1OSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 2 Ver. I (Mar. - Apr. 2016), PP 18-32
www.iosrjournals.org

Fourth And Fifth Orders Approximate Solutions Of Stationary
Exterior Fields Of Einstein’s Equations
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Abstract:  Approximate solutions of stationary exterior fields of Einstein’s equations are obtained by
expanding the metric in powers of a certain parameter and solving explicitly the first few orders in terms of two
harmonic functions. Earlier approximate solutions up to third order were found. In the present paper we obtain
the new fourth and fifth order equations and find their approximate solutions for the particular choice of the
harmonic functions. There is a physical interpretation of the approximate solutions at the end of the paper.
Keywords: Einstein’s Field Equations, Approximate Solutions, Asymptotically Flat Solutions

I. Introduction

Till now a general axisymmetric stationary (rotating) solution of Einstein’s exterior (vacuum) field
equations has not been found. The two known classes of solutions- Lewis [1] and Papapetrou [2] are of
particular interest, apart from a few particular solutions such as those of Kerr [3] and Tomimatsu and Sato [4].
The Lewis and Papapetrou solutions depend on a harmonic function (solution of the flat-space axisymmetric
Laplace equation), while the Kerr and Tomimatsu-Sato solutions are asymptotically flat. Along the axis of
symmetry extending to infinity, the Lewis solutions have a line singularity and in the case of Papapetrou
solutions, though they have a subclass containing asymptotically flat solutions, they correspond to zero mass of
the source. For this reason these solutions are considered to be not physically interesting, although some
constructive use of the solutions might be possible, as indicated by the work of Herlt [5]. A class of exact
solutions of the static (non-rotating) axisymmentric Einstein exterior (vacuum) equations was found by Weyl [6]
which is well known to depend on a single harmonic function. Islam [7,8] obtained a class of approximate
stationary solutions in terms of two harmonic functions o and ¢ by expanding the metric in terms of a

parameter. The property of this class is that it reduced to the Weyl class when ¢ =0 and to the Papapetrou class

when o =0. Earlier Salam [9,10] obtained these classes of solutions upto third order. Making use of some
different procedures in this paper (hereinafter referred to as “Paper”III) we obtained the solutions more higher
orders than earlier [11].

In section II field equations and their approximate solutions up to third order have been given for the
required purpose of the present paper. The derivation of more higher (fourth and fifth) orders equations and their
solutions are given in section III. The physical interpretation of the approximate solutions is also given in
section I'V.

II. Field Equations and Their Approximate Solutions up to Third Order
In an earlier Paper-1 [10], we considered a general formulation of the axisymmetric stationary
Einstein’s exterior field equations beginning with Weyl-Lewis — Papapetrou form of the metric [7,9]:

ds® = f® ~2kdtdg—1dg” — " (dp” +dz*), (1)
where (p, ¢, z) are cylindrical-polar-like co-ordinates (x = p cos ¢,y = psing, z), t is the time, and ¢ is the
velocity of light where, ¢ = 1, and f, k, [, 4 are all functions of p and z. Here ‘cylinder polar’ means that for

asymptotically flat solutions for a large distance from the source the metric tends to the following flat space
metric

ds* =dt* —dp* — p*d¢* —dz*, ®)
where k—0, [— p?, ;1 —0 at infinity [7,9,10].

It was shown by Weyl for the static field (k = 0), and the procedure extended for stationary fields (k
#0), we can impose for the field equations the following algebraic condition on the functions f, k and /:

D*=fl+k* =p*. 3)
We label the coordinates (xo =ct, xl, xz, x3): (t, Pz, ¢) (with c= 1). Three of Einstein’s exterior field
equations are as follows [7,9,10,11]:

204D Roy = (D71 1,) + (D7 1)+ D7 f (10, + 10, + K2 442 )=0, (4)
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2D Ryy = (D7, ) +{D7k. )+ D7k (1,0, + 1.0 +h2 +k2)=0, (4b)
204D Ry = (D711, ) +(D7L )+ D710, + £, 4K +R2 ) =0, (40)
_of . _0of . .
where f =y T etc. Only two of (4 a,b,c) are independent because of (3). For convenient Papapetrou
P z
used the function w instead of k, defined by [6]
w= LS . %)
A
Eliminating k and / from (4a,b), with the help of (5), the field equations become
f(fpp +fzz +p71fp)_fp2 _f22 +p72f4 (W/27 +W22) = 0’ (63)
Flwp+w. =, e 2fw, +2 £, =0 [234,5] (6b)
Making use of (3), Einstein’s other non-trivial equations are:
2R11:—ypp —U,. +p’lyp+p*2 (fplp+k§)=0, (7a)
- |
2Ry =p s+ p ([l + Sl 2k k) =0, (7b)
2R22 :_Iupp_luzz _p_llup+p_2( zlz+k22):0' (7C)
From (7a,b,c) we can express x4, , 4, interms of fand w as follows:
_ | 1 _
ty== 1y ot 22— 25 o 2R ), (8)
He== T LA pf T o LT W (8b)

The consistency of (8a,b) is guaranteed by (6a,b). Therefore the basic equations are (6a,b), since x can
be obtained trivially from (8a,b) once f and w are known [9]. In the absence of rotation w = 0 (k = 0), (6b)

becomes redundant and (6a) can be solved by putting f'=e , where o is harmonic and satisfies the Laplace
equation

Ve=0,,+0..+p o, =0, 9)
and the Weyl (resulting) metric can be written as:
ds® =edi> e [e”dp? +dz2 )+ p2dg?] | (10)
. 1
with ;(Zzpapaz,;(pzzp(apz—azz). (11)

The consistency of (11) is guaranteed by (9). Equations (9—11) give the Weyl (1917) class of solutions
which represents axially symmetric static (non-rotating) exterior fields [6,7,8,9,10].

