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Existence and Uniqueness Result for Boundary Value Problems
Involving Capillarity Problems

C.L. Ejikeme!, M.B. Okofu®

Abstract: In this paper, we study a nonlinear boundary value problem (bvp) which generalizes capillarity

problem. An existence and uniqueness result is obtained using the knowledge of range for nonlinear operator.
Ours extends the result in [12].

I. Introduction
A research on the existence and uniqueness result for certain nonlinear boundary value problems of

capillarity problem has a close relationship with practical problems. Some significant work has been done on
this, see Wei et al [1, 5, 2, 4, 3, 7, 10, 6]. In 1995, Wei and He [2] used a perturbation result of ranges for m-
accretive mappings in Calvert and Gupta [1] to obtain a sufficient condition so that the zero boundary value
problem, [1.1].
~V,u+g(x,u(x))= f(x)ae inQ

ou .
-—=0, aeinT,

on
has solutions in L” (Q) where 2 < p < +c0. In 2008, as a summary of the work done in [5, 2, 4, 3, 7, 10, 6],
Wei et al used some new technique to work for the following problem with so-called generalized
p— Laplacian operator:

(1.2) —div[(c(x) +|Au[) P22 Aul+ e ful* P u+ g (x,u(x)) = f (x),ae in Q

—v(c(x) +|Au|2)(p22)Au) eB,(u(x), aein T

where 0< ¢(X) € L? (QQ), e is a non-negative constant and v denotes the exterior normal derivatives of T". It
was shown (7) that (1.2) has solutions in LP(Q) under some conditions where
2N/(N+1) < p<s<+omo,1<q<+woif p>N,

and 1<q<N, /(N — p) if p<N, for N>1. In Chen and Luo [8], the authors studied the
eigenvalue problem for the following generalized capillarity equations.
i | u|p (p-2) 9-2 r-2 |\ .
—div| | 1+ ——=— |Au[" " Au |= Al Tu+ul Cujin Q,
(1.3) J1+[Aul

u=0, a.e.on oQ

In their paper [10], Wei et al, borrowed the ideas dealing with the nonlinear elliptic boundary value problem
with the generalized p-Laplacian operator to study the nonlinear generalized Capillarity equations with
Neumann boundary conditions. They used the perturbation results of ranges for m-accretive mappings in [1]
again to study.

[Vul’

,/1+|Vu|2p

p
~( v, 1+ﬂ |Vu|(p_2)Vu ef, (u(x),aeonT
N

Motivated by [10, 12], we study the following boundary value problem:

[1.4] —div || 1+ V" ?vu +/1Qu|q_2u +|u|r_2u)+ g(x,u(x))= f(x)ae. in Q
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p

(1.5) —div 1+ﬂ2p vu*?vu +1Qu|q172u+|u|q272u+...|u|qm72u)
1+|Vul
+g(x,u(x), vu(x)) = f(x),ae.in Q
p
—( o1+ [vy |Vu|(p_2)Vu e B (u(x)), aeinr

,/1+|Vu|2"

This equation generalized the Capillarity problem considered in [10]. We replaced the nonlinear term
g(x, u(x)) by the term g(x, u(x), VU (x)) which is rather general. In this paper, we will use some perturbation
results of the ranges for maximal monotone operators by Pascali and Shurlan [10] to prove that (1.5) has a

unique solution in W-P( Q) and later show that this unique solution is the zero of a suitably defined maximal
monotone operator.

Il. Preliminaries
We now list some basic knowledge we need. Let X be a real Banach space with a strictly convex dual
space X'. Using “> ” and “w-lim” to denote strong and weak convergence respectively. For any subset G of X,
let intG denote its interior and G its closure. Let “X = Y” denote that space X is embedded compactly in space
Y and “X> Y” denote that space X is embedded continuously in space Y. A mapping, T: D(T) =X >X is said

to be hemi continuous on X if W—lim,_ T (x+1ty) =TX, for any x,y € X Let J denote the duality mapping
from X into 2, defined by
(2.0) F0 =1 ex:(x ) =[x f[L] £ =[] x < X

where (....) denotes the generalized duality paring between X and X* Let A: X = 2* be a given multi-valued
mapping. A is boundedly-inversely compact if for any pair of bounded subsets G and G’ of X, the subset

GNA? (G) is relatively compact in X.

