0I
. Hence 

 0 nJI . 

3.4 Jacobson radical theorem: 

 Let 
R  be a ring, Ra . The followings are equivalent: 

(a) a annihilates every simple left R -module; 

(b) a annihilates every simple right R -module; 

(c) a  lies in every maximal left ideal of R ; 

(d) a  lies in every maximal right ideal of R ; 

(e) xa1  has a left inverse for every Rx ; 

(f) xa1  has a right inverse for every Rx ; 

(g) xay1  is a unit for every Ryx , . 
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3.5 Theorem Let R be a left (or right) Artinian ring. Then,  RJ  is a nilpotent ideal of R (i.e.  n
RJ for 

some 0n  ) and is equal to the sum of all nilpotent ideals of R . 

Proof:  

Suppose Rx  is nilpotent, say 0nx . Then,  x1  is a unit, indeed, 

   111 12  nxxxx  . So if I is nilpotent ideal R , then every Ix satisfies condition (g) of 

the Jacobson radical theorem. This shows every nilpotent ideal of R  is contained in  RJ . It therefore just 

remains to prove that   RJ is itself a nilpotent ideal. Set  RJJ  . Consider the chain 

 32 JJJ  of two sided ideal of R . Since R is left Artinian, the chain stabilizes. So 

 1nn JJ  for some n . Set 
nJI  , so II 2

. We need to prove that 0I . Suppose for a 

contradiction that 0I . Choose a left ideal K  of R minimal such that 0IK ( use the fact that R  is left 

Artinian). Take any Ka  with 0Ia . Then 02  IaaI , so the left ideal Ia  of R  coincides with K  

by the minimality of K . Hence,  Ka  lies in Ia , so we can write xaa   for some Ix . So, 

  01  ax . But Jx , so  x1  is a unit, hence ,0a  which is a contradiction. 

 

III. Rings With Nilpotent Ideals 

In 1939 Levitzki stated that in a right Noetherian ring R every nil right ideal is nilpotent. Now a day 

this theorem is an easy consequence. It readily follows that R has a maximal nilpotent ideal N  which is unique, 

the nilpotent radical and N
R

is a semi- prime- ring. N is the intersection of the prime ideals of R and indeed 

is the intersection of the minimal prime ideals, which are finite in number. 

It is impossible to generalize the procedures of [theorem3.1, 10] in order to obtain regular elements. 

Instead the concept has to be taken over factor rings. 

             Let A be an ideal of R and set 

                                    A ( Rc ; Acx , Rx  implies that Ax ) 

                                     A ( Rc ; Axc , Rx  implies that Ax ) 

                                         AAA   . 

Under conditions of [theorem3.1, 10] we have,      000   . 

 4.1 Theorem: Let R be a right Noetherian ring with nilpotent radical N and let npp ,,1  be the minimal 

prime ideals of R . Then  

1.    N  0 ; 

2.      nppN   1 ; 

3.    00   N ; 

4. Let Ra ,  0c  then Ra 1 ,  Nc 1  exist with 11 caac  . 

4.2 Theorem: A right Noetherian ring R  has a right quotient ring Q , which is a right Artinian ring, if and only 

if    N 0 . 

In this theorem    NO   is necessary. After this point the quotient problem for Noetherian rings become 

very difficult and no decisive results have been obtained. There are three aspects to the problem: 

I. When does a Noetherian ring R have regular elements; 

II. When are there enough regular elements to satisfy the right Ore condition; 

III. What is the structure of a quotient ring? 

For commutative Noetherian rings the matter is settled by the maximal primes of zero, these are the 

maximal annihilator ideals and they are finite in number. An element is regular if and only if it does not lie 

in any of these primes, such elements exit if and only if the ring is faithful ( 0Rx implies that 0x ). 
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The second question is trivial and as for the third, a quotient ring is a semi-local ring in which the Jacobson 

radical has non-zero annihilator. 