A class of exact solutions of (6a,b) was found by Papapetrou (1953) in terms of a harmonic function is
given by

_ 24 1e _

W_Apé/p’v é/_é/pp +é/zz+p é’pios (123)
where 4 is an arbitrary constant, and

h:f_l:ozcoshé’zwL,Bsinhé’z,Azzozz—ﬂ2 , (12b)
where «, f are also arbitrary constants and related to 4 as above [2,7,8,9,10]. For asymptotic flatness # must
tend to unity and

w=-Ap°r- (13)
must tends to zero at infinity, where P2 = p2 +z° [7]. The unphysical nature of the solution (12a,b) can be
demonstrated by taking ¢ =r"", in which the metric is asymptotically flat, w having the behaviour as in (13),

but gy, =h! = / has no term proportional to 7~ for large r, i.e., there is no mass. The Weyl class of solutions

contains asymptotically flat solutions with mass, that can be shown by considering the harmonic function

o=-2mrt, rt=p*+z?, (14)

where m is the mass. This is the Curzon solution (1924) [12]. Thus if we could somehow combine the Weyl and
Papapetrou solutions, we might get asymptotically flat solutions with non-zero mass. There is a class of
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approximate solutions depending on two harmonic functions o and ¢ was found by Islam (1976a, 1985) [7,8]
such that if {'= 0 one gets the Weyl class of solutions and if o = 0 the approximate solutions reduce to the
(exact) Papapetrou class of solutions. Earlier, Salam (1988, 1997) [9,10] extended this approximate class of
solutions to a higher (3rd) order for a specific choice of o, ¢ . Using some different procedures in this paper,
we extend this approximate solution to two higher orders.
Making use the symbol 2 = f ! instead of f; the equations (6a,b) transform to the following:

h(hy, +h_+p'h)=h)—h>—p~ (W) +w) =0, (15a)

h (W, +w..—p~'w,)=2h,w, —2h.w. =0. (15b)

We obtain the approximate class of solutions in the following way: Assume the solutions we are
seeking depend on harmonic functions o, ¢ represented symbolically by F (o, ) so that F (o, 0) is the Weyl
solution and F (0, ¢) is the Papapetrou solution. We can replace o, { by Ao, A where A is a constant
parameter. This can be done since Ao, A are also harmonic. Then we expand F (1o, A¢) in a power series in 4
which amounts to expanding the functions /# and w in a power series in A and solving (15a,b) successively in
terms of two harmonic functions. Hence we expand 4,w as follows :

h=1+"+2h? +2h? + Ph@+. + A+ (16a)

w= AW + 22+ P + A + AW (16b)
where 2”, W are all functions of pandzand i =1, 2, 34,..ccccceene.e. When we assume A = 0, we get the
Minkowski space. This is consistent with the fact that when 4 =0 (16 a, b) give respectively 2 =1 and w = 0,
and the space becomes the (flat space-time) Minkowski space-time for these values of 4 and w.
In the Weyl and Papapetrou solutions replacing o, by Ao, A{respectively we have

h=exp(Ao), w=0, (17a)

1
h=o coshd ¢, + Bsinh A, ,w=(a2—ﬂ2)zﬂp§p. (17b)

The earlier Weyl and Papapetrou solutions with the trivial change of sign of o are also given
respectively by (17a) and (17b). Our aim is to get a power series solution in terms of o and ¢ such that in each
order we get the Weyl solution when = 0 and the Papapetrou solution when c=0. If A=0,we get h =1, a=
1, from (17 a, b) [9,10]. For the Weyl solution (16a), (17a) imply [7,10,11]:

K =" W =0, for all n, (18)
n!
and for the Papapetrou solution, it is readily verified from (16a,b) and (17a,b) that (with =1, f<1):
3
W=p g w=L 2 o= Lgds (192)
2 6
1
w=(1-8)2p, w"=0,n>2. (19b)

In Paper-I [10], we have explained and found the order of equation up to third order and their solutions.
For the required purpose of the present paper we only mentioned them below:

Making use of (15a,b) and (16a,b), we have found first, second and third order (coefficients of

3

A,A% 2" equations and their solutions which are respectively as follows [9,10 (Paper-I)]:

vih® =0,aw" =0, (20)
the solutions of which can be taken as

1

W =0t pe., w = (1= 52 pc,, @D
where ¢, § ¢, are harmonic, and | s | < 1 and three-dimensional (axisymmetric) Laplacian operator V2 in the
cylindrical polar coordinates defined by

2 2 2 2
V2= 8_2+5_2+p-1£ and A= 5_2+5_2_p—1£ . 22)
op? oz op op”~ oz op
V2O 4 ROV 02 _ 02 _ 52 (Wg>2 +w§”2)= 0. (23)
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Using (20) and (21), equation (23) reduces to the following [9]:

VD =0l + 0l 4+ + (2 +20(0,8,, +0.L1,), (24)
which has the solution

h? :%0'2 %43 + poc .. (25)
To obtain this solution we can use the identity

V*(GH)=GV’H+HV’G+2G,H ,+G.H.) , (26)
where G, H are any two functions of p ,z.