The mapping A: X > 2¥ is said to be accretive if ((v,—v,),J(u,—u,))>0,for any
ui e D(A) and vi € Au;; i =12.

The accretive mapping A is said be m-accretive if R(1+ ,uA) = X, forsome 1£>0.
Let B: X > 2*° be a given multi-valued mapping, the graph of B, G(B) is defined by G(B) =
{[u, ]|,u e D(B) we Bu}., B: X — 2" is said to be monotone [11] if G(B) is a monotone subset of
X x X" in the sense that
(2.2) (u;—u,,w,—w, ) >0, for any [u,,w, ]e G(B);i =1,2.

The monotone operator B is said to be maximal monotone if G(B) is maximal among all monotone subsets of X
X X' in the sense of inclusion the mapping B is said to be strictly monotone if the equality in (2.2) implies that

U,=U,. The mapping B is said to be coercive if
lim (X, X))/ [IX, ) =00 for all [x,,, x,]1€G (B) suchthat lim — +odx, || = +o0.

nosen
Definition 2.1. The duality mapping J: X — 2""is said to be satisfying condition (1) if there exists a
function 7: X — [O,+oo] such that

(2.3) ||Ju —JU” < 77(u —U), forallu, v e X.

Definition 2.2. Let A: X — 2% be an accretive mappingand J : X — X bea duality mapping. We say that
A satisfies condition (*) if, forany f € R(A) and a e D (A)and a € D (A), there exists a constant C(a,
F) such that

(2.4) (v—f,J(u-a))>C(a, f), for any u € D(A), v € Au.

Lemma 2.3. (Li and Guo) Let Q) be a bounded conical domain in R". Then we have the following results;

1) If mp>NthenW™(Q)> C,(Q)if mp<N and g = Np/(N —mp), then W™P(Q) -
LY(Q)if mp =N, and p >1, then for 1< q < +o0, W™?(Q) — LY(Q)
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@ If mp>NthenW™(Q)> & C,(Q)if 0<mp<N and go=Np/(N-mp),  then

W™ (Q)um LY(Q)1< g < q0;
Lemman 2.4. (Pascali and Sburlan [11]) if B: X —>2*" is an everywhere defined, monotone and hemi
continuous operator, then B is maximal monotone.
Lemman 2.5. (Pascali and Sburlan [11]) if B: X —2*" is maximal monotone and coercive, then R(B) = X
Lemman 2.6. (Pascali and Sbhurlan [11]) if @ : X — (-00,400) is a proper, convex and lower semi continuous

function, then 0®d is maximal monotone from X to X".
Lemman 2.7. [11]. If B; and B, are two maximal monotone operators in X such that (int D (Bl))ﬂ DB # ¢,
then B, + B is maximal monotone.

Lemman 2.8. (Calvert and Gupta [1]). Let X = L” (Q)and Q) be a bounded in R, For 2<p< + o0, the
duality mapping Jp: L” (Q) N LP'(Q)defined by J u= |u|p7l sgn u||u||ifp, for u e L° (Q) satisfies
condition (2.4); for 2N/(N + 1) <p < 2 and N >1, the duality mapping J: L*(QQ) — LP (Q) defined by
Jou=[ul"" sgn u, for u e L°(Q), satisfies condition (2.4), where (I/ p)+(Y/ p')=1

I11. Main Result
3.1 Notations and  Assumptions of  (1.5). We  assume in  this  paper, that

2N/(N+1)< p<+w0l1<ql g2 ....qm<+woif p>N,and 1<qlg2,..qm<Np/(N - p)if p<
N, where N >1. We use ||,||p',”q'l,”,”q'z,___,” g, and ||'||l,p,Qt0 denote the norms in

L°(Q), L™(Q2), L*(Q)....., L""(Q2) and W** (C2) respectively. Let (1/p) + (1p)) = 1, (Uql) + (1Uq’y) = 1,
(1/Q2) + (1/q/2) =1,..., (l/qm) + (1/q/m) =1
In (1.5), Q is a bounded conical domain of a Euclidean space R with its boundary I" € C*, (c.f. [4]).