Rings with zero singular ideal are of some interest. Such a ring, if commutative, is semi-prime but in 

general the structure is very complicated. They are not known in the Artinian case except when indecomposable 

right ideals are uniserial. They are then determined as direct sums of blocked triangular matrix rings over 

division rings. 

       The assumption that R has zero singular ideal is useful technically, because  Oc   implies that cR is 

an essential right ideal and hence   0cl . Thus    OO   . Djabali settles some cases of the quotient 

problem for rings with zero singular ideal. 

 In general case when the existence of the quotient ring is assumed, related properties can be studied.  

4.3 Theorem: 

          Let R be a right Noetherian ring with a right quotient ring Q and N be the nilpotent radical of R .  Then 

NQ is the nilpotent radical of Q . Let P be a prime ideal of R then either QPQ  or    PO   and PQ

is a prime ideal of Q with PRPQ  . Let P be a prime ideal of Q , then RP  is a prime ideal of R

and   PQQP  . 

This theorem is well known for commutative rings but its generalization is not immediate. It depends on 

theorem (4.1) and so far is only known for Noetherian rings. Some necessary conditions for the existence of the 

quotient ring are obtained as follows. The transfer ideal of  O is the largest ideal T such that  Otc  ,

 Oc  , Tt . 

There is also a transfer right idealT  , defined in the same way. Clearly they are uniquely defined and TT  . 

In order to fix the idea we remark that the Jacobson radical of a ring is the transfer ideal of the group of units.  

Suppose that a Noetherian ring R has a right quotient ring Q and letT ,T  be the transfer ideals of R . It is a 

consequence of theorem (4.3) that TTRJ  , where J is the Jacobson radical of Q . It follows that T is 

a semi-prime ideal of R . This may, of course, be true in a ring which does not have a quotient ring but at 

present the best result known is that NT  , by theorem (4.1). 

We conclude our remarks on the quotient problem by Small which gives an example which is a right and left 

Noetherian ring but does not have a quotient ring on either side. This ring satisfies a polynomial identity. For 

relief we return to an easy case, the principal ideal rings. A ring R with unit element is a pri-ring when its right 

ideals are principal (single generator). Now we discuss about the semi-prime pri-ring. 

1. A semi-prime pri-ring is a finite direct sum of prime pri-rings. 

2. A prime pri-ring is isomorphic to a full ring of matrices over a right Ore domain. 

A pri-ring which is left Noetherian is the direct sum of a semi-prime pri-ring and an Artinian pri-ring. It 

has a right quotient ring which is an Artinian pri-ring. 

            Difficulties arise with pri-rings which are not left Noetherian. A number of other problems have been 

studied from time to time. An old conjecture due to Jacobson enquires whether 0
1







n

nJ ,  where J is the 

Jacobson radical, holds in a right Noetherian ring. The problem is still open for right and left Noetherian rings. 

4.1 Primary ideal: 

      An ideal T of a ring R is a primary ideal if TAB  , where A , B are ideals of R , implies that either

TA  or TBk  , together with the corresponding property when A  and B are interchanged. 

       A strongly primary ideal T is a primary ideal such that T
R

has an Artinian quotient ring. Is a primary 

ideal always strongly-primary? This seems unlikely and a counter-example should throw light on the nature of 

the quotient process. 

Many difficulties stem from the lack of a representation of an ideal as an intersection of primary ideals. 

It is fashionable to avoid this property in commutative work, but we can not indulge this whim. Indeed primary 

decomposition does not hold in algebras, for if it held in group algebras then all finite groups would be soluble. 

The only decomposition theory which has anything to offer in the general case is the tertiary theory. There have 

been many attempts to deal with the questions of uniqueness and existence, most theories succeed in one place 

and fail in the other. The tertiary theory succeeds in both respects. Unfortunately, it is very difficult to relate to 
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other aspects of the ring structure. Here we restrict our summary to the case of a right Noetherian ring R having 

unit element, which has some simplifying features.  

     Let M be a right uleR mod . Index its essential sub modules as  AM  and define the radical of 

M to be radM ( ;Rx 0xM , some A ). 

