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Linear and Non-Linear Stability Analyses of Thermal Convection 

in a Sparsely Packed Anisotropic Porous Medium with Non-

Inertial Acceleration 
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Abstract: Linear and non-linear analyses of thermal convection in a sparsely packed porous medium with the 

external constraint of rotation are studied. The condition for stationary and oscillatory modes in the case of 

linear theory is obtained using the normal mode analysis. The non-linear analysis is based on the truncated 

representation of Fourier series. The influence of various parameters on the onset of convection has been 

analyzed. Using the non-linear theory, the thermal Nusselt number is calculated for different values of Rayleigh 

number and other parameters arising in the problem. New results in the realm of nonlinear convection are also 

discussed. A discussion is also made of low-porosity medium results for constant viscosity liquids. 

Key-words: convection, porous medium, anisotropy, stability, heat transport. 

 

I. Introduction 

Thermal convection in a rotating porous medium is a phenomenon relevant to many fields. Many 

authors have investigated the effect of external constraint like rotation and magnetic field on convection in a 

porous medium. (Rudraiah and Rohini, 1975; Rudraiah and Srimani, 1976; Rudraiah and Vortmeyer, 1978; Patil 

and Vaidyanathan, 1983; Friedrich, 1983; Palm and Tyvand, 1984; Rudraiah, 1984; Rudraiah and Chandna, 

1985; Jou and Liaw, 1987; Vadasz, 1993; 1994; 1997; 1998a; 1998b; 2000; Qin and Kaloni, 1995; Vadasz and 

Olek, 1998; Straughan, 2000; Govender and Vadasz,  2002; Riahi, 2003; 2006). Most of the above investigators 

have studied onset of convection in a low-porosity, rotating, isotropic porous medium with constant viscosity. 

Vadasz (1998b), Qin and Kaloni (1995) and Straughan (2000) have performed a non-linear stability analysis of 

convection in a low-porosity, rotating, isotropic porous medium with constant viscosity. The object of this paper 

is to study the effect of non-inertial acceleration on heat transport in a high-porosity, anisotropic porous 

medium occupied by a Boussinesq fluid with constant viscosity. This is a first step to the more general non-

linear problem involving variable viscosity. 

 

II. Mathematical formulation 
Consider a horizontal anisotropic porous layer of infinite extent occupied by a Boussinesquian fluid, confined 

between stress free isothermal boundaries at z= 0 and z= d, at which the temperatures are  0T  and 1T  

respectively, which is kept rotating at constant rate (see fig.1). Let Ω  denote the angular velocity of rotation. 

The porous medium is assumed to have high porosity and hence the fluid flow is governed by Brinkmann model 

with effect of Coriolis force and centrifugal acceleration. An appropriate single-phase heat transport equation is 

chosen with effective heat capacity ratio and effective thermal diffusivity. Thus the governing equations for the 

Rayleigh-Bénard situation in a Boussinesquian fluid with a rotating anisotropic porous layer are: 

Conservation of mass 

. 0q 


                                                                  (1) 

 

Conservation of linear momentum 
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Conservation of energy 
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Equation of state 
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 01 .R T T                                        (4) 

 

2.1  Basic state 

The aim of this paper is to investigate the stability of a quiescent state to infinitesimal perturbations 

superposed on the basic state. The basic state of the liquid being quiescent is described by 

( )
0, (0,0,0), ( ), ( ).b b bq T T z z

t
 


      




                                                                               (5) 

The temperature bT , pressure bp  and density b satisfy 

,b
b

dp
g

dz
   

2

2
0,bd T

dz
  

 01 ( ) ,b R bT T                               (6a, b, c) 

We now superpose infinitesimal perturbations on the quiescent basic state and study the stability of the system. 

 

2.2.  Perturbed state 

Let the basic state be disturbed by an infinitesimal thermal perturbation. We now have 

, ( ) , ( ) , ( )b b b b b b bq = q q T T z T p p z p ρ ρ z ρ .         
  

                     (7) 

The prime indicates that the quantities are infinitesimal perturbations. 