Let || denote the Euclidean norm in 9”1’“, <,> the Euclidean inner-product and v the exterior normal

derivative of I". A is a nonnegative constant.

Lemman 3.1 Defining the mapping B, q1, q2, ...qm: WP (Q) - (W " (Q)>* by
[Vul®

p,q1,92,... qu)ZI 1+ W

Q

+A I oJu(x) ™ u(x)o(x)dx + 2 I Q‘U(X)‘qz’zu(x)u(x)dx
+ +ﬂJ~ Q‘U(X)\qm—Zu(x)u(x)dx

vl P2vu,vu | Ydx

forany U, v e Wl'p(Q). Then B, qiq...qm 1S €verywhere defined, strictly monotone, hemi continuous and

coercive.
The proof of the above lemma will be done in four steps.
Proof. Step 1: B, q1,q2...qm IS €Verywhere defined.

From lemma 2.3, we know that W*? (Q) LCq (Q),when p > N. Also, W”’(Q) Lot (Q),W”’ (Q)'—qu2 (Q)
AAAAA w'P (Q) ad Rl (Q),When p<N.

Thus, forall U, v € Wl'p(Q),||u||q1Skl||u||lypygy B3] ”qZSkgnl)”l,p,Q""’”U”qmgkm”U”l,p,Q

where k; ks ,..., kn are positive constants.
For U, v € W""(Q) , we have

(Vu[pVolded o | yqralfdwrd [ |gaz-tofder.+2 [ |u]am-10/dx
m ) =2 Jo Ja Ja
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/ a2
< vl v ol + Alolauly ™ + Aol ul,, <+ 2ol i
< 2ol ol o+ K3 A o + KA, ol
R PO

Where K';, K, ... Ky, are positive constants. Thus By, g1, g2, - . .qm iS everywhere defined.
Step 2: By q1.q2,....qm IS Strictly monotone

For U, ve Wl’p(Q), we have

‘(u—u, B u

p,qlLqg2,...qm

_Bp,ql.qzn-mmu ] |

P p
:j 1+ il Vul”*vu - 1+& Vu"*Vo,vu-Vo )dx
VLV 14|Vl
+ /’LJ- ,U‘ql 2,-v) \ql g Xu de+/1J' qu‘qkzu—\u\quzuku—u)dx

Q

‘qrrkz ‘anz XU L))dX

+.. +ﬂj

-] {{ %JWUI { %}Wuﬁszu}

-~ 1+ﬂ VU VUV +| 14 = v U| |Vu| Jdx
W,1+|VU|2p

Qy‘qm—Zu—‘u‘quzuku—u)dx
+ ot /IJ. o

|VU| p-1 |V U| P p-1
> VU | 1+ ——— [V o|"" VU]~ [Vul)dx
I{{ JL+[vu*? N Y
.1 IQ -l ™ -t s 2 | Tk i (TR

(ulam-2, o] ™ (Jul Hopax
+ ot AJ. o

I we lt h(t)={1+ t ]ﬂp”’pv or 0. Then

Ja+1?)

t(p—l)/ p

t p-1
(3.1) N(t) = o+t -9 (1+—j—zo,
(1+t2)3/2 J1+t®) p

Since t > 0. And, h’(t) = 0 if and only if t = 0. Then h(t) is strictly monotone. Thus we can say that
Bp.q1,q2....qm 1S Strictly monotone
Step 3: B, q1.q2....qm IS hemi continuous
Need to show here that, for any
1p
u, v, weW"P(Q)and t [0, 1], (W, B, q1.qz-- AMU+t0) =B, 01 0o am

By Lebesgue’s dominated convergence theorem, it follows that

u)—>0ast90.
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lim
OSt—)O ‘(W, Bp,ql,qz,...,qm(u + tU)_B p,ql,qz,...,qmu)‘

lim
< J. Qt—)O‘(W’ Bp,ql,qZ,...,qm(u +tU)_ Bp,ql,qZ,...,qmu)

