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Abstract:  Approximate solutions of stationary exterior fields of Einstein’s equations are obtained by 
expanding the metric in powers of a certain parameter and solving explicitly the first few orders in terms of two 
harmonic functions. Earlier approximate solutions up to third order were found. In the present paper we obtain 
the new fourth and fifth order equations and find their approximate solutions for the particular choice of the 
harmonic functions. There is a physical interpretation of the approximate solutions at the end of the paper. 
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I. Introduction 
Till now a general axisymmetric stationary (rotating) solution of Einstein’s exterior (vacuum) field 

equations has not been found. The two known classes of solutions- Lewis [1] and Papapetrou [2] are of 
particular interest, apart from a few particular solutions such as those of Kerr [3] and Tomimatsu and Sato [4]. 
The Lewis and Papapetrou solutions depend on a harmonic function (solution of the flat-space axisymmetric 
Laplace equation), while the Kerr and Tomimatsu-Sato solutions are asymptotically flat. Along the axis of 
symmetry extending to infinity, the Lewis solutions have a line singularity and in the case of Papapetrou 
solutions, though they have a subclass containing asymptotically flat solutions, they correspond to zero mass of 
the source. For this reason these solutions are considered to be not physically interesting, although some 
constructive use of the solutions might be possible, as indicated by the work of Herlt [5]. A class of exact 
solutions of the static (non-rotating) axisymmentric Einstein exterior (vacuum) equations was found by Weyl [6] 
which is well known to depend on a single harmonic function. Islam [7,8] obtained a class of approximate 
stationary solutions in terms of two harmonic functions   and   by expanding the metric in terms of a 

parameter. The property of this class is that it reduced to the Weyl class when  =0 and to the Papapetrou class 

when  =0. Earlier Salam [9,10] obtained these classes of solutions upto third order. Making use of some 
different procedures in this paper (hereinafter referred to as “Paper”III) we obtained the solutions more higher 
orders than earlier [11]. 

In section II field equations and their approximate solutions up to third order have been given for the 
required purpose of the present paper. The derivation of more higher (fourth and fifth) orders equations and their 
solutions are given in section III. The physical interpretation of the approximate solutions is also given in 
section IV. 

 
II. Field Equations and Their Approximate Solutions up to Third Order 

In an earlier Paper-   [10], we considered a general formulation of the axisymmetric stationary 
Einstein’s exterior field equations beginning with Weyl-Lewis – Papapetrou form of the metric [7,9]: 

 22222 2 dzdeldkdtdfdtds    ,                                     (1) 

where (  , , z) are cylindrical-polar-like co-ordinates (x =  cos , y =  sin , z), t is the time, and c  is the 

velocity of light where, c = 1, and f, k, l,   are all functions of   and z. Here ‘cylinder polar’ means that for 

asymptotically flat solutions for a large distance from the source the metric tends to the following flat space 
metric 

222222 dzdddtds   ,                                                                                         (2) 

where k→0, l→ 2 ,  →0 at infinity [7,9,10]. 

    It was shown by Weyl for the static field (k = 0), and the procedure extended for stationary fields (k 
≠ 0), we can impose for the field equations the following algebraic condition on the functions f, k and l: 

2D ≡ 22  kfl .            (3) 

We label the coordinates      1 ,,,,,, 3210  cwithztxxxctx  . Three of Einstein’s exterior field 

equations are as follows [7,9,10,11]: 

      02 22311
00

1  
zzzzz kklflffDfDfDRDe 

 ,     (4a) 
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      02 22311
03

1  
zzzzz kklflfkDkDkDRDe 

 ,                  (4b) 

      02 22311
33

1  
zzzzz kklflflDlDlDRDe 

 ,                               (4c) 

where f ≡ zf
f

,



≡

z

f




, etc. Only two of (4 a,b,c) are independent because of (3). For convenient Papapetrou 

used the function w instead of k, defined by [6]  

w = 
f

k
.                                                                                                                                                    (5) 

Eliminating k and l from (4a,b), with the help of (5), the field equations become 

  42221 fffffff zzz
     22

zww   = 0,                    (6a) 

  0221  
zzzz wfwfwwwf     [2,3,4,5].                                (6b) 