Aw® £ hOAw® — 25Dy M 2y, WM — g 27

p Vo z Mz :
Using (21) into (27), we have
1

Aw? =2(1- )2 (0.6 . 0,42 (28)
By simple integration, the solution of (28) becomes:

W =(1- )2 p0.¢. L) s (292)

1

w® = (1= p(cg,. ~5,8.). (29b)

Vih® +hOv2Ip@ 4 p@y2pO —Z[hs)héz) +h§1)h§2) +p2 (w(l)w(z) +w (2) )]=0 (30a)

Aw® + hOAW® + p P A — 2[hfol)wfoz) + hf)wg) + hil)wiz) + h§2>w§” )]=0 (30b)

Making use of aforesaid equations into (30a,b) and by some manipulations, we have
VIO =0($) +62) 4220 (0,8 ,. +0.C.) o+ fE o) +07)
+260(0,¢ . +0.5.)+ BE ({5 +62) (31a)

1
A =2(1- )2 plo+ L. )06 . —0,¢.) (31b)
To obtain the approximate solutions of the foregoing equations for the particular choice of harmonic functions

o, ¢ let
1

oc=ar,C=brr=(p*+2z%)2, (32)
where a, b as arbitrary constants.

Now by using (32) in the above equations and by some simplifications, we have
1

A =ar™ = pbzr W =—(1- 2)2bp% 7, V2D =0 —4Babzr™ 162 (70 4327778,
1 1
h® :%czzr_2 —Ba bzr_4-%b222r_6,Aw(2) =2(1-B*)2abp*r° , w? = —%(l—ﬂ'z)zab,ozr_4 ,

VIh® =a®r —58a*bzr +ab?[r +(3+48 )z2 “1- ﬁb3(2r79+323r7“)

h(3)=%a3r_3—%,6'a2bzr +ab’ [ S(- B+ (3+4ﬂ )z7r 7] ﬁb3 7

1
Aw® =201 g2 (=a’bp*r T +ab? Bp’zr), wP =1 ﬂ)[ szzr*5+%ﬂa b*p*zr] (33)

II1. Derivation of Fourth and Fifth Order Equations and Their Solutions for Special Choice of
Harmonic Functions

To obtain the fourth and fifth order equations (coefficients of A* and A°) using the power series
(16a,b) into the basic equations (15a,b) and by some simplifications, we have respectively:

2, (4 D23 2)727,(2 1,3 2)2 ;3 2)2
VY = OV — v @ L 2hOn + n P 2800 + hP
+p 22w W + w2 4 20D w2, (34a)

Aw® =—hOA W — @A w® 20D +h @@ +hDw) + 2RO 82w +h D) (34b)
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V21O — _pOv2,@ _ p0y20 _ 10v25@ L o0pOp®) L 0p@p0) L 0p 0@ 4 22050
PP P P z 'z z z

+ p? [2(wg)wfo4) + wﬁ,z)wg) + w4 Dy (35a)

5) — W AH (D) A3 B AL,(2) M,,,(4 2),,3 3,,(® ® )
AW =—h" Aw h' Aw WA +2(hy ' wy,” +hy wi? + I ws? ++hy )

+ 20w + hP WS 4 pOw@ gDy Dy (35b)

The above fourth and fifth order equations clearly have the following form [11]:
VY = H,(p,2); Aw® =Gy(p.2), (36a)
Vi = Hy(p,2); Aw® =Gs(p.2), (36b)

where Hi , Gi are linear combinations of terms of the form :
1

P r=(p +2)2, (37
where n, m, p are integers (in general, positive). The solutions 4, w'” are also linear combinations of terms of
the same form (37). In this connection, the following results are useful:

(pnzmr—p)’lJ = " (npn—lr—p _ panrlr—p—Z) , (pnzmr—p)z — pn (m Zm—lr—p _ pzm+lr—p—2) ,
(p"z"r "),y = 2" n(n=1)p" 21 = pn+Dp"r P 4 p(p+2)p" P,
ngMpeTPY = " m(m—1)z" 2P - pm+1 P p(p+2 Z"H2 P
p zZz p
VA" = ("), (P ) T (P ),
= [n?p" 2" Py p(p-2n-2m-1)p"z"r P,
A(p"z"r ) = (P2, H (P 2" ). = p T ("),
= [n(n=2)p"2z"r P + m(m-1)p"z"*r " + p(p—-2n—2m+1)p"z"r P72]. (38)

Substituting the cited various expressions and their derivatives into (34a,b) and by some manipulations, we get
respectively:

ViR = —(af1 —ﬁ'bzr%){a%f5 -5p a’bzr’ -I—abz[f7 +(3+ 4ﬁ2)22r79]—ﬂ b (zri9 + 3231"7“)}

>

FP +m(m-1)p"z"

—(%azf2 - B abzr™ +%b222r76){a2r74 —4B abzr* +b*(r 0 +3 2570}
+ 2—apr> +38 bpzr—S){—%cﬁp P +%ﬂ a’*bp zr_7+ab2[—%(l -pHpr”’ —%(3 +48H)p 247
+ %ﬂb3p i+ (—a’prt+4abBp zr =302 p 2 r 8V 4 2—azr = Bbr +38b 24 7)
{—la3zr_5 —lﬁ'azbr_5 +£ﬂa2bzzr_7 -«—abz[l(Z-d—Sﬂz)zr_7 —l(3+4ﬁ'2 23]
2 2 2 7 2
+ﬂb3(—%zzr_9 + %z4r_11)} + {=a’zr™ + Pab(—r~ + 4270 + b2 (zr 0 = 327782
2
_20=59) f ) Qbpr~3 —3bp3r_5){—§a2bp S ad?bpir T + ﬂabz(%p 27 = p3zr))
P