Substituting equation (7) into equations (1) to (4) and using the equations (6a, b, c), we get 

 

0,.q =


                      (8) 
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                  (10)                                                                                                                                                                                                                                                                                                                                 

.Rρ αρ T                                                     (11) 

 

We consider only two-dimensional disturbances and thus restrict ourselves to the xz- plane. We can 

now introduce a stream function 

,
ψ ψ

u = w
z x

  
   

 
                                       (12) 

which satisfies the continuity equation (8). 

 

Operating curl twice on equation (9), to eliminate pressure and introducing the stream function ψ and 

non-dimensionalizing the resulting equation as well as equation (10) and making use of equation (11), using the 

following definition: 

2 2
1
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                                 (13)                                        

 
we get the dimensionless equations in the form 

2 2 2
2 4 1
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1 ( , )
( ) ,
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where the asterisks have been dropped for simplicity, the non-dimensional parameters 

1 and-R, Pr, Ta, Da ,Λ, ε η are as defined below: 

3g Td
R





  (Rayleigh number), Pr 


  (Prandtl number), Ta   (Taylor number), 

21

v

dDa
k

   

(Inverse Darcy number), 
p

f




   (Brinkmann number), h

v

k
k

   (Mechanical anisotropy parameter) and 

h

v





  (Thermal anisotropy parameter). 

 The equations (14) to (16) are solved for free-free isothermal boundary conditions 

2 0 at 0,1.
v

ψ = ψ T z
z


    


                   (17) 

  

III. Linear stability analysis 
In this section, we discuss the linear stability analysis considering both stationary and overstable states. 

The solution of this analysis is of great utility in the local non-linear stability analysis discussed in the next 

section. To make this study we neglect the Jacobians in equations (14) to (16) and assume the solutions to be 

periodic waves (see Chandrasekhar, 1961) of the form 

2 2 0,πPr TaA π aAE ΛPrK D                       (18) 

 

Substituting equation (18) in the linearized version of equations (14) to (16), we get  

     2 2 1 2
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2
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  2 2
0 0(1 ) 0,πa ψ + σ + ηa π T  
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                       (21) 
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2 2 2 2 2 2
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For a non-trivial solution of the homogeneous system of equations (19) to (21) for 0 0 0, and ,v Tψ  we 

require 
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3.1. Stationary state 

If σ  is real, then stationary stability occurs when 0.σ  This gives the stationary Rayleigh number R
in the form  

   4 1 2 2 2 2
1

2 2

1

.s
Λ Da Λ Taπ ηa

R =
Λ a

  



  

             (23) 

                                                                                                                                                                                                                                                                                                                                                                                       

The critical wave number ca satisfies the equation 

10 8 6 4 2
1 2 3 4 5 6 0,c c c c cG a G a G a G a G a G                                                                                (24) 

where   
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The critical wave number ca depends on 
1-Da ,Λ, ε, η and Ta. When 1γ = , 

1 0 0 1,-Da = ,Ta = , Λ=ε = η  we get the classical result 
2 0.5ca  and 657.5s

cR  for clean fluids and for very 

small values of 
1Da  we get  

1
,ca 


   

22 1 ,s
cR    the classical result of Epherre (1977), from 

which the classical Lapwood(1948) result follows for isotropic porous media. In the presence of rotation ca and 

s
cR  are given by  

1 21 ,ca Ta 
   
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  
2

2 21 ,s
cR Ta  

 
   

 
 and the corresponding result for 

isotropic porous media (the classical result of Vadasz, 1998)  is obtained by taking 1.    

 

3.2. Oscillatory motions 

We put ( : real)σ iω ω  in equation (22) and rearranging we get the Rayleigh number R of 

marginal stability in the form 
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where 
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        (26)                                                                                                                                                                                           

Since R is a real quantity, either 0ω   (stationary) or 0N  ( 0ω  , oscillatory). The latter condition yields 

     
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
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 
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                         (27) 

Oscillatory Rayleigh number 
oR is now given by  
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ω Prπ ηa Λ Da Pr π Ta Λ ω

R =
Prπ a Λ Pr ω
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
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  
 
 
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
                       (28) 

and is minimized with respect to the wave number to obtain the critical value of .oR  