Making use of (3), Einstein’s other non-trivial equations are: 
21

112     zzR  2
 klf   = 0,       (7a) 

 zzzz kklflfR  2
2

1
2 21

12   = 0,                     (7b) 

 221
222 zzzzz klfR     = 0.                    (7c) 

From (7a,b,c) we can express z ,  in terms of f and w as follows: 

   22212221

2

1

2

1
zz wwffffff  

  ,                                  (8a) 

zzzz wwffffff   2121   .                                   (8b) 

The consistency of (8a,b) is guaranteed by (6a,b). Therefore the basic equations are (6a,b), since   can 

be obtained trivially from (8a,b) once f and w are known [9]. In the absence of rotation w = 0 (k = 0), (6b) 

becomes redundant and (6a) can be solved by putting f = e , where   is harmonic and satisfies the Laplace 
equation 

  12  zz = 0,                            (9) 

and the Weyl (resulting) metric can be written as: 

  ][ 222222  ddzdeedteds    ,                                  (10) 

with  22

2

1
, zzz    .                                                                                 (11) 

The consistency of (11) is guaranteed by (9). Equations (9–11) give the Weyl (1917) class of solutions 
which represents axially symmetric static (non-rotating) exterior fields [6,7,8,9,10]. 

 A class of exact solutions of (6a,b) was found by Papapetrou (1953) in terms of a harmonic function is 
given by 

  12,  zzAw = 0,                                 (12a) 

where A is an arbitrary constant, and 

 2221 ,sinhcosh    Afh zz ,                                (12b) 

where  ,  are also arbitrary constants and related to A as above [2,7,8,9,10]. For asymptotic flatness h must 

tend to unity and  

w = -A 32 r                                                                                                       (13) 

must tends to zero  at infinity, where 222 zr    [7]. The unphysical nature of the solution (12a,b) can be 

demonstrated by taking 1 r , in which the metric is asymptotically flat, w having the behaviour as in (13), 

but fhg  1
00 has no term proportional to 1r  for large r, i.e., there is no mass. The Weyl class of solutions 

contains asymptotically flat solutions with mass, that can be shown by considering the harmonic function 

  =  – 2m 1r , 222 zr   ,                                                                (14) 

where m is the mass. This is the Curzon solution (1924) [12]. Thus if we could somehow combine the Weyl and 
Papapetrou solutions, we might get asymptotically flat solutions with non-zero mass. There is a class of 
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approximate solutions depending on two harmonic functions   and   was found by Islam (1976a, 1985) [7,8] 

such that if  = 0 one gets the Weyl class of solutions and if  = 0 the approximate solutions reduce to the 

(exact) Papapetrou class of solutions. Earlier, Salam (1988, 1997) [9,10] extended this approximate class of 
solutions to a higher (3rd) order for a specific choice of  ,  . Using some different procedures in this paper, 

we extend this approximate solution to two higher orders.  

Making use the symbol h = 1f  instead of f, the equations (6a,b) transform to the following:  

)()( 222221
zzzz wwhhhhhh  

   = 0,                  (15a) 

zzzz whwhwwwh 22)( 1  
  = 0.                                (15b) 

We obtain the approximate class of solutions in the following way: Assume the solutions we are 
seeking depend on harmonic functions ,  represented symbolically by F (, ) so that F (, 0) is the Weyl 
solution and F (0, ) is the Papapetrou solution. We can replace ,    by ,  where  is a constant 
parameter. This can be done since ,  are also harmonic. Then we expand F (, ) in a power series in  
which amounts to expanding the functions h and w in a power series in  and solving (15a,b) successively in 
terms of  two harmonic functions. Hence we expand h,w  as follows : 

 h = 1 + h(1) + 2h(2) + 3h(3) + 4h(4)+..................  + nh(n) + ......,                         (16a) 
 w=  w(1) + 2w(2) + 3w(3) + 4w(4)+..................  + nw(n) + ......,                                            (16b) 

where h(i), w(i) are all functions of  and z and i = 1, 2, 3,4,.................. When we assume  = 0, we get the 
Minkowski space. This is consistent with the fact that when  = 0 (16 a, b) give respectively h = 1 and w = 0, 
and the space becomes the (flat space-time) Minkowski space-time for these values of h and w.  
In the Weyl and Papapetrou solutions replacing ,  by ,  respectively we have  

h = exp(), w = 0,                                                                                                               (17a) 

h =  cosh  z  +  sinh  z  , w =   
2

1

22  .                                                         (17b) 