L1=5%
2

2
azbz{—p rt +2,03r76}2 +—6(1 B )bpzzr*6 {azb ,ozzr*7
P P

2

2
+f a bz(%pzr”—pzzzr—g)}+m—f)a2b2p4zzr—12. (39a)
P

1
A =2(1- g*)? |:—(a r = phzr)(=a’b p*r + pab’p’z r)+ab (%azfz — pabz r~* +%b222r*6)(p2r*6)

+(—apr> +3Bbpz r’s){azb(—%p i +,Bab2(%pzr’7 —p’zr )y +ab(-a’prt

+48 abpzr® =3b%p 22 ¥ (—prt +2p3r’6)+b{—%a3p P +§ﬂ a*b pzr’’
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+ab2[—%(l—ﬂ2)p r’ —%(3 +4p8%)pzr7’] +%ﬂb3p 2 =2pr7 +3p7r7)

+ab(-azr™ —ﬂbr‘3 +34 bzzr_s){apzzr_7 +p b(%pzr_7 - pzzzr_g)} +2ab {—a2z r
+ Bab(—r~ + 422 ) + b2 (2 =322 NP2z r %) +3b {—%cﬁzﬂ + ﬁazb(—%r’s + %zzﬂ)
+ab2[%(2+ 58%)zr —%(3 +44%)2°r7] +%ﬂ b (=220 +3z T (p?zr ) (39b)

(39a,b), are polynomials in @, b which conveniently help to analyze the expressions of V2AY Aw™® . Here
VZh has terms proportional to a4,a3b,azbz,ab3 ,b4 and Aw®is a linear combination of terms in
a’b,a’b?,ab’,b* . Accordingly, gathering and ‘reading off’ terms with these coefficients and simplifying we
get expressions for V2™ Aw™® which implicitly can be written as follows:

V2D = {a iy (p,2) + a’bhy(p, 2) + a*b*hy(p,2) + a B hy(p,z) +b*hs(p,2)}, (40a)

MY ={a’bg (p,2) +a’b’g,(p.2) +a b g3 (p.2)+b g4 (p.2), (40b)
where the /,(p,z)and g;(p,z) are linear combinations of expressions of the form (37). The solutions can be
expressed as

WY = {a*hi(p,z) + a’bhy(p, z) + a*b* Ry (p, z) + a BRy(p,z)+ b h(p,2)}, (41a)

w® = {a’bg{(p,2)+a’b’gs (p,2) +a b gi(p,2) +b'g4(p,2)} - (41b)
From (40a,b), (41a,b) it is clear that

V(0. 2)=h(p,2),i =100, (42a)

Agi(p,z) =g (p,2),i =1,....... 4. (42b)

Here h(p,z), g/(p,z)are also linear combinations of terms of the form (37). These can be determined with the
use of the results given in (38). We shall not display these explicitly, but making use of them implicitly for the
fifth order, which we now proceed to consider in some detail.

The functions #;,g;, h, g/ also depend on the parameter S which are either linear or quadratic in
B. Analyzing V2h™Y Aw™ | etc., as polynomials in a, b is one approach; another is to consider these, as
indicated, sums of terms of the forms (37), and gather together sets of terms with the same m, n, p and then use
the results (38) to solve the equations. The explicit expressions for A, w® needed to evaluate (35a,b), are as

follows [11]:
@ Z La4r_4 _ a2b2(7 + ISﬂZ) 6 _lﬂa3bzr_6 N a2b2(3 + 4ﬂ2) e

24 450 6 21
2,2 2
1—
_ath"A-F7) o —lﬂa b323r710+Lb4z4r’12, (43a)
210 6 24

1
S0 1 _ 17 _ 1 1 .
@ _ 212 3, 2 -6 2,2 2_ -8 K] 3 2 -8
w =(1- —a’bpr° +——pfa’b z2r e — B VBzr ———ab r
=A% {20 » 840'8 r IOﬂ 210 r

—%ﬂazbzpzz - % a b’p? 2 r_10+%ﬂa2b2pzz3r_lo} . (43b)

Inserting the various expressions and derivatives on the right hand sides of (35a,b), we get the following
expressions:

2 3;2 4 2 4 2 23
Vzh(s):{li{szuzzﬂ ]a b 7 pa‘hz (1-p7)ab'  (522-195047) f a’b’z

r 105 6 105 U 525 1

+ ab z - ab p - ab’z
_(4658+163008%) a’b?z® | (112-4205%) a’b’p®  (73-17853%) ab*z’
525 P! 525 P! 210 3

(5354-37308%) B a’b’z’  (2499-61958°) fa’b’p’z . (862 +34788%) a’b* p?z*
525 P13 2100 P13 105 P13
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_ 8 (1=-pHa’n’pt +(174+694ﬂ2) a’b*z? +26(1—ﬂ2) B a’b’z  18(1= %) ab*p?

105 P13 21 P13 10 P13 105 P13
107 (91+560ﬂ ) a b’z (3506+3354p°) B a’b’p’  26(1- %) B a’b’piz
6 P 42 r 105 - 35 '
L60-p ab*p?z*  (844+5288%) Ba’bZ’ L 20- B pa*b’p*z 1 pp2° 14
L R 5 A2 0 )
l 4 2 3,2 2 3.2 2 273 2 2 213
Aw(s):Z(l—,Bz)z _ﬂabp _ﬂﬂabpz 2,3abz_(624+1885ﬁ)abp +Lﬂab
60 » 56 g 10 4200 Al 100 AN
L4 a’b’p’z (27556 +388454%) a’b’pz? 225 B &’ p*2 1 Ba bp’z 31 praPbZ?
Pz, 225 P 1 pz 31
HETE 4200 73 42 3 35 48 10 B
(87+355,8 ) a*b’ p* L3055 ab’p'z 4 pa’t’s 1 pdNp 2 pra’b’p’s L5258 ab*p*2
525 rl3 42 7'13 5 7'13 5 f"13 5 r15 105 rlS
_(725+9518%) a’b’p’zt  (113+9634°) a’b’p'z? A4 fa b*ptz L4 BHa*b’ p° 2 prah’z?
105 P 105 P 35 8 35 P 5
(44b)
We assume A>, w® are of the following forms:
2 2 2 3 2 2.2 4 4
r r r r r r r r r r r r r
2 3 4 2.3 4 5 2 5
R T S S ol BT
r r r r r r r r r

r7 }"9 r9 r9 r9 }"11 }"ll }"ll }"ll 11 11 11

r 2 r 2 ’ r 2 ' r 2 r 2.2 r 2.3 r 2 r 2 ’ 4 ’ 4
W(S):|:klp +k2p Z+E++k4p +k5+k6p z+k7pz +k8PZ +k9p Z+k102 +k11P +k12PZ