In the next section we perform a non-linear stability analysis and obtain the finite amplitude Rayleigh 

number, and also quantify the heat transfer by conduction and convection and see the effect of anisotropic 

parameters. 
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IV. Non-linear theory 
The finite-amplitude analysis is carried out here via a double Fourier series representation for the 

stream function ψ  v and temperature T in the form  

1 1

( ) ( ) ( ),mn

m n

ψ A t sin mπax sin nπz
 

 

                      (29) 

1 1

( ) ( ) ( ).mn

m n

v C t sin mπax cos nπz
 

 

                 (30) 

0 1

( ) ( ) ( ),mn

m n

T B t cos mπax sin nπz
 

 

                  (31)                 

Substituting equations (29) to (31) into the set of three coupled non-linear partial differential equations 

(14) to (16) we get a system of coupled, non-linear ordinary differential equations. Once a set of partial 

differential equations has been converted to a system of ordinary differential equations via a Fourier series it is 

logical to use the observed fact that laboratory and physical system often exhibit flows dominated by a few 

spatial harmonics to truncate the system as for as possible. The primary advantage of creating these truncated 

spectral models is that their steady states and temporally periodic solutions can be obtained analytically in many 

cases. Although the relationship between the solutions of the governing partial differential equations and the 

corresponding severely truncated ordinary differential system has not been established, these low-order spectral 

models may reproduce qualitatively, the convection phenomena observed in the full system. This allows one to 

choose a minimal representation from the above Fourier series. The results from such a simple analysis also 

serve as a starting value in solving a general non-linear convection problem.  

The first effect of non-linearity is to disort the temperature field through the interaction of ψ and T and 

also v and T. The distortion of the temperature field will correspond to a change in the horizontal mean, i.e. a 

component of the form (2 )sin πz  will be generated. Thus a truncated system which describes the finite 

amplitude free convection is given by (Veronis, 1959). 

( ) ( ) ( ),ψ A t sin πax sin πz                              (32) 

( ) ( ) ( ) ( ) (2 ).v D t sin πax cos πz E t sin πax               (33) 

( ) ( ) ( ) ( ) (2 ),T B t cos πax sin πz C t sin πz                (34)                                                     

where the amplitudes A, B, C, D, and E are to be determined from the dynamics of the system. The 

function ψ  does not contain an x-independent term because the spontaneous generation of large scale flow has 

been discounted.  

Substituting equations (32) to (34) into equations (14) to (16) and equating the coefficients of like 

terms we obtain the following non-linear autonomous system (generalized Lorenz model) of differential 

equations: 

 4 1 2
1

2 2 2
,

Λ Da Pr RPrπa Prπ Ta
A A B D

 

  

 
                              (35) 

 2 21 ,2B πaA π ηa B π aAC                           (36) 

2
24 ,

2

π a
C AB π C                                                             (37) 

2 2 ,D Prπ TaA π aAE ΛPrπ D                        (38) 

 
2

24 ,
2

2π a
E AD ΛPrπ a E                                    (39) 

where the over dot denotes the time derivative. 

The non-linear system of autonomous differential equations is not amenable to analytical treatment for 

the general time-dependent variable and we have to solve using a numerical method. However, one can make 

qualitative predictions as discussed below. The generalized Lorenz model is uniformly bounded in time and 

possesses many properties of the full problem. Also the phase-space volume contracts at a uniform rate given by 
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 
 

4 1 2
1 2 2 2 2 2 2

2
1 4 4 ,

Λ Da PrA B C D E
π η ΛPr ΛPrπ a

A B C D E

 
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

     
         

    

   
 

                 (40) 

which is always negative and therefore the system is bounded and dissipative. As a result, the 

trajectories are attracted to a set of measure zero in the phase-space; in particular they may be attracted to a fixed 

point, a limit cycle or perhaps, a strange attractor. 