The earlier Weyl and Papapetrou solutions with the trivial change of sign of   are also given 
respectively by (17a) and (17b). Our aim is to get a power series solution in terms of  and  such that in each 
order we get the Weyl solution when  = 0 and the Papapetrou solution when  = 0. If  = 0, we get h = 1,  = 
1, from (17 a, b) [9,10]. For the Weyl solution (16a), (17a) imply [7,10,11]:    

nn

n 
h 

! 

1)(  ,  w(n) = 0, for all n,                                                                                                    (18) 

and for the Papapetrou solution, it is readily verified from (16a,b) and  (17a,b) that (with  = 1,  < 1) : 

h(1) =  z , h(2) = 
2

1 2
z , h(3) = 

6

1
 

3
z                                                                                            (19a) 

w(1) =  2

1
2 )1(  , w(n) = 0, n  2.                                                                                         (19b) 

In Paper-I [10], we have explained and found the order of equation up to third order and their solutions. 
For the required purpose of the present paper we only mentioned them below: 

Making use of (15a,b) and (16a,b), we have found first, second and third order (coefficients of 

, 2 ,
3

) equations and their solutions which are respectively as follows [9,10 (Paper-I)]: 

0,0 )1()1(2  wh  ,                                                                                                               (20)  

the solutions of which can be taken as 

zh  )1( ,  2

1
2)1( )1( w ,                                                                                    (21) 

where , , z  are harmonic, and   β < 1 and three-dimensional (axisymmetric) Laplacian operator 2  in the 

cylindrical polar coordinates defined by  

2  ≡ 


























 






1

2

2

2

2

z
 and 




























 






1

2

2

2

2

z
.                                            (22) 

  02)1(2)1(22)1(2)1()1(2)1()2(2  
zz wwhhhhh   .                                                       (23) 
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Using (20) and (21), equation (23) reduces to the following [9]: 

)(2 z z 
2
 

2
 

22)2(2
zzzzzzh    ,                                                         (24) 

which has the solution 

zzh   22)2(

2

1

2

1
.                                                                                                            (25) 

To obtain this solution we can use the identity  

)(2)( 222
zz HGHGGHHGGH    ,                                                               (26) 

where G, H are any two functions of  ,z. 

022 )1()1()1()1()1()1()2(  zz hwwhwhw  .                                                                               (27) 

Using (21) into (27), we have  

)()1(2   
2

1
2)2(

zzzzw    .                                                                                         (28) 

By simple integration, the solution of (28) becomes: 

)()1(  
2

1
2)2(

zzzzw   ,                                                                                                  (29a) 

)()1(  
2

1
2)2(

zpzzw    .                                                                                                 (29b) 

0)]([2 )2()1()2()1(2)2()1()2()1()1(2)2()2(2)1()3(2  
zzzz wwwwhhhhhhhhh                  (30a) 

0)][2 )1()2()2()1()1()2()2()1()1()2()2()1()3(  zzzz whwhwhwhwhwhw                               (30b) 

Making use of aforesaid equations into (30a,b) and by some manipulations, we have 

))(()(2)( 22
  

22
 

2
 

)3(2
zzzzzzzzzzh     

                     )()(2 2
 

2
   zzzzzzzz                                                                   (31a) 

))(()1(2   
2

1
2)3(

zzzzzw    .                                                                    (31b) 

To obtain the approximate solutions of the foregoing equations for the particular choice of harmonic functions 
, , let 

2

1
2211 )(,, zrbrar    ,                                                                                        (32) 

where a, b as arbitrary constants.  
Now by using (32) in the above equations and by some simplifications, we have 

31)1(   rzbarh  , 322

1
2)1( )1(  rbw  , )3(4 8262642)2(2   rzrbrzabrah  .                                                

