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Abstract: In this research, an attempt is made to derive a self starting block procedure for some K-step linear
multi-step methods (for K=1, 2 and 3), using Chebyshev polynomial as the basis function. The continuous
interpolant were derived and collocated at grid and off-grid points to give the discrete methods used in block
and applied simultaneously for the solution of non stiff initial value problem.The regions of absolute stability of
the methods are plotted and are shown to be A (a) stable. The methods for K=2 and K=3 were experimented on
initial value problems and the results reveal that the newly constructed block methods have good error stability
and are efficient.
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I.  Introduction
We consider the general first order initial value problem

"= f(x,
y'=f(xy) W
y(xo) =Y
We then seek discrete methods to solve (1.1) at a sequence of nodal points
X, =X, +nh (1.2)
where h>0 is the step-length or grid-size defined by
h=X,. —X, (1.3)
and y(x) denotes the true solution to (1.1) while the approximate solution is denoted by
YOO ={ Vs Yoiaseeenr Y} (1.4)

1.1 Important Definitions
1.11 Linear Multi Step Methods
Consider the initial value problem for a single first order ordinary differential equation;

y' = f(%Y); y(a)=n (1.5)

We seek for solution in the range @ < X < b, where a and b are finite, and we assume that f satisfies a theorem
which guarantees that the problem has unique continuously differentiable solution, which is indicated as y(x).

Consider the sequence of points {Xn} defined by X, =X, + nh, n=12,.... The parameter h, which will

always be recognized as constant, is called the step length. An essential property of the majority of
computational methods for the solution of (5) is that of discretization; that is we seek for an approximate

solution, not on the continuous interval @ < X < b, but on the discrete point set {Xn In= 0L..... ;(b - a)/ h}.
Let Y, be an approximation to the theoretical solution at X,,, that is Y(Xn), and let f = f(Xn, yn). If a
computational method for determining the sequence {yn} takes the form of a linear relationship between

ynH— , fnﬂ- , j =01,...... K, we call it a linear k-step. The general linear multi-step method may thus be written
as

k k
Yay,, =h). Bt e
-0 -0
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Where @ and ﬂj are constants; we assume that &, = 0 and that both a, and ﬂo are zero. Since (6) can be

multiplied on both sides by the same constant without altering the relationship, the coefficients & and ﬁj are
arbitrary to the extent of a constant multiplier. We remove this arbitrariness by assuming throughout that
a, =1 williams (1972).

1.12. Order And Error Constants
Given a general linear multi-step methods

k K
ZOCJ yn+j = hZﬁJ fn+j;ak +0 (1-7)
J=0 J=0

The order of (7) defined as p can be determined if and only if.
CO :C]. :C2 :———:COC:O

And Cp +1+0 where

Cp =0cy + ¢ +———+ 05,

Cy= (e, 4200, + ————+k oo )= (B + B+ ===+ )

(1.8)

Cp:}a(oc1 +2% o0, +————+K* ock)—ﬁ

Forq > 2. It follows that C,,; # O is the error constant.

(B+27B, +=——+k"'B,)

1.13. Theorem (Due Dahlquist)

The necessary and sufficient conditions for a linear multistep method to be convergent are that it be
consistent and zero stable, Dahlquist, G and A. B Jorch,(1974). Consistency controls the magnitude of the local
truncation error committed at each stage of the calculation whole zero stability controls the manner in which this
error is propagated.

1.14. Region Of Absolute Stability
The stability polynomial of the methods is defined by

(r,h)= p(r)-ho(r);h = ih (@9

To obtain the boundary focus curve of these methods, we get

or).
h=—<ir=e"0<I1
o) jr=e (1.10)

Lambert J.D (1973).

1.15 Hybrid Schemes

Linear multi-step methods though generally effective for a given function evaluations per steps have
poor stability property as the step number increases. The desire to increase the order without increasing the step
number of the linear multistep methods and thus without reducing the stability interval led to hybrid schemes
because they posses some properties of linear multi-step methods and Runge-Kutta methods. Jain (1979).