 From qualitative predictions we now look into the possibility of an analytical solution. In the case of 

steady motions, equations (35) to (39) can be solved in closed form. Setting the left hand sides of equations (35) 

to (39) equal to zero, we get  

 4 1 2
1 0,Λ Da A RπaB π TaD                   (41) 

 2 21 0,2πaA π aAC π ηa B                            (42) 

8 0,aAB C                                                                         (43) 

2 2 0,πPr TaA π aAE ΛPrK D                        (44) 

8 0.AD ΛPraE                                                                (45) 

 

 Solving for B, C, D and E in terms of A, we get 

 2 2 2

8
,

8 1

aA
B

π ηa + a A
 

 
  

                                (46) 

 

2 2

2 2 2
,

8 1

a A
C

π ηa + a A
 

 
 

                                (47) 

2

2 2 2 2 2

8
,

8

ΛπPr TaA
D

Λ Pr K +π A
                                       (48) 

and 
2

2 2 2 2 2
,

8

πPr TaA
E

a Λ Pr +π A
 

 
 

                                 (49) 

Substituting B and D from equations (46) and (48) in (41) and writing in terms of A, we get  

 

     
    

4 1 2 2 2 2 2 2 2 2 2 2
1

2 2 2 2 2 2 2 2 2 2 2 2 2

8 8 1
0

8 8 8 8 1

Λ Da Λ Pr +π A ηa +π a A
A

Rπ a Λ Pr +π A ΛTaπ Pr ηa +π a A

     
  
    
  

              (50)                                                   

The solution A = 0 corresponds to pure conduction which we know to be a possible solution though it is 

unstable when R is sufficiently large. The remaining solutions are given by  
2

2 2

1 2 3 0,
8 8

A A
F F F
   

        
   

                                (51) 

Where 

 4 1 2 4 2
1 1 ,F Λ Da π a    

    2 4 1 2 2 2 2 2 2 2 2 2 2 2 2
2 1 11 ,F a Λ Da Λ a Pr +π η a π a R ΛTaπ a Pr        

  

     2 2 2 4 1 2 2 2 2 2
3 1 1 11 1 .F Λπ Pr Λ Λ Da η a a R Taπ η a         

  
 

 The finite amplitude Rayleigh number is obtained by solving the discriminant of equation (51) and is 

obtained in the form: 
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     

    

2 2 1 2 4 2 2 2 2 1 2 4
1 1

2 2 2 1 2 4 2 2 2 2 2
1

1
1

2 1

f

2

ηa Da Λ a Pr Λ Ta Λ Da Λ

R
a aPr Λ ΛTa Da Λ ηa K Pr a Λ

      

    

 



     
 

  
    
  

             (52) 

                                                           

V. Heat transport 
In the study of convection problems the determination of heat transport across the fluid layer is 

important. This is because; the onset of convection as Rayleigh number is increased is more readily detected by 

its effect on the heat transfer. In the basic state, the heat transfer is by conduction alone. 

If TH is the rate of heat transfer / unit area, then 

0

,total
T

z

T
H χ

z 


 


                     (53) 

where the angular bracket corresponds to a horizontal average and 

 

0 ( , , ).total
ΔT

T T z T x z t
d

 
   
 

                             (54 

                         

The first term of the RHS of equation (54) is the temperature distribution of conduction state prevalent before 

convection sets in. The second term on the RHS of equation (54) represents the convective contribution to heat 

transport. 

Substituting equation (34) in equation (6b) and using the resultant equation in the equation (53), we get 

2T

χΔT χΔT
H πC.

d d
                    (55) 

The Nusselt number Nu is defined by 

 
1 2TH

Nu πC.
χΔT d

                                         (56) 

Alternately, Nu may be directly defined in terms of the non-dimensional quantities as follows: 

2 /

0 0

2 /

0 0

(1 )
2

1 2 .

(1 )
2

k

c
z

z
f k

c
z

z

a
z T dx

Nu C

a
z dx














 
  
 
 

  
 
 
 
 





 

 

Substituting for C from equation (47) and then using the solution of equation (51) we can calculate the 

Nusselt number Nu for different values of R and other parameters of the problem. 

 

VI. Results and discussions 
In the chapter a study is made of the effect of rigid-body rotation on linear and nonlinear convection in 

a fluid saturated anisotropic porous medium at the onset of convection.  

With the motivation of control of convection, the following effects on the classical Rayleigh- Bénard problem 

are considered: 

(i) porous medium inhibition of convection, 

(ii) anisotropy of the medium and   

(iii) Coriolis force. 