3

r 3 ’ 2 ’ 2.2 ’ 2 ’ 2_4 ro 4.2 ’ 4 ’ r 4
+k132 +k14/3 +k15,0 z +k16p z +k17p z +k18p z +k19p z +k20/06 +k212 } (45b)

7’11 7’11 1’13 1’13 r13 1’13 7’13 }”13 1”13

where the k;,k} are constants to be determined. Applying the operator V2, A to (45a,b) respectively, we get
(using (38) or by direct calculation):

42 28z 72 54z 36z 2 36p> 2 66z> 2
Vzh(5)=|:k( )4—1{ ( ) +k ( )4—1{ ( )4—1{ ( )+k6(T+—9]+k7(T+—9 +k8 T-i-T
V V r r r r r r
442 6z 44p* z, 4z 2p%2% 277 L2 22p 16p 22z 1222
+k9[ 13 +},11J+k10( 13 J kll[ 13 LT },11 9 k| =t [tk 5t A1
88z 66p> 4 78z° 6z 52z 1227 26,0223 473 6p*z
+ky| — |+ k5| ——+ +k +— |+k + +k +—t
14( r13) 15( 13 r“J 16( 15 13 17 15 13 18 15 13 13
2 3
26p%z 16p*z 52p%2% 2z 2 26z° 20z
+ k| ——+ +koo| ——+—5+—|+ky| ——+
19[ BE 13 20 15 [ER 21 15 -
78p%z 4z 60z° 20z°
+kpy| ——+—5 Fky| ——+—— ||, (46a)
22( 15 r”] 23( 17 RE

2 2
Aw® :{k (ng ] +k! (3671 ZJ+k§[%)+k4[54p J+k’[ )+k (—6673 ZJ
r r r r
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2.2 2.3 2 2 2 4 2
+k,{44p z JH{;{zzp 2 6p z}rk,{%p Zj+kio(882 +%J+k,“[44p L 80 j
r

13 13 By 13 13 13 A
,[(22p%z 8p?z| ., (6627 6z , [88p2 , [ 78p%z%  2p?
+ki TR R El R Yol RSl Bl RESE 5t
r r r r r r r
(520223 6p%z) |, (26p%2% 12p%Z7 [26p%22 8p%zr 2p*
+kie 5t +kiz 5" 13 +kig 5 T T
r r r r r r r
C(52p%z  8p2z) o, [26p° 24p*) ., [78z% 1227
+kio| =+ |t k| 5+t 5 [Pk | 5t || (46b)
r r r r r r

Rearranging terms and comparing the various coefficients in (44a), (46a) and in (44b), (46b)
respectively and then by solving, we get the following values of different constants:

1 5 1 {1 (4546+16720ﬁ2}r 1 (6018+24362ﬂ2J_(431+1739ﬁ2J+(16+61ﬁ2ﬂa3b2

k, =

“120° 27 21|36 525 36 1155 1155 105

_1 pa'sz

>

T4 0
E FXL{B_”W L3605 6(1‘/”2)}%4 LA0-pabt 60 pHab (l—ﬁ’z)ab4:|

66 210 182 182 385 182 105

2 2 _ 2
| L 14753 +16775%) | 20(422+264/%) [ 5354-3730/ Bab’
44 1365 273 525

2 B2 _ 2 _ 2
—4><L 6(1753+16775 )+16(1 B7) [ 2499-61958 B b+ 522-19505 8 a’b°
44 1365 35 2100 525

1| 4658+163008% 862+34788% 1044+41648% | 5.,
ki =—— + + a’b”;
36 525 1155 231

2 2
K, _ 1 [112-42057  64(1- %) JEIES
36 525 1155
_ 2 2 B2
8=—i 73-17867  91+5608°  6(1-=f7) | 4
66 210 182 182
1| 4(1753+16778%) 20(422+26487%) (5354—-37304%) 2.3
ko =— + - B a’b;
44 1365 273 525
2 2 _ 2 2
10=L 6(1753+16774%)  16(1- %) (2499 -619547) 5 aPb ik, = 431+1739 3 RS
44 1365 35 2100 1155
_p2 2 2 _p2
12:_4(1 B )asbz;k13: 87+347 8 a3b2;kl4=i 131-87) 41-87) B a2’
1155 231 88 5 195
2 2 2
15:_(1 £, bk, =0k = 91+560 5% | R 1753+16778 5 a2
385 2184 1365
-8 . 2,3 30-8%) 4 422426487 ) . 5,3
kig=——~f ab’;kyjy=——a b"; kyy=-| ———— b’
19 35 B 20 182 21 273 B a
(-8 , 23 Lo
- b kyy=——p8b"; 47a
22 195 B a 23 120/97 (47a)
and
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1
v a2yl L[ 61 4
K| =2(1- %) LS( oo bﬂ,