1.16 Block Schemes

To ease computational efforts and to avoid the use of starting values while solving initial value
problems, a set of discrete methods are used simultaneously on problems which gives solutions of more than
one step per computation. These set of discrete schemes are known as block schemes or methods.
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1. The Derivation Of The New Methods
In this research work, an attempt is made based on a perturbed collocation method. The power series
method is used as the basis for collocation approximation with the Chebyshev polynomials as the perturbation
term.
Consider the problem

y'=f(xy)
y(Xo)= Yor Xo = X=X,

The exact solution of the perturbed form of (2.1) is given by
k
¥ (%)= 2.,Q; (x)
i=0

(2.2a)
X, SX< Xy
Where
Q;(x)=x),j=0
(2.2b)

Is the power series
From (2.1) and (2.2)

ZanJ'. (x)=f(xy)+7T,(X)
1=0 (2.3)

where Tk ()_() is the Chebyshev polynomial of degree k, valid in X, < X< X, and t is a parameter Fox and

Parker(1972).
In particular, we shall be dealing with cases k=1, 2, 3and 4 in (2.1) and (2.2).

21)

2.1 The Chebyshev Polynomial And Transformation
The Chebyshev polynomials denoted by Tk (X) obtained by the recurrence relation

T (X) =2XT, (X) =T, 4 (X) (2.4)

are obtained as follows:

(2.5)
While the transformation is given as
2X =Xy + X, )
Xnek — Xy
2.2 Case K=1
Taking the polynomial T, (X) =X

n+K

X 'K =12,34.

(2.6)

We use (2.6) in T,(X) = x and collocating at X, and X,,;, we have
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2X —X . —X
_ n n+l n __
Tl(Xn)_ =-1
Xpia — X,
2X . —X . —X
_ n+l n+1 n __
Tl(xm-l) - X X =1

n+1l
From equation 2.2b

Q(X)=1=Q; =o}
QA(X)=x=Q/=1

Putting equation (2.7) into (2.3), we obtain
a = f(xy)+eT(x) (28)

Now collocating (2.8) at Xn+j, j=0, 1 and interpolate (2.2) at x=x,, we get a system of three equations with a; (j=0,
1) and parameter t

n

(2.7)

a‘0 +a1Xn = yn
a+r="1,
a-7="1,

Which gives the matrix
1 x, 0 |a A

0 1 1ja|=|f
0 1 -1y~ fou
Solving the matrix above gives the value

T :_(fn - fn+1)

a="Ff -7

n

A, =Y, X,
From (2.2), we have

y(x)=a+ax 29

Collocating (2.9) at X=X+, gives

h
=2 Y=Y +§( fn+l+ fn)

(2.10)
This is the well known trapezoidal rule.
2.3 Case K=2
Following the same procedure as in case k=1, we collocate the continuous scheme
o 2
X)=a,+a,X+a,X
y(x)=a,+ax+a, 2.11)

at grid and off grid points X =X ,X= Xn+y and X =X ,, and this gives the block scheme below;
2

h
Yoiz = You +7( fn+2 + fn+1)

2
h

yn = yn+1 _E( fn+1 + fn)
y =Y 1—£(3f +4f  + 1)

el M ogen o (2.12)
2.4 Case K=3
For case k=3, we collocate the continuous scheme
— _ 2 3

Y (X)=a, +ax+a,x* +a,x (2.13)
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atX:Xn,X:Xn+%,X:Xn+l and X =X

yn+3 = yn+2 + %(43 fn+3 +55 fn+2 + fn+1 -3 fn )

h
Yni1 = Yni2 +§( fn -13 fn+1 -13 fn+2 + fn+3)

Yo =Yoo — %(39 fn +107 fn+l +954 fn+2 -7 fn+3)

= + —
yn+% yn+2 1536

n+3

yields

h (4545f ,—14211f ,
+11907 f,,, — 4545

Mathematical Analysis Of The Block Schemes
The order, error constant, convergence and Region of Absolute Stability analysis of the new block
schemes where examined and the summary of the results is given in the table 1.1 below.