Vu+tvol®
\/1+|Vu +tVu| P

Vu _ lim
- [1+ 1|—|2}|Vu| "y | [Vwidx + /1_[ Qt_()"u + tu|ql

+Vu" p

lim

<[

Vu+tve]”*(Vu-tvo

q2-2 2-2 i
+ Af arolu+to] (u+to)=u* |widx+ ..+ A[ o
=0
Therefore By, 41.42....qm IS hemi continuous
Step 4: By q1,q2,...qm IS COEICive
For ue W“’(Q), Lemma 2.4 implies that ||u||l o > is equivalent to

Hu —(W/ meas(Q))J. L udx

1,p,0 > ° and hence we have the following result:

(u, Bp,ql,qz,...qmu)z'[ (1+QV|) I\1+|Vu[ j Jvul® dx+J‘ U™ dx
Jul . Jul . Ul
JQ|u|q2dx IQ|u|qmdx
I
jgowr v jdx_ | (,/1/|w|2p )dx
— Q
U5
) AJQ|u|qldx +/1I9|u|q2dx IQ|u|qmdx
Jubss. Ul Ul
2f vul"ax- (1 u® Jox e
> a + 152
Jull e [ulls e
*d g
/IIQM X+...+}LJ‘QIUI X—>+oo,
ol ol
as ||u||1prQ—> +o0, which implies that B ., ., . is coercive

This completes the proof.
I . . p(Q) _y 2Le(@)
Definition 3. 2. Define a mapping A,: L as follows:

D(A) = {u e LP(Q) | there exist an f e L°(Q), such that f < B

for ue D(A), let Aju=1{f eL’(Q) suchthat f B
Definition 3.3.: The mapping
A, LP(Q)— 2 is m— accretive.

p,ql,q2,.. ,qmu + a® u)}
u+ 6‘CD }

p,qlLg2,..qm

DOI: 10.9790/5728-1214101113 www.iosrjournals.org 105 | Page



Existence And Uniqueness Result For Boundary Value Problems Involving Capillarity Problems

Proof. (1) A, is accretive
(a) Case 1:

If p > 2, the duality mapping J,: L™ (Q) is defined p, J U= |u|p71 sgn u||u||2—p for
P
u e L” (Q).It then suffices to prove that for any U, € D(Ap) and v; € A jU;i=12,

(Ul—l)z, J p(ul—u2 ))2 0
To do this, we are left to prove that both

(‘ul_u2|pil sgn (ul_uz )|u1_u2||i7p ) B ul_Bp,ql,qZ,...qmuz )2 01

([ul—u2| o sgn(ul—uz)J|ul—u2||ifp,ad)p(ul) ~o® _(u,))=0,

p,q1,92,...qm

are available.
Now, take for a constant k > 0, X,: R — Ris defined by Xk(t):‘tAk v(=k)" sont ” Then Xy is

monotone, Lipschitz with X,(0) = 0 and X is continuous except at finitely many points on R.
This gives that

([ul—u2| "son (ul—uz) u,
—uzui"’ﬁ(bp(ul)—@d)p(uz )

:k%:i_i.:”ul_uzni_p(xk(ul_UZ)’aq)p(ul)_aCDp(UZ) )
> 0,
Also
G = Juu,[,”
lim |Vul|p p-2 |VU2|p p-2
X 1+ —— |Vu | Vu,~ 1+ ——=—|Vu,|" "Vu,,Vu,-Vu
k—>+8J‘Q \/]W 1 1 1+|vu2|2p 2 2 1 2

X X'rc(ul—uz)dXJr/luul—u2 ||1pJ‘Qﬂul|ql_2ul—|u2|ql_2uz)ul—u2|p_1 sgn(u,~u, )

2 2-p (Jul\quzul—\uz\quzuz)ufuz\pflsgn(ul—uz)dx
+ ”ul_uz”p J.Q

2-p ([uﬂqm*zul—\uz\quzuz)upuz\ P sgn(uy—u, )dx > 0
u,=u, ” I Q

+..+ A
where
p-1 2-p
G= Qul_u2| sgn (Ul_uz mul_uz” p Bp,ql,ql,...,qmul_B p,ql,qz,...,qmuz)
The last inequality is available since Xy is monotone and X,(0) =0
(b) Case 2