1 1
K, =2(1—/32>2[—1(Mﬂﬂ @bk =201~ ) — [239jﬂ b

36\ 1848 110
1 2 2 2
- )2 1| (6244188567 ) 2|(87+3556% ) 1(569+11075 e
4200 11 525 13 105

31
K5 =2(1- 2a%h? |k =2(1- B ;
s =2(1-p%)2 {15600’8 a 6 =2 ,3) 165'8 a’

1
, > 1 |( 27556 +38845> 7202+ 955887 || 2.3, 225 3.5
K, =2(1-p%2 — + bk =2(1- b || ;
7 =20-57) 44{( 4200 ] 13[ 105 ﬂ ¢ 'B){ (42ﬂa H

1 |
a1 p2\2 4 , A51Y| 2 2,3,
—2(1-8 )2[ 1430ﬂab} Ky =2(1- 2{ ( H a’b?;

1 1
> 1| 87+3 69+110 , 305
11=2(1—ﬁ2)zﬂﬁ 713554 J+13[5 * 7/3 } 235k, =2(1- )2 {22( ﬂaWH;

525 105 42
i 4
k§3=2(l—ﬂ2){%(—gﬂ a3bzﬂ skiy =2(1-p%)2 {
. 2
kis :2“‘/32){%[‘352“2”3)} ;
1
6 = 2(1- f*)? [losﬂab} k17=2<1—/32>{21[ 725”5”"] }
B a

1 2
kis=2(l—ﬂ2){%(—%]ab 1 Kl =2(1- f%)2 { [

41 B2a’h’:
17160 ’

“))

1
k'zo:2(1_,52){%{315(1—ﬂ2)02b3}} Ky, =2(1- f2)? {lg[fﬂzazbﬂ. (47b)

Making use the values of (47a) into (46a) and then by some manipulations, we see that the resultant
form of equation is the same as (44a). Hence (45a) is the solution of (44a). Similarly by using the values of
(47b) into (46b) and then by some simplifications, we find that resultant form of the equation is the same as
(44b). Therefore (45b) is the solution of (44b).

IV. Physical Interpretation of the Approximate Solutions
In this section we analyze the approximate solutions obtained earlier with the use of the metric:

2M ,  4Sp?

= (1—-=—+4,)dt*> —(—5—+ A)dt dp— p* A"d¢* - (1 +ﬂ)(dp2 +dz% + pldg?)
r 7 r

— Adp* - 2Bdpdz — Cdz?, (48)
with a view to determine some properties of the sources that correspond to the solutions. Here M and S are
respectively the total mass-energy and angular momentum of the rotating source and P2 = (p2 +zz) . The

additional terms represent the structure of the source in various cases [7,13]. The metric that we have already
used for the solutions can also be written as follows [7,9,10]:

52 = f(dt —wd@)* — p? [ dp? —e* (dp? +dz*)=h"'(dt* - 2wdtdp) — ld¢* — e* (dp* + dz*) (49)
where the various relations connecting f,k,l,w,h, ,o2 are as:
k=wf=wh™; fl+k*>=p> =fl+w* f2;1=p* " =W’ f=p?h—w?h™" etc. (50)
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To compare the approximate solutions with the asymptotic form (48), using (48), (49) and (50) we have
2
2507 Ly (51)
r 2
For physical interpretation, that is to identify M, S and higher order terms of (48), using (16a,b) into

f=h""and k =f w and by some manipulations, we get respectively

et == gy e =k =
r

F=1+ O 422 @ L 23 7O L 24, ® 4, , (52a)
where f(l) =D , f(z) — (—h(z) +h(1)2) , f'(3) — (_h(3) + 25O @ _h(l)z)
f(4) — (_h(4) + 2h(1)h(3) + h(2)2 _3h(1)2h(2) + h(1)4) : (52b)

and
k=fw=10+2 fO+22 D+ 22O 4 24 O w® + 22w + 23w 4 24 W)
— 2w 4 22w 4 £ OR0) L 2306 4 OO L r @My 4@ 4 yE) L r @0 B0 (53)
The above relations have been expressed up to 4 4 terms since (33) and (43a,b) are given explicitly up

to A * terms.
Now by some manipulations if we express (39 a,b) in terms of a*,a’b,a’b?,ab>,b* and a’b,a’b?,

ab®,b* respectively and comparing with (40a,b), we find:

1 6 2 -0 69 17 ) g (54 156 o) 2 o
h ) == ’h s :_3 5h ) = D H =+ l
1(p,2) 2’” 5 (p,2) pp-zr 3(0,2) {(70 35ﬂ J” (35 35 B jZ r }

ha(p,2) =ﬂ(—zr_10 _523r_12),h5(/?,2) = %(er-u +3z4r_14)§ (54a)
1 1
6 7 2 - 96 S,
1(p.2) === ' ea(p2) =5 (1= )2 pPar

1
-p2pp> _
g3(p,z)=—i—ﬂ7h(r 10452712 g, (p,2) =0. (54b)

Solving the corresponding equations (42a,b) with 4;,............ s hss g aeeiiiit, , g4 given above we obtain

p@ [a4(%r4)+a3bﬂ(ézr6 _gpzsz@)+a2b2(31_5[(1_ﬂ2)r78

+ (%+§ﬂ2)zzr*‘°])+ abw(—%z%*m) +b4(%z4r12)} , (55a)
1 1 2 11
w® =2(1—,6’2)2[a3b(—%p2r_6)+azbzﬂ(gpzzr_x)—ab3[z(5p2”_8 +p222r—10)]} (55b)

Comparing (41a,b) with (55a,b), we have
B(p2)=oor ™ B2 = B =2 2, B(p.2) = %[(1 PG %ﬁz)zzrm},