These three effects are, respectively, represented by the inverse Darcy number 1Da , anisotropy 

parameters  ,ε η , and the Taylor number Ta. Thepresent formulation of the porous media problem for an 

infinite porous layer with rotation parallel to gravity is based on the Chandrasekhar (1961) formulation of the 

problem in a clear fluid layer. This formulation involves several assumptions (see Knobloch, 1998)- the lateral 

boundaries are far enough not to influence rotating convection and that the Froude number is quite small. The 

latter assumption facilitates the restoration of the conduction state as an equilibrium solution. Experimentally, 

the lateral boundary effect and the centrifugal effect have been shown by Ecke et al. (1992) to be quite 
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important but in a theoretical study to keep the problem manageable and focus on Benard-like situations, it is 

common to exclude these effects. The other types of instabilities possible in the case of systems as this is the 

Kuppers-Lortz instability (Küppers and Lortz, 1969) and Cox-Matthews instability (Cox and Matthews, 2000). 

In the former instability, convection rolls become unstable to rolls with a different orientation and in the case of 

the latter it arises at rapid rotation and at infinitesimal angles between two roll orientations. This is beyond the 

scope of the present chapter. The main emphasis of the present study is to consider the effect of non-inertial 

acceleration on the onset of convection via the stationary/oscillatory modes of linear instability or the finite 

amplitude steady mode of instability. Before embarking on a discussion of the results depicted by the figs. 2 to 

18, we note that as in the case of clear fluid critical convection is always stationary as overstable motion is 

restricted to very low values of the Prandtl number, when 
1Da is quite large. For low values of 

1Da , the 

critical value is stationary or overstable. Another point to be noted is that all the observations made in the 

previous chapter on high rotation rates holds good in the case of the present problem as well. We now discuss 

the results depicted by the figs. 2 to 18. Fig.2, reveals that, the effect of increasing 
1Da is to stabilize the 

system. We further find from the figure subcritical instability exists in the case of this problem. We have 

observed in the computations that as the rotation rate is increased then its effect on onset of convection is not 

altered by varying 
1Da .  This is due to the fact that large rotations do not allow the internal structure of the 

porous medium to affect convection. Fig.3, reveals that, the effect of increasing
1Da  is to dampen the 

oscillations, at the onset of convection, for all rotation rates. The effect of increasing Ta is similar to that of 

increasing 
1Da on the Rayleigh number and opposite on the frequency of oscillations (see figs. 4 and 5). 

Further, we find that finite amplitude steady convection precedes marginal convection for all values of Ta.  

The effect of varying   is more pronounced in the case of finite amplitude steady convection compared to 

marginal convection and this is seen in fig. 6. Further, for all value of  , subcritical instability exists. The effect 

of increasing   is to destabilize the system. Fig.7, shows that, the effect of increasing   is to enhance the 

oscillations. The effect of increasing   on R is opposite to that of increasing   and the same can be seen in 

fig.8, but the effect of increasing   on the frequency of oscillations is similar to the effect of increasing  (see 

fig. 6.9). The effect of increasing Brinkman number Λ  is to increase the Rayleigh number and decrease the 

frequency of oscillations (see figs. 10 and 11 respectively). The effect of increasing Pr is, shown in fig.12, to 

destabilize the system and this is true because of the fact that the rotation rate has been chosen to be high (same 

as in Chandrasekhar, 1961). The effect of increasing Pr on the frequency of oscillations (see fig.13) is to 

amplify the oscillations. In the plots of the Rayleigh numbers it is obvious that subcritical instability is preferred 

to marginal stability.  

We note at this point that the oscillatory convection curves are below those of the stationary ones 

because of the choice of small Prandtl numbers in the case of high-porosity media. While calculating the Nusselt 

number Nu a large value of Pr is chosen which essentially implies stationary curve is below the oscillatory one 

and calculations have been done using the stationary Rayleigh number. The results of this calculation are shown 

in figs. 14 to 18. The reduced-heat-transfer effect of increasing 
1Da  and Ta on Nu is shown respectively in 

figs.14 and 15. The effect of increasing   and  on Nu is shown to be opposite to each other in figs.16 and 17.  

 

The effect of increasing   is to clearly enhance the heat transfer. The effect of increasing Λ on Nu is 

to enhance the heat transfer (see fig.18).  

We conclude the results and discussion with the remark that subcritical instability is not possible in the case of 

very small 
1.Da  
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