If 2N/( N+ 1) < p < 2, the duality mapping J,: L, (Q) éLp’ (Q) is defined by
3,(u) = |u*sgnu,

for u € L(€2). It then suffices to prove that for any U, € D(A,) and v, eA u;,i =12
(ul —U,, J p(ul—uz))z 0
To do this, we define the function X, : R > R by

" sgnt, if [t}>
n

p-2
(1] t, if \t\sé
n n

(3.2) X, (t)=
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Then X, is monotone, Lipschitz with X,(0) = 0 and X/, is continuous except at finitely many points on R. So
(X n(ul_u2)’ acI)p(ul)_aq)p(uZ))2 0.

Then, for u; € D(A)) and v, € AU;; =1,2.We have
(Ul_UZ’ J p(ul_UZ)): Qul - uZ|’%l sgn (ul _u2)7 Bp,ql,qZ,...qmul - Bp,ql,q2,...qmu2)
+ Qul_u2|p—1 sgn (ul - uz)’ aq)p(ul )_aq)p(uz))
= Qul - u2|p_1 sgn (ul _uz)' Bp,ql,qz,...qmul - Bp,ql,qz,...,qmuz)
+ n::(xn(ul—uz),8(Dp(u1)—a®p(u2))2 0
Step 2R (| +,uAp): L"(€2), for every u > 0.
We first define mapping
| :WH(Q)— W (Q)) by Iu=u and (o, 1,u)W**(Q))'x WP (Q)-(v,ul(Q)

foru,v e Wl’p(Q), where <.,.>L2 denotes the inner product of L° Q . The I, is maximal monotone [7].

@)
Secondly, for any 22> 0, let the mapping T, :Wl‘p(Q)—> 2WLP)F he defined by
T;uu :I p/’l + /JBp,ql,qZ,...qmu/'@(Dp (U) ’
for u er’p(Q). Then similar to that in [7], by lemmas 2.4, 2.6, 2.7 and 2.5 we see that T# is maximal
monotone and coercive, so that R(Ty): (\N“’(Q)) , forany ¢>0
Therefore, forany f e LP(Q), there exists UEWl’p(Q), such that
(3.3) f=T, U=U+1B, g qn UOP (U)
From the definition of A, it follows that R(I + 1A, )= Lp(Q), for all x> 0.This completes the proof.

Lemma 3.4. The mapping Ay Lp(Q)—> 2Lp(Q), has a compact resolvent for 2N/(N + 1) < p < 2 and
N >1.
Proof. Since A, is m = accretive, we need to show that if U +,uApu = f(,u > O) and if {f } is bounded in

LP (Q) then {u} is relatively compact in L? (Q) Now defined functions X, .- R—> Rby

[t sgnt, if [t}>1,
n

p-2
(ij t, if \t\gi
n n

MHZ/ p)

X, (t)=

sgnt, if \t\z%,
[%jlﬁ(z,p)t, if \t\s%
Noticing that X'n(t) =(p—1)x (p'/2)" x(¢"n(t))", for [t|>1/n, where (1/ p)+1/p' ) =1 and

Xo(t) = (£, (t))°, for |t| <1/n. We know that (Xn(u), 8®p(u))2 Ofor u € W"P(€2)since X, is monotone,
Lipschitz with X, (0) 0 and X'n is continuous except at finitely many points on R.

(Fson u Au) = 170X, @A, U, (X, (0) B s ot)

p
—|Vu| T vul” X", (u)dx + A"

JL+ vl -

¢t)=

— lim 1+

n-| Q

I o ‘u‘qHan(u)dx

+ A "m'[Q‘u‘qz_qun(u)dx+...+l"m

0
N—o0 n—

I o ‘u‘qm_qun(u)dx
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> [vul® X 'n(u)dx
> const.™ IQ|grad|(g(u))‘ P dx

Nn—oo
2-(2/p)

\grad(}u\ sgn u} Pdx

> const [ ,
From f =u+ ,uApu, we have;

||f||p”|u|27(2/p)8gn [P /2ee 20u|pflsgn u, f)zﬂu|pflsgn u,u)+u0u|pflsgn u, Apu)

p?12(p-1)

p?/2(p-1)

> H|u|2_(2/p)Sgn u

P ("’1)"'+y.c0nst.ngad|u|2_(2/p)Sgn qu"

Which gives that
p/2 p 1

H|u| /P sgn ul,

H|u| @) ggn uf”

p /2 p 1
< const.
2

p
2(p-1)

ngad([u|2(2/p)sgn u] p

in view of the fact that p < when 2N (N+1) <p <2 for N >1. Again we have that,

< const.