B(p2) = (2 ) i (pm) =zt . (56a)
1 1
gip2) = (1= (o pr ), g’z(p,Z)=ﬂ(l—ﬂ2)2(%pzzr‘8),

1
: S 11, - :
g3(p,z>=<1—/32)2[—5(5p2r S+pzr 1°>}, g4(p.2)=0. (56b)

In the present context the following simple form of (38) are useful:
Vz(r4) = 12r76;V2(r76) = 30}’78;V2(zr76) = 182r78;V2(zzr78) =278 4+ 2422719,
V2(pPzr ¥y =4zt +8p% 270, (57a)
AP r ) =18p%r 5 A(p*r ) = 40p%r 10 AP 2 1) = 20 10 4300225712 (57b)
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Making use of the explicit expressions for (33), (55 a,b) into (52 a,b) and (53) we write down in detail
(although we may not need here complete expression) the power series for f and k, which are as follows [11]:

! :{ 1-A(ar™ ﬂb2773)+/12[—5flzr + fabzr™ —%bzzzr’6 +(ar™ = fbzr)?)
2 ad T D pathar —ab? (- Y (AN T e
6 2 35 14 6
+ 2(ar™ _/;bzﬂ)(%aw ~Babzr™ +%b222f6)—(af' —/szﬂf]

ar a1 40 5 1 6 3 5 g 20 1 -8 2,410
+l[a(24r ) abﬂ(lzzr gP ) ab(SS[( - ( ﬁ) D

—ab3ﬂ(—lz3r‘10) —b“(iz“r‘”) +2(ar™ - ﬂbzr_3)(%a3r_3 —% B a2bzr‘5 + abz[g(l S T

+—(3+4ﬂ )22 ﬂb3 3 -9)+( a’r” —ﬂabzr_4+%b222r_6)2—S(ar_l—ﬂbzr_3)2(%a2 -

-p abzr_4+%b222r_6) +(ar™ - ﬂbzr‘3)4]} (58a)

1 2
k=b(1-p%)? |:—lp2r3 + A7 [—%apzr*“ +(ar™ = Bbzr ) (p*r )]+ /13[—”?,0%*5

+ %abﬂpzz}’_7 +l(a r! —-p b zr )(apzr_4) (—%azr_2 + [ abz P —%bzzz}’_6
# (@ = prar o e A (o o) P par )
—abz[%(IOpzr_g + 22 Y (@ - bzr_3)(—%a2p2r_5 +%abﬂpzzr_7)

—%(—%azr_z +f abzr™ —%bzzzr_é +(ar™ = pbzr Y ap*r ™)

—{(—15131’_3 +%ﬂ a*b zr™® —abz[%(l -pHr +L(3+4ﬂ2)22r_7]
+— ﬂb3z r +2(ar_1 -p bz }f_3)(%512r_2 —ﬂabz_4 +— bzzzr_6)

~(ar'-p bzr—3>3}(p2r—3)]] (58b)

We make some general remarks before studying some of the details of (58a,b) [11]. Here the
approximate scheme is akin to the post- Newtonian, post- post- Newtonian and higher order approximations
studied extensively by Chandrasekhar, Chandrasekhar and Nutku, Bardeen, and others [14,15]. These

expansions are in powers of ¢!, where ¢ is the velocity of light. If we want to relate the present approximation
scheme to the post- Newtonian and higher approximations, we can take some combination of the constants

A,a,b, 3 to be proportional to ¢”'. However, at this stage we prefer not to do this; we will discuss this aspect in

the forthcoming paper. It is noted that when b = 0, we get a particular Weyl solution (the Curzon solution [12]),
while a = 0 yields a particular class of the Papapetrou solution. Both are asymptotically flat, as the approximate
solution obtained here.

For astrophysical bodies, star in particular, the departure from spherical symmetry is caused by
rotation, so that in its absence the star becomes spherically symmetric. The Kerr solution has this property, but
the Tomimatsu-Sato solutions do not have this property. It implies that the sources which do not tend to
spherical symmetry in the absence of rotation have some intrinsic axially symmetric but non-spherical structure.
For example, a rigid spheroid would have such a structure. As is well-known, the Earth is slightly flattened at
poles, so that it is not quite spherically symmetric, but is in fact a spheroid. Although the Earth’s departure from
spherical symmetry may have been caused by rotation in its early evolution, this departure at present is no
longer due to rotation and were the Earth to stop rotating, it would continue to be a spheroid, albeit with near
spherical symmetry. Henec the gravitation field of the present rotating Earth would not be described by the
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Schwazschild solution (if one were to determine it precisely), but by an axially symmetric stationary metric
which does not tend to spherical symmetry in the absence of rotation. There is no compelling reason for
considering the general relativistic exterior field of the Earth precisely (there is a marginal reason such as
determining the motion of a gyroscope in a satellite circling the Earth, but this can be taken care of by
approximate solutions). However the important point here is that although such exterior metrics may not be
astrophysically interesting, they do represent physically well-defined situations [7, 11]. In terms of moments,
these sources may have dipole, quadrupole or higher order multiple moments, which is discussed by Forrester
(1975) [16] and by Shabuddin (1995) [17].

Now if we return to the expansion (58a,b) and compare O( r’l) of (58a) with that of (51), we have
%ka is the mass of the source. The higher order terms (those proportional to b,b?, etc.) possibly give

contributions to the mass- energy from the rotation, and give other effects of the higher moments of the source.

The angular momentum is proportional to b, because w=0 when =0 (i.e., no rotation). The leading term
1

. _ . . . . . 1 B
(coefficients of pzr 3) of k given by (58b) has the correct behaviour depicted in (51), with §= E/lb(l -p 2 )2.