622422)2(

2

1

2

1   rzbrzbarah  , 622

1
2)2( )1(2  rabw  , 422

1
2)2( )1(

2

1  rabw  ,         

)3 ( ])43([   5 11393922727253)3(2   rzrzbrzrabrzbarah                                                                    

9337225225233)3(

6

1
])43(

14

1
)1(

35

1
[

2

1

6

1   rzbrzrabbzrarah                                                                                             

)()1(2 9227222

1
2)3(   zrabrbaw  , ]

7

1

5

1
[)1( 7225222

1
2)3(   zrbarbaw          (33) 

 
III. Derivation of Fourth and Fifth Order Equations and Their Solutions for Special Choice of 

Harmonic Functions 

To obtain the fourth and fifth order equations (coefficients of 4  and 5 ) using the power series 
(16a,b) into the basic equations (15a,b) and by some simplifications, we have respectively: 

2)2()3()1(2)2()3()1()2(2)2()3(2)1()4(2 22 zzz hhhhhhhhhhh                      

                        ]22[ 2)2()3()1(2)2()3()1(2
zzz wwwwww  

 ,                                                (34a) 

)(2)(2 )1()3()2()2()3()1()1()3()2()2()3()1()2()2()3()1()4(
zzzzzz whwhwhwhwhwhwhwhw   (34b) 
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)3()2()4()1()3()2()4()1()2(2)3()3(2)2()4(2)1()5(2 2222 zzzz hhhhhhhhhhhhhhh    

                             + )](2[ )3()2()4()1()3()2()4()1(2
zzzz wwwwwwww 

 ,                                          (35a) 

)(2 )1()4()2()3()3()2()4()1()2()3()3()2()4()1()5(
 whwhwhwhwhwhwhw   

                           )(2 )1()4()2()3()3()2()4()1(
zzzzzzzz whwhwhwh  .                                            (35b) 

The above fourth and fifth order equations clearly have the following form [11]: 

),(4
)4(2 zHh  ; ),(4

)4( zGw  ,                                                                                        (36a) 

),(5
)5(2 zHh  ; ),(5

)5( zGw  ,                                                                                      (36b) 

where Hi , Gi are linear combinations of terms of the form :  

pmn rz  , 2

1
22 )( zr   ,                                                                                                   (37) 

where n, m, p are integers (in general, positive). The solutions )()( , ii wh are also linear combinations of terms of 

the same form (37). In this connection, the following results are useful: 

 )( pmn rz  = )( 211   pnpnm rprnz  , z
pmn rz )(  = ) ( 211   pmpmn rpzrzm , 

 )( pmn rz  = ])2()12()1([ 4222   pnpnpnm rpprnprnnz  , 

zz
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 Substituting the cited various expressions and their derivatives into (34a,b) and by some manipulations, we get 
respectively: 
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(39a,b), are polynomials in a, b which conveniently help to analyze the expressions of )4()4(2 , wh  . Here 
)4(2h  has terms proportional to 432234 ,,,, babbabaa  and )4(w is a linear combination of terms in 

43223 ,,, babbaba . Accordingly, gathering and ‘reading off’ terms with these coefficients and simplifying we 

get expressions for )4()4(2 , wh   which implicitly can be written as follows: 
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where the ),( zhi  and ),(g zi   are linear combinations of expressions of the form (37). The solutions can be 

expressed as  
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From (40a,b), (41a,b) it is clear that  

),(2 zhi  = ,5,.......,1),,( izhi                                                                                                    (42a) 

),( zgi  = 4,.......,1),,( izgi  .                                                                                                    (42b) 

Here ),( zhi  , ),( zgi  are also linear combinations of terms of the form (37). These can be determined with the 

use of the results given in (38). We shall not display these explicitly, but making use of them implicitly for the 
fifth order, which we now proceed to consider in some detail.  