Clearly radM is an ideal. When M is finitely generated, radM is a finite intersection of prime ideals. Let I

be a right ideal then the tertiary radical of I is    IRradIr  . When I is an ideal of R  we have, 

  IIr  , but this need not hold for right ideals. Let R be a simple Artinian ring eRI  , 02  ee , 1 , 

then   0Ir . 

      The definition can be rephrased for left modules and left ideals and indeed for bimodules. Thus for an ideal 

T we can define a radical  TR by the rule: 

                      TR is the set of elements Ra such that every ideal TB  contains an ideal TB  with

TaB  . 

This definition can be rephrased on the left as well. It follows that an ideal T has four tertiary radicals; 

as a right or left ideal and on the right or left as a (two sided) ideal. These can differ, certainly    TrTR  , 

but equality occurs for Artinian rings. Whether    TrTR  for Noetherian rings is not yet settled. We observe 

that in a commutative ring these radicals all reduce to T ( Rx ; Txn  for some 0n ).  

A right ideal I is tertiary when IbRa  , Ib implies that  Ira . 

  Then  Ir
 is a prime ideal. A right ideal V is a irreducible when VR  is a uniform right uleR mod . 

Then V is a tertiary right ideal. It follows that every proper right ideal is a finite intersection of tertiary right 

ideals. 

  4.4Theorem: Let I be proper right ideal of the right Noetherian ring R and kIII  1 where the jI

are tertiary right ideals with associated prime ideals jP ; kj ,,1 .Then   kPPIr  1 . The 

intersection of finite set tertiary right ideals, each having the same associated prime ideal P , is again

tertiaryP  . This enables a decomposition to be brought into reduced or normal form (the associated primes 

are distinct), as in the commutative theory. A uniqueness theorem now follows. 

  4.5 Theorem: Let kh JJIII   11 , where the decompositions are reduced, the I , I

being tertiary right ideals. Then kh  and the two sets of associated prime ideals coincide. These results can be 

carried out for left ideals and repeated for sided2 idealsT , using  TR instead of  Tr . 

      In the formal sense the theory is entirely satisfactory and indeed is only possible theory for which these 

theorems hold. Nevertheless, it has proved difficult to apply to the study of the structure of Noetherian rings, 

because the nature of tertiary ideals is difficult to understand. Moreover, the tertiary radical has to destroy the 

partial order even for sided2 ideals. For example,   ppr  for all prime ideals p of R . Since   p0 , 

preservation of partial order would imply that   pr 0 for all primes p , which would mean that  0r is the 

nilpotent radical. This is certainly not the case as it would lead to the existence of a primary decomposition for 

ideals.  

 

IV. Conclusion 

Theorem (2.1) states that for any ring R , the nil radical )(RN exists and it is characterized by 

/{)( RaRN  the principal two-sided ideal )(a is a nil ideal} . Theorem (2.2) shows that for any ring 
R , 

its left radical )(RJ l is the intersection of the annihilators of all simple left modules over 
R . In particular, 

)(RJ l is a 2-sided ideal of 
R . After that theorem (3.1) follows “let R be Artinian. Then radR

 is the largest 

two-sided nilpotent ideal of 
R ”. Theorem (3.2) depicts that if R is Artinian, then  RJ  is a nilpotent ideal. 

Then it follows from theorem (3.3) that the Jacobson radical of an Artinian ring R is nilpotent. In fact,  RJ  is 

the largest nilpotent (left or right or 2-sided) ideal of R and consequently,    RJRN  . With Jacobson 
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radical theorem (3.5)  has  established that let R be a left (or right) Artinian ring. Then,  RJ  is a nilpotent 

ideal of R (i.e.  n
RJ for some 0n  ) and is equal to the sum of all nilpotent ideals of R . Finally, it has 

been discussed that Let kh JJIII   11 , where the decompositions are reduced, the I ,

I being tertiary right ideals. Then kh  and the two sets of associated prime ideals coincide. These results 

can be carried out for left ideals and repeated for sided2 idealsT , using  TR instead of  Tr . 
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