These two important aspects can be summarized in the following equation:

1
M:%M;S:%Ab(l—ﬂ2)2, (59)

where M and S are respectively the mass and angular momentum of the source. The effects of the multiple
moments of the source are given by the higher order terms of & .

Asyamptotically flat rotating exact solutions are notoriously difficult solutions to find ; the first
genuine such solution was found by Kerr in 1963, decades after the advent of general relativity in 1915. In fact,
as is well known, physically meaningful solutions of Einstein’s equations are very rare. Even if an exact solution
is not astrophysically interesting, as indicated, if the solution describes a physically well-defined situation, it can
be of considerable interest in elucidating the physical meaning of general relativity. This is an important
problem which is still far from a complete solution. The explorations of this paper and the forthcoming paper
may be a step towards finding such solutions, or at least getting to know some properties of these solutions.

Returning to the explicit of the approximate solution, several remarks are in order before we attempt to
elicit some information from the power series (58a,b). We saw in (20) that 7™ is a harmonic function. Why did
we choose it, as in (21), to be o + ¢, , rather than o, which is also harmonic. Part of the reason is, we wanted
the approximate solution to reduce to the Weyl and Papapetrou solutions, in suitable limits, as stated before.

However, the form (21) for B wh | as is clear from the explicit approximation, gives a more general
asymptotic behaviour. An important point is to take the approximation scheme to a certain stage of completion,
so that some insight can be gained into the exact solution, of which the power series to a given order are an
approximation. By some manipulations, we have from (58a,b)

f=1-dar™ +l/12a2r_2 —1/13a3r_3 +Lﬂ4a4r_4 S S
2 6 24

+b[/1ﬂ zr ™ = 22 azr™ +%/13ﬂazzr_5 —%ﬂ“ﬂa%r“’ +%/14ﬂa3(zr_6 —-3p%zr ) +} (60a)

1
k=b(1-p%)?2 [— Aptr3 +%/12ap2r_4 —%fazpzr_s +2l0/14a3p2r—" Fo } (60b)
The partial series for f and & given in (60a,b) can be written as follows :
f=e 9 bAfr (e — F(p,z; A a)), (61a)
1
k=b(1-p*2p%r)g(p,z;4,a), g(p,z;4,a)= —1+%/1ar_1 —%(ﬂ,ar“)z +%(zar‘1)3 +o (61b)

The structure of the functions f, £ is likely to become more clear with terms proportional to b%,b> etc.,
for which one will need higher order terms. We can compare (60a,b) with a different kind of expansion that in
powers of b, as follows:

f=fo+bfy +b*fs +....., (62a)
w=bw, +b*wy +........ : (62b)
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We use (6a,b) for f, w rather than (15a,b) for 4 ,w and remembering k = fw. It is readily seen that
substituting (62a,b) into (6a,b) and equating powers of b we get
fovzfo - fozp - fozz =0; flvz.fo + fovzfl =2fopS1p =2f0: /12 =05 foAw =2 fo, w1, =2 fo.wy. =0;ete.,
(63)

with fop:%,etc. Clearly f, :e’“ﬂ, while f;,w, are related to the coefficients of b in (62a,b)

respectively. One can go back and forth between (61a,b) and (62a,b) (suitably converting (f, k) to (f, w) and vice
versa), for higher and higher orders to gain more insight into the structure of the functions f, k, possibly leading
to an exact solution. In any case we can get more information about the asymptotic behaviour of f'and &, with
interplay of mass-energy and rotation effects [7,10,11].

Acknowledgments
I am grateful to my reverend supervisor Late Emeritus Professor J.N.Islam whose continuing
encouragement provided the impetus necessary for the completion of this work .l am also indebted to
Professor Dr. AAM. Chowdhury Director INIRCMPS (C.U.) and Professor Dr. M.R. Islam Department of
Physics (C.U.) for many helpful discussions.

References
[1]. Lewis, T., Proc. Roy. Soc. Lond., A136, 176 (1932)
[2]. Papapetrou, A., Ann. Physik, 12, 309 (1953)
[3]. Kerr, R.P., Phys. Rev. Lett., 11, 237 (1963)
[4]. Tomimatsu, A., and Sato, H., Progr. Theor. Phys., 50, 95 (1973)
[5]. Herlt, E., Gen. Rel. Grav., 9, 711 (1978)
[6]. Weyl, H., Ann. Physik, 54, 117 (1917)
[7]. Islam, J.N., Rotating Fields in General Relativity (Cambridge University Press) (1985)
[8]. Islam, J. N., Math. Proc. Camb. Phil. Soc., 79, 161 (1976a)
[9]. Salam, M.A., Studies of An Approximation Scheme for Rotating Solutions of Einstein’s Equations, M. Phil. Thesis. University of
Chittagong (1988)
[10]. Salam, M.A., Ganit: J. Bangladesh Math. Soc. 17, 37 (1997)
[11].  Salam, M.A., Studies in the solution of Rotating Fields in General Relativity, Ph.D. Thesis, University of Chittagong (2010)
[12]. Curzon, H.E.J., Proc. Lond. Math. Soc., 23, 477 (1924)
[13]. Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, W.H. Freeman, San Francisco (1973)
[14].  Chandrasekhar, S., Astrophys. J., 167, 447 (1971)
[15].  Bardeen, J.M., Astrophys. J., 167, 425 (1971)
[16].  Forrester, Ph.D. Thesis, Chapter-6 (1975)
[17].  Shahabuddin, M., Studies on Stationary Axisymmetric Einstein-Maxwell Equations, Ph.D. Thesis, University of Chittagong(1995).

DOI: 10.9790/5728-12211832 www.iosrjournals.org 30| Page



