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Abstract: The present work deals with proposed and analyzed an eco-epidemiological model consisting of
prey-predator system with svis — type of disease in prey species only. The boundedness of the solution is
discussed. The local and global stability of the system is carried out. The local bifurcation conditions near the
predator free equilibrium point are established. Finally the numerical simulation is used to complete our global
analysis of the system.
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I Introduction

The study of mathematical models that combine the prey-predator systems and the spread of infectious
diseases are greatly important to many of the animal populations as well as fishing operations. These types of
studies are now constructing a new field of study known as eco-epidemiology. In addition, infectious diseases
became an important regulating factor for human and animal population sizes. In particular, for prey-predator
ecosystems, infectious diseases coupled with prey-predator interaction to produce a complex combined effect as
regulators of predator and prey sizes. There are many ecological studies of prey-predator systems with disease.
This factor (Disease) therefore, was invited to the attention of veterinary medicine and the provision of vaccines
for these diseases. In subsequent years, many authors studied the environmental models with infected prey and
the papers that relate focusing on subject [1-7]. Also, the incidence rate of the disease, predation rate and the
type of disease represent a major factors affecting the dynamics of eco-epidemiology systems.

In 1986 Anderson and May were the first who merged the above two fields, ecological system and
epidemiology system, they formulated a prey-predator model with infectious disease spread among prey by
contact between them [8]. Haque [9] proposed a prey-predator model includes a Susceptible-Infected-
Susceptible (SIS) parasitic infection in the predator population with linear functional response and nonlinear
disease incidence rate. Haque and Venturino [10] considered a prey-predator model with SI epidemic disease
spread in predators involving linear functional response. Das [11] studied a prey-predator model with SI
epidemic disease in predators included Holling type-Il as a functional response. Venturino [12] proposed and
analyzed prey-predator model with SIS disease in predators included linear functional response and linear
disease incidence. Haque and Venturino [13] considered a prey-predator model with Sl epidemic disease spread
in predators included ratio-dependent functional response and linear disease’s incidence rate. Dahlia [14]
studied a prey-predator model with SIS epidemic disease in prey. Ahmed and Israa [15] studied a prey-predator
model with SIS epidemic disease in predator involving Holling type-11 as a functional response. Hadeler and
Freedman [16]; Venturino [17], have been devoted to observe the dynamics of such system when prey
population is infected with some transmissible diseases. Temple [18]; and VVan Dobben [19] observed that the
predator take a disproportionately high number of parasite infected prey. In this paper we proposed and analyzed
a mathematical model describing prey-predator model having SIS epidemic disease in the prey population
involving vaccination and top predator species.

Il.  Model formulation
In this section an eco-epidemiological system consisting of prey-predator incorporating infections
disease in prey species is proposed. In order to formulate the dynamics of such system the following hypotheses
are considered.
1. The existence of disease in prey - spacies divides the prey population into three classes, namely susceptible
prey population that denotes by s (T ), vaccinated prey population that denoted by v (1) and infected prey
population denoted by 1(T) . It is assumed that in the absence of predator the susceptible prey reproduces

logistically with intrinsic growth rate r > 0 and carrying capacity k > o, while the other classes of prey
have the capability to compete for resources. Further the disease is not genetically inherited.
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The susceptible prey becomes infected either by contact with infected prey at a rate a; > 0 or due to an
external resources at rate a, > 0 . Further the infected prey returns back to be susceptible again at a recover
rateg > 0.

Portion of susceptible population, say ass ; takes vaccine against the disease where 0 < a; <1 denotes to
the vaccine rate. It is assumed that the vaccine may be failed with probability « < (0,1) and the prey returns
back to be susceptible with rate b, e (0,1) . This is left (1-b;)ev from prey individuals become infected
either by contact with infected prey at a contact rate b, > 0 or through an external resources at a rate
by >0.

The predator which denoted by p(T) consumes the prey according to Lotka-Volttera functional response
with positive attack rates a,,b, and c¢ for susceptible, vaccinated and infected prey respectively, while
e; € (0,1),i =1,2,3 are the conversion factors that denoting the number of newly born predators for each

captured of susceptible, vaccinated and infected prey respectively. Finally, in the absence of the prey the
predator decays exponentially with natural death rate d > 0.

According to the above hypotheses the dynamics of the above eco-epidemiological real system can be
represented mathematically by the following set of nonlinear differential equations:-

ds ( S+V+IW
—=1S|1-——|-2a;Sl —a,S —agS - a,SP +bjaV + g1

dT L k )

dv

—=2a3S -bjaV -by,(L1-by)aVl —bzg(l-Dby)aV —b,WP

dT (1)
dl

—=2;Sl +a,S +by(1-by)aVl +bg(l-by)aV —clP - § 1
dT

dp

—— = 8784SP +e,b VWP +ezclp - dP

dT

with the initial conditions S(0) > 0,V (0) > 0,1(0) >0 and P(0) > 0.

Note that system (1) contains 17 parameters in all, which make the analysis of the system difficult, so in

order to reduce the number of parameters and specify which combination controls the system, the following
non dimensional variables and parameters are used in system (1) to get the next dimensionless system.