Hence, {f } bounded in L (C2)implies that {u|2_(2/p)sgn u} is bounded in W*?(Q2)
We notice that WP () LP/2P(Q2) when N> 2 and WP (Q) =0 C 4 (€2) when N =1 by

lemma (3.1), therefore uzf(z,p)s N U is relatively compact in Lpzlz(p’l) Q). This gives that Uy is
g
2/2 (p-1)

relatively compact in L? (Q) since the Nemytskii mapping U € L?2P9(Q )( ) |u| sgnu e Lp(Q) is

continuous.
This completes the proof.

Remark 3.5. Since CDp(u+a):CDp(u), for any UeW'?(Q) and a € CJ(Q), we have f e Au
implies that f = qm N the sense of distributions.

Proposition 3.6. For f € L”(Q), if there exists U € L”(Q) such that f € Apu, then u is the unique

solution of (1.7).
Proof. First we show that

p
—div 1+& |Vu| 'Vu +ﬂQ " +|u|q2_2u+...+|u|qm_2u)= f(x)aexinQ s
JL+vu[*

available.
f e Auimplies that f =B u+6®p(u). For all ¢ € CSO(Q), by remark (3.12), we have;

(0. F)= (0B, g1 anti +00, (1)

[Vul’

( ’qulqz ..... qmu):IQ 1+W

|u]g1-2ugdx |u]g2-2 ugdx+..+ |u]gm-2 ugdx
+ 4 q +4f q Al

|Vu| v, Vo )dx
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u |edx

= _[ 0= div[[l+ ﬂ}vq
yL+|vu[*
)VJ- Q\u\ql—ZU(pdx 4 AJ‘ Q\ [g2-2 u¢dx+...+z.[ Q\u\qm—Z Ugdx

which implies that (3.25) is true.
Secondly, we show that

|Vu|p (p-2)
(3.4) —( 0|1+ ——— |[Vu[" VU, )€ B,(u(x)), ae xeT
J1+[Vy|

This will be proved under the condition that |ﬁx(u] < a|u|p/p' +b(x), where b(x)e L”(") and a € R.
From (3.25), f € A U implies that

. [ vul’
f(x)=—div| |1+

J1+ vy

Using Green’s Formula, we have that for any U € wtP (Q),

p
'[r v, 1+ﬂ vu|"?'vu, Y| dr(x)
JL+ vy

]|Vu| VU [+ AU ™20+ A R 2P e LR (Q).

Then
_ <,),[1+ Vol /1 j|w|“’-2>w,> WP () = WP ()

where WY p'p(F) is the space of races of Wl'p(Q). Let the mapping B: L° (F) - Lp'(F) be defined by Bu
=g(x), forany U € LP(F), where g(x) = [j’x(u(x)) a.e.on I Clearly, B = 0w where

l//(U) _ J‘ G

is a proper, convex and lower-semi continuous function on P (F)
Now define the mapping K: W'*(Q2) — L"(T") by
K(v)=u/Tforany v eW"?(Q)
Then
K'BK :W"P(Q) - (W"P(Q)]

is maximal monotone since both K, B are continuous. Finally, for any U, eW"p(Q) , We have

w(Ko)—y(Ku) = I rl‘”*(“’F(X)H’x(U\F(X))Jdr(x)
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B T (WIT (X))t (x ))dr(x)
> j -

= (BKu, Kv — Ku) = (K"BKu,v—u).
Hence we get that K « BK 8CI)p andso K “BK = 8®p. Therefore, we have that

p
—( v 1+ﬂ |Vu|(p_2)Vu, e B, (u(x), aeel

2
J1+[vu?
Next we show that u is unique.

If f e Auand f e Ajv,where U, v e D(A,)then

(35) 0< (u —0,B, 142..am U= By g2, qmu)

(3.6) =(u-0,60,(v)-0®,(u))<0

Bp,qlquwgm being strictly monotone and acpp maximal monotone, implies that u(x): U(X). This completes
the proof.