Table 1.1: Summary of Mathematical Analysis

(2.14)

STEP METHOD ORDER ERRORCONSTANT CONVERGENCE RAS
K=1 h 2 -1/12 Convergent [0,0]
Yo = Y +§(fn+l + fn)
K=2 h 2 -1/12 Convergent [0,0]
Yoo = Yn F E(fn” * f”) 2 -1/12 Convergent [0,0]
h
Yniz = Yna +E(fn+2 + fn+l)
K=3 h 39 fn +107 fn+1 0 1/96 Not convergent [0,0]
Yo = Yne2 _% 454§ ; _7f , 4 11/720 Convergent [0,7.384]
n+ n+
3 -7/96 Convergent [-0.563,-
yo—y (1130, o
M2 o4\ 13F L+ f L,
h (43f, ., +55f .,
Yois = Yo t
®Im2 Tog| +f,  —3f,

Fig 1, Fig 2 and Fig 3 below shows the plotted regions of the three new block schemes of Case K=1, Case K=2

and Case K=3 respectively, plotted with the aid of Maple and Mathlabsoftwares.

Fig 1: Region of Absolute Stability for Block-Scheme K=1
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Fig 2: Region of Absolute Stability for Block-Scheme K=2
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Fig 3: Region of Absolute Stabilty for Block-Scheme K=3
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The block schemes k=2 and k=3 are seen to be A-Stable.

I11. Numerical Experiment
The newly derived methods K=2 and K=3 are applied to two first order initial value problems

1. y'=-y,h=0.1y, =1with the theoretical solution y(x) =€ ", see table 1 and table 2 for absolute
errors. (Non-Stiff Problem)

2. y'=1000(sinx—y); y(0)=0;h=0.1with the exact solution
y(x)zﬁ(sin X—0.001C05X+eflooox) see table 3 and table 4 for absolute errors (Non-Stiff
Problem). .
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Table 1: Errors Of Example 1 Using The Method K=2

X Y(x) Block LMM K=2 Exact Solution Absolute Error

0.0 Yo 1.00000000000 1.000000000 0.000000000

0.1 Y, 0.90583599177 0.904837418 9.521759*10™

0.2 Y, 0.8195658302 0.8187307531 8.350771*10"

0.3 Ys 0.7423921660 0.7408182207 1.5739453*107

0.4 Y 0.6716881501 0.670320046 1.3681041*10°

0.5 Ys 0.6084392519 0.6065306597 1.908592*1073

0.6 Y 0.5504926565 0.5488116361 1.6810204*107

0.7 Y7 0.4986560206 0.4965853038 2.0707168*10°

0.8 Ys 0.4511649711 0.4493289641 1.836007*10°

0.9 Yo 0.4086814356 0.4065696597 2.1117759*10°

1.0 Yo 0.3697593941 0.3678794412 1.8799529*10°°

1.1 Yu 0.3349413401 0.3328710837 2.0702564*10°

1.2 Y1, 0.3030421648 0.3011942119 1.8479529*10°°

13 Y13 0.2745064775 0.272531793 1.974684*10°

14 Y 0.2483630034 0.2465969639 1.7660395*10°°

15 Yis 0.2249761291 0.2231301601 1.845969*10°

1.6 Y15 0.2035498311 0.201896518 1.6533131*10°

1.7 Yz 0.1843827481 0.1826835241 1.699224*10°

1.8 Yis 0.1668224863 0.1652988882 1.5235981*10

1.9 Y1 0.1511138000 0.1495686192 1.5451808*107

2.0 Y20 0.1367220095 0.1353352832 1.3867263*10°

Table 2: Errors Of Example 1 Using The Method K=3
X Y(x) Block LMM K=3 Exact Solution Absolute Error
0.0 | Yo 1.00000000000 1.000000000 0.000000000
01 | VY, 0.9040064249 0.904837418 8.309931*10*
02 | Y 0.8179589124 0.8187307531 7.718407*10*
03 | Vs 0.7341463701 0.7408182207 6.6718506*10°
04 | Y, 0.6636730354 0.670320046 0.6470106*10°
05 | Ys 0.6005015664 0.6065306597 6.0290933*10°
06 | Y 0.5389708928 0.5488116361 0.8407433*10°
07 | Yy 0.4872331499 0.4965853038 9.3521539*10°
08 | Vs 0.4408560452 0.4493289641 8.7429189*10°
09 | Y 0.3956835245 0.4065696597 1.08861352*10°
1.0 | Yo 0.3577004484 0.3678794412 1.01789928*10"
11 | Yu 0.3236528654 0.3328710837 0.2182183*10°
12 | Yo 0.2904896233 0.3011942119 1.07045886*10°
13 | Y3 0.2626044858 0.272531793 9.9273072*10°
14 | Yu 0.2376085763 0.2465969639 8.9883876*10°
15 | Yis 0.2132619025 0.2231301601 0.8682576*10°
16 | Y 0.192790130 0.201896518 9.106388*10°°
17 | Yy 0.1744394738 0.1826835241 8.2440503*10°
18 | Y 0.1565654516 0.1652988882 8.7334366*10°
19 | Yo 0.1415361742 0.1495686192 8.032445*1073
20 | Y» 0.1280641065 0.1353352832 7.27142218*10°
Table 3: Errors Of Example 2 Using The Method K=2