    The functions ih , ig , ih , ig  also depend on the parameter β  which are either linear or quadratic in 

β . Analyzing )4()4(2 , wh  , etc., as polynomials in a, b is one approach; another is to consider these, as 

indicated, sums of terms of the forms (37), and gather together sets of terms with the same m, n, p and then use 

the results (38) to solve the equations. The explicit expressions for )4()4( , wh needed to evaluate (35a,b), are as 

follows [11]: 
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Inserting the various expressions and derivatives on the right hand sides of (35a,b), we get the following 
expressions: 
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We assume )5()5( , wh  are of the following forms: 
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where the ii k,k  are constants to be determined. Applying the operator  ,2  to (45a,b) respectively, we get 

(using (38) or by direct calculation): 
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Rearranging terms and comparing the various coefficients in (44a), (46a) and in (44b), (46b) 
respectively and then by solving, we get the following values of different constants:  
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Making use the values of (47a) into (46a) and then by some manipulations, we see that the resultant 
form of equation is the same as (44a). Hence (45a) is the solution of (44a). Similarly by using the values of 
(47b) into (46b) and then by some simplifications, we find that resultant form of the equation is the same as 
(44b). Therefore (45b) is the solution of (44b). 

 
IV. Physical Interpretation of the Approximate Solutions 

In this section we analyze the approximate solutions obtained earlier with the use of the metric: 
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with a view to determine some properties of the sources that correspond to the solutions. Here M  and S  are 

respectively the total mass-energy and angular momentum of the rotating source and )( 222 zr   . The 

additional terms represent the structure of the source in various cases [7,13]. The metric that we have already 
used for the solutions can also be written as follows [7,9,10]: 

)()( 2221222 dzdedfwddtfds     = )()2( 22221 dzdeldwdtddth                    (49)                                           

where the various relations connecting 2,,,,, hwlkf  are as: 

1 whwfk ; 2222 fwlfklf   ; 122212   hwhfwfl  ,etc.                                         (50) 
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To compare the approximate solutions with the asymptotic form (48), using (48), (49) and (50) we have 

)
2

1(1
oA

r

M
hf   ; A

r

S
kwh 

2

12
3

2
1 

.                                                                (51) 

    For physical interpretation, that is to identify M, S and higher order terms of (48), using (16a,b) into 
1 hf and wfk   and by some manipulations, we get respectively 

.....................1 )4(4 )3(3 )2(2 )1(  fffff  ,                                                 (52a) 

where )1()1( hf  , )( 2)1()2()2( hhf  , )2( 2)1()2()1()3()3( hhhhf   
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The above relations have been expressed up to 4    terms since (33) and (43a,b) are given explicitly up 

to 4    terms. 

Now by some manipulations if we express (39 a,b) in terms of 432234 ,,,, babbabaa  and 223 , baba , 
43 , bab respectively and comparing with (40a,b), we find: 
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Solving the corresponding equations (42a,b) with 1h ,…………, 5h ; 1g ,…………, 4g  given above we obtain  
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Comparing (41a,b) with (55a,b), we have  
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In the present context the following simple form of (38) are useful: 
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Making use of the explicit expressions for (33), (55 a,b) into (52 a,b) and (53) we write down in detail 

(although we may not need here complete expression) the power series for f and k , which are as follows [11]: 
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We make some general remarks before studying some of the details of (58a,b) [11]. Here the 
approximate scheme is akin to the post- Newtonian, post- post- Newtonian and higher order approximations 
studied extensively by Chandrasekhar, Chandrasekhar and Nutku, Bardeen, and others [14,15]. These 

expansions are in powers of 1c , where c is the velocity of light. If we want to relate the present approximation 
scheme to the post- Newtonian and higher approximations, we can take some combination of the constants 

 ,,, ba to be proportional to 1c . However, at this stage we prefer not to do this; we will discuss this aspect in 

the forthcoming paper. It is noted that when b = 0, we get a particular Weyl solution (the Curzon solution [12]), 
while a = 0 yields a particular class of the Papapetrou solution. Both are asymptotically flat, as the approximate 
solution obtained here. 