Remark 3.7. If B,=0 for any x e I" thenod® (u) =0, for all u e W*"(Q)..
Proposition 3.8. If B,=0 for any x € I" then {f e L"(Q) |}IQ fdx =0 }c R(A,).

Proof. In view of lemmas 2.4, 2.5 and 3.1 we note that R(B qm): (\/Vl'p(Q))*. Note also that for any

p,ql,q2,...
f e L”(w) with jQ fdx =0, the linear function U e W"P (@) — j o fudx is an element of (\N“’(Q))*.

So there existsa U € WY p(Q) such that

|ulaL2uodx+2 |ula2 2 uodx+...+4 |u[am™2uodx
2 o Jo

forany v € wt p(Q). Therefore, f =Ap U in view of Remark 3.12. This completes the proof.

Definition 3.9. (see [1, 7]). For t € R,, X €T, let B (t) eBx(t) be the element with least absolute value if
B.(t)=0and S(t)=oo, where t >0 or t <O respectively, in case
B, (t)=0. finally, let 8 (t)=lim,__ B°(t) (in the extended sense) for X € I".3,(t) define measurable
functions on I", in view of our assumptions on /3,.

Proposition 3.10. Let f e L° (Q) such that

(3.7) J‘rﬂf(x)dr(x) <J‘Q fax <J‘Qﬂ+(x)dr(x)
Then f € IntR(A, )

Proof. Let f € Lp(Q) and satisfy (3.31), by proposition 3.5, there exists U, € L” (Q) such that, for each
nzl f = (]/U)unJr Apun . In the same reason as that in [1], we only need to prove that ||un||p < const for all

n>1.

u
Indeed suppose to the contrary that 1§||un||p — oo, Let v, =—".Let p: R —R be defined

=
Jul,
by (t) = |t| :|t|p,8w: R — R be its sub differential and for z>0,09,: R —> R denote the Yosida-

approximation of Jy. Let 8,:R — R denote the indefinite integral of [(Gzp,u)']]/pwith 0, (0)= 0 so that
(49'p)p = (8(/)#). In view of [1] we have
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(3.9) (0w, (en).0d(u, )= [ 8,1+ L0w) (U, /T (X)) x 88, (v, IT(x)Ar(x) > 0.
Now multiplying the equation f = (1/ n)l,|n+Ap u, by ow, (u,), we get that
(3.9)
1
o)1) = (0l 3, |+ 00,08, e )+ 00,00)00,0)

Since Gwﬂ (0) =0, it follows that (awﬂ(un ), u, )Z 0. Also we have that
(awy(un )’ Bp,ql,qZ,...,qmun) =

vu,|? _
jg<£1+ |—||2p]|Vun|(p Z)Vun,an,>(6wﬂ)/ (u, )dx

j \un\ql—Zunaw/z(un)dHlJ- |un]a2—-2u,8vu(v, Jdx
Q

+A o

o X2 i
u, )qm—ZUn(Jlﬂﬂ(Un )d ’J- o ﬂ(awu )I (Un )dX

Jua ],

o oloradle, o)

+...+/1J.Q(

Then we get from (3.33) that
a2 [ oforad(e, ©,)) dx+ [ 8 (@+ wow)*(u,[T(x))}< 20, (v, /T(x))dr (x)

< (o0, () 1)
since ‘81/)ﬂ(t)ﬁ ‘81p(t) | forany t € R and >0, we see from ”Un”p =], that H@t/)y(unj

< ¢ for
p

1 1
4> Owhere c is a constant which does not depend on n Or z and (—j + (—tj =1 From (3.36), we have

that
(3.10) | o|orad(9, (v,))" dx < ” (|:|p_1
u
nilp
for 4£>0, n > 1 Now, we know that (6?'#)p = (8(/@)—) (éw)', as u—>o0aeonMNR. Letting