S \Y | a,
t=1T, Xx=—,y=—,2=—,w=—FP,
k k k r

a a a b B

1 2 3 1
up = —k,u, =—,Uu3=—,U, =—a,Uy; = —,

r r r r r

)
a a b,
Ug = kb, (1-b,)—, u; =bs(1-b;)—,ug = —,
r r a,

c e1d, e,h, 3 d
Ug = — Uy = = KUy = ——k up =——k,Uug =—

8.4 r r r r
The dimensionless form of system (1) becomes
dx
—=X(l-Xx-y-z)-upxz —(Uy +Ug)X—XW +Uygy+uUgz = f(Xx,y,z,w)
dt
dy
E:u3x—(u4+u7)y—u6yz—u8yW: fo(x,y,z,w)

@)

dz
— = UXZ +UpX+UgYZ +Uzy—UgZWw —UgZ = fg(X,y,z,w)
dt
dw

?: Ugg XW + Ugq YW + Ugp ZW —Ugg W = Ty (X, y,2, W)

here the initial conditions are given by x(0) = 0,y(0) = 0,z(0) =0 and w(0) >0 .

Clearly, system (3) has 13 non dimensional parameters and that means the number of parameters in system
(1) by 4. Moreover the interaction functions f;(x,y,z,w),i=1,2,3,4 are continuous and have continuous
partial derivatives on the positive cone.
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10. Rf = {(x,y,z,w)e R4;x >0,y>0,z>0,w> 0}
11. Therefore these functions are Lipschitzion and hence system (3) has a unique solution, which is bounded

and still in r? for all the positive time as shown in the following theorem.

Theorem (1): All solutions of system (3) that initial in R ? are uniformly bounded.

Proof: Since the prey species consisting of three compartments, namely susceptible, vaccinated and infected
population respectively. Then the total prey population is given by N = x + y + z, which is growing logistically
in the absent of predation. Therefore, it easy to verify that

dN dx dy

dz
— = —4+—4+—<N(@-N)
dt d dt dt

Straightforward computation gives that

lim Sup N(t)<1= N(({t)=x({t)+y()+z(t)<1;t>0
t—>

Let M (t) = x(t) + y(t) + z(t) + w(t) , then from system (3) we obtain that
dm
dt

where 4 = min .{1,u;53 } . Then we get that

2 2 _
M(t)<—+[M0——Je put
H u

<2-uM

Thus m (t) < 3, vt > 0, and hence the proof is complete. =
i

I11.  Existence And Stability Of Equilibrium Points
It is easy to verify that the system (3) has at most three biologically feasible equilibrium points. The existence
conditions of each of them along with their local stability analyses are discussed as follows
The vanishing equilibrium point g, = (0,0,0,0) always exists.
The predator free equilibrium point g, = (x,y,z,0) , where
ugzfuy + (ugz +u7)]

Ug(UgZ +U7)+ (UgZ +up)fuy + (ugz +uy)]

X

_ (4a)
— U3U52
Y= Ug(UgZ +Ug)+ (UgZ +up)fuy + (ugz +uy)]
while z represents a positive root of the following fourth order polynomial equation
A4z4+A323+A222+A12:0 (4b)

3
here Al:u5(u4+u7)[u3u7+u2(u4+u7)] >0
2
Ay = |ugluguy +uy(uy +ug)] [uguy(ug +Uug +Uy)+uguy(Ug+Uy)+UgUugUuy(Uy +Uy)
2 2 2
+ (U, +up +up)(ug +uz)” - (Ugup +ug)(uy +Uz)” —uUguguy (uy +u7)]
2 2
A3:[u5(u3u7+u2(u4+u7))(—ul (ug +uy) ((—1+u2)u4+(—1+u2+u3)u7)
2
+uglg(uyuy(ug +ug)—2ugug(uy +ug)+ug(uguy +uy(2us +ug+uy))
2 2 2 3
+Up(u, +ugug +uy(ug +ug+ (1+ug)ug))) +up(-Ugugugly +uU, (Ug+uUz)
—2u5(u4+u7)3+u3(u4+u7)(u7(2u5+u7)+u4(2u5+2u6+u7))

Fup(ug +uz)(u) + @+ ug)ud +uy(2ug +ug(-ug + ug)))
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3 3 2
Ay = [us(u] (ug +u7 ) ((~1+up)uy + (-1+ Up +Ug)ly) — Uplglg(~U U ugUy
2 2 2
—Bugug(ugy +ug)” +u ug(uy +Ug)(2uy —Ug +2U7)+ug(2uguy
2 3 2
+2u4u7(4u5+u6+u7)+u4(6u5+3u6+2u7))+u2(2u4+2u5u7
2
+2U4u7(2ug - (=1+ug)ug + (L+ug)uz)+u, (2us - (-2 +uz)ug
2 2 2 3 3
+2(2+ug)uy)) -u, (Uug + u7)(—2u3u4u6u7 + uz(u4 +U7)” —3ug(uy +uy)
+u3(u4+u7)(u7(3u5+u7)+u4(3u5+3u6+u7))+u2(u4+u7)(u§+(1+u3)u72
2,3 2 2
+Ug(2ug +ug(-2ug +uz))) —u3u6(u2u4(u4 +u7)+u2((1+u3)u4 +UglUy
+u4(u5+u6+u7+2u3u7))+u2(u§u4u7—2u4u5(u4+u7)+u3(u§+2u5u7
+2Ug(2ug +ug +U7))) +uUg(-ugug(3uy +2uy) +ug(uguy + Uy (3ug +ug +uy)))))I
Clearly, g, exists uniquely in interior of rR3 ofthe xyz — space, provided that the following conditions hold
Ay, >0 and Ay <0)

or L (4c)
Az <0 and A4<0J
The positive equilibrium point £, = (%, y,2,w) of system (3) can be determined by equating the right hand side
of system