X Y(x) Block LMM K=2 Exact Solution Absolute Error
0.0 Yo 0.00000000000 0.000000000 0.000000000
0.1 ! 0.0978775889867 0.09873967281 8.6377414*10"*
0.2 Y, 0.19861212422 0.1974917724 1.1203518*10°
0.3 Ys; 0.29367612312 0.2942705996 5.944765*10*
04 Y. 0.38934896897 0.3881091721 1.2397968*103
0.5 Ys 0.47772734451 0.4780698862 3.425417*10*
0.6 Ys 0.56460315135 0.5632538839 1.3492674*10°
0.7 Y7 0.64269516396 0.642810035 5.405187*10"
0.8 Ys 0.71738482110 0.7159434407 1.4413804*10°
0.9 Ys 0.78200576059 0.7819233763 8.23842*10"*
1.0 Yio 0.84160024414 0.8400905919 1.5096522*10°
1.1 Yu 0.89010794667 0.8898639 2.440466*10"
1.2 Y 0.93229476301 0.9307459822 1.5487808*103
13 Yis 0.96269451333 0.9623283582 3.661551*10*
14 Y 0.9858502866 0.9842954674 1.5548192*1073
15 Yis 0.99687395667 0.9964278216 4.46135%10°
1.6 Yis 1.00012952163 0.9986041984 1.5253226*10°
1.7 Y7 0.99128576765 0.9908028521 4.829155*10°*
1.8 Yig 0.97456117814 0.9731017312 1.4594469*10°
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1.9 | Y 0.94615467059 0.9456776996 4.769709%10
20 | Yxo 0.91013061087 0.9088047689 1.3258419*10°
Table 4: Errors Of Example 2 Using The Method K=3
X Y(x) Block LMM K=3 Exact Solution Absolute Error
00 | Yo 0.00000000000 0.000000000 0.000000000
01 |VY: 0.09802901344 0.09873967281 7.1056937*10"
02 |Y, 0.19847783725 0.1974917724 9.860648*10™*
03 | Vs 0.29368162270 0.2942705996 5.899769*10™*
04 | Y, 0.38371780158 0.3881091721 4.391370*10°
05 | Vs 0.48270433091 0.4780698862 4.6344447*10°
06 | Vs 0.55875508031 0.5632538839 4.4987946*10°
07 |Ys 0.6371420762 0.642810035 5.6679634*10°
08 | Vs 0.72185960939 0.7159434407 5.9161686*10°
09 | Y 0.77610924220 0.7819233763 5.8141341*10°
1.0 | Yuw 0.83179160723 0.8400905919 8.2989847*10°3
11 | Yy 0.89833508817 0.8898639 8.4711881*10°
1.2 | Y 0.92205574559 0.9307459822 8.6902367*103
1.3 | Yi 0.95390775209 0.9623283582 8.4206062*10
14 | Yu 0.99285695777 0.9842954674 8.5614903*103
15 | Yis 0.98766446748 0.9964278216 8.7633542*107
1.6 | Y 98909399908 0.9986041984 9.5101994*10°3
1.7 | Yy 0.98421678021 0.9908028521 6.5860719*103
1.8 | Y 0.963121140957 0.9731017312 9.9805903*10°3
19 | VY 0.93756011157 0.9456776996 8.1175881*103
20 | Ya 0.91691006316 0.9088047689 8.1052942*103

IV. Discussion Of Results And Conclusion
We have presented three new Block-Schemes (K=1, K=2 and K=3) that are convergent, absolutely
stable, two (K=2 and K=3) of which were tested on non-stiff initial value problems.The computational results
reveal that the new block schemes work well on non-stiff problems, with good error stability and as such are
seen to also be efficient for solving initial value problems.
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