1 —> 0 we see from Fatou’s lemma and (3.37) that
grad(\un‘z—[glsgn Un]
p

2
From (3.38), we know that |un|2_(5] sgn v,—k (aconstant) in L"(Q) as n — +o.

p

dx < ———
Jualy ™

(3.11) I o

Next, we show that kK = 0 is in L” (Q) from two aspects:

(1) If p>2,since
p i [;LHUn”Z@: 1

[2 -
,|° [P]Sgnl)n o] 2,72>

it follows that k = 0 in L*(Q)
@) If
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{3
2N /(N +1)< p<2,lv,| \p)sgno,

=3), 0 )
:”Un” 2p822”0n” p)=1
p

p

2
Then (|Un|2[¥)) sgn Unj is bounded in W"?(Q2). By lemma (1.3) W""(Q)- C,(€) when N = 1 and
2
lep(Q)l-. - LpZ’Z(pfl)(Q) when N >2.So (|Un|2_(p] sgnv,, JIS relatively compact in me " (Q)
{3)
Then there exists a subsequence of (|l) | sgno, ] satisfying

2
(|un|2[p]sgn UHJ —gin LpZ/Z(p_l)(Q). Noticing that p < p®/2(p—1)when 2N/(N + 1) <p<2, it

follows that k = g almost everywhere on Q.
Now,

p? 12(p-1)dx

Fegno

2-
Lfouli= ] oll

p2/2(p-1)dx

G

llon

< const _[

22p1)

+ const ||g?

p2/2(6)
It follows that g # Qin Lp(Q)and then K #0 in LP(Q).Assume now, k > 0, we see from (3.36) that

J 8 [0+ 0w (u, iTx)x v (o, P (0r(x)<(0w, Jo,) 1)
Choosing a subsequence so that un/F(X)—>+oo ae.onI’, we see letting n —>+o0 so that
J; B+ (x)d[(x)< j o F(X)dx  which is a contradiction.
Thus f € int R(Ap)

This completes the proof.
Proposition 3.11. A +B,: L’(Q2) - LP(Omega) is m—accretive and has a compact resolvent.

Proof. Using a theorem in Corduneanu, we know that A, + By: L (Q) N LP'(Q) is m-accretive. To show that
A, + By L (Q) — L™ () has a compact resolvent, we only need to prove that if W € A u+B,uwith (w)

being bounded in L? (Q) then (u) is relatively compact in LP (Q)
Now, we discuss it from it from two aspects.
(1) If p=2,since

|vu|? dx
IQ < (U, Bp,ql,qz,...,qmu)
= (U, A,u)-(u, op(u))
< (U, AU+ (U, B, )= (u,w)<[u] Ju] , < const

1 1
It follows that (u) is bounded in Wl'p(Q) where [—j + (—J =1 Then (u) is relatively compact in L? (Q)
p P

since WP (Q) b b LP(Q)
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() If 2N /(N +1)< p<2since e Au+ Bu with (a)) and (u) being bounded in L”(Q), we

have w-B;u € Apu with w-B;u and u being bounded in L°(€2) which gives that u is relatively compact in L°(Q)
since A, is m-accretive by proposition (3.8) and has a compact resolvent by lemma (2.9)
This completes the proof.

Theorem: Let f e L (Q) be such that
Irﬂ —(x)dr(x) +L g — (x)dx <IQ f(x)x < jrﬂ +(x)dr(x) + IQ g+ (x)dx

Then, (1.4) has a unique solution in L” (Q) where 2N/(N+1) <p<+ oo and N >1

Proof. We want to use theorem (1.9) to finish our proof. From the propositions we use see that all of the
conditions in theorem (1.9) are satisfied. It suffices to show that

f eint [R(Ap)+ R(Bl)JWhiCh ensurethat f e R(AerBl + Bz). Thus proposition (2.11) tells us that

(1.4) has a unique solution L? (Q)
Using the similar methods as those in [2,4,7], by dividing it into two cases and using propositions (2.13) and
(2.15) respectively, we know that f e int [R(Ap)+ R(Bl)] This completes the proof.

Remark: Compared to the work done in [1.7], not only the existence of the solution of (1.4) is obtained but also
the uniqueness of the solution is obtained. Furthermore, our work extended the work of [12].
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