For astrophysical bodies, star in particular, the departure from spherical symmetry is caused by 
rotation, so that in its absence the star becomes spherically symmetric. The Kerr solution has this property, but 
the Tomimatsu-Sato solutions do not have this property. It implies that the sources which do not tend to 
spherical symmetry in the absence of rotation have some intrinsic axially symmetric but non-spherical structure. 
For example, a rigid spheroid would have such a structure. As is well-known, the Earth is slightly flattened at 
poles, so that it is not quite spherically symmetric, but is in fact a spheroid. Although the Earth’s departure from 
spherical symmetry may have been caused by rotation in its early evolution, this departure at present is no 
longer due to rotation and were the Earth to stop rotating, it would continue to be a spheroid, albeit with near 
spherical symmetry. Henec the gravitation field of the present rotating Earth would not be described by the 
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Schwazschild solution (if one were to determine it precisely), but by an axially symmetric stationary metric 
which does not tend to spherical symmetry in the absence of rotation. There is no compelling reason for 
considering the general relativistic exterior field of the Earth precisely (there is a marginal reason such as 
determining the motion of a gyroscope in a satellite circling the Earth, but this can be taken care of by 
approximate solutions). However the important point here is that although such exterior metrics may not be 
astrophysically interesting, they do represent physically well-defined situations [7, 11]. In terms of moments, 
these sources may have dipole, quadrupole or higher order multiple moments, which is discussed by Forrester 
(1975) [16] and by Shabuddin (1995) [17].                 

    Now if we return to the expansion (58a,b) and compare O( 1r ) of (58a) with that of (51), we have 

aλ
2

1
is the mass of the source. The higher order terms (those proportional to 2,bb , etc.) possibly give 

contributions to the mass- energy from the rotation, and give other effects of the higher moments of the source. 

The angular momentum is proportional to b , because 0w  when 0b  (i.e., no rotation). The leading term 

(coefficients of 32 r ) of k given by (58b) has the correct behaviour depicted in (51), with S = 2

1
2 )1(

2

1
 b . 

These two important aspects can be summarized in the following equation: 
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2

1
; S = 2

1
2 )1(

2

1
βλb  ,                       (59) 

where M and S are respectively the mass and angular momentum of the source. The effects of the multiple 

moments of the source are given by the higher order terms of k . 
Asyamptotically flat rotating exact solutions are notoriously difficult solutions to find ; the first 

genuine such solution was found by Kerr in 1963, decades after the advent of general relativity in 1915. In fact, 
as is well known, physically meaningful solutions of Einstein’s equations are very rare. Even if an exact solution 
is not astrophysically interesting, as indicated, if the solution describes a physically well-defined situation, it can 
be of considerable interest in elucidating the physical meaning of general relativity. This is an important 
problem which is still far from a complete solution. The explorations of this paper and the forthcoming paper 
may be a step towards finding such solutions, or at least getting to know some properties of these solutions. 

Returning to the explicit of the approximate solution, several remarks are in order before we attempt to 

elicit some information from the power series (58a,b). We saw in (20) that )1(h  is a harmonic function. Why did 

we choose it, as in (21), to be z  , rather than , which is also harmonic. Part of the reason is, we wanted 

the approximate solution to reduce to the Weyl and Papapetrou solutions, in suitable limits, as stated before. 

However, the form (21) for )1(h , ,)1(w  as is clear from the explicit approximation, gives a more general 

asymptotic behaviour. An important point is to take the approximation scheme to a certain stage of completion, 
so that some insight can be gained into the exact solution, of which the power series to a given order are an 
approximation. By some manipulations, we have from (58a,b) 
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The partial series for f and k given in (60a,b) can be written as follows : 
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The structure of the functions f, k is likely to become more clear with terms proportional to 32 ,bb  etc., 

for which one will need higher order terms. We can compare (60a,b) with a different kind of expansion that in 

powers of b , as follows: 
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We use (6a,b) for f , w  rather than (15a,b) for h , w  and remembering fwk  . It is readily seen that 

substituting (62a,b) into (6a,b) and equating powers of b we get  
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with etc. ,0
0







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f
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1 
0

 aref  , while 11, wf  are related to the coefficients of b in (62a,b) 

respectively. One can go back and forth between (61a,b) and (62a,b) (suitably converting (f, k) to (f, w) and vice 
versa), for higher and higher orders to gain more insight into the structure of the functions f, k, possibly leading 
to an exact solution. In any case we can get more information about the asymptotic behaviour of f and k, with 
interplay of mass-energy and rotation effects [7,10,11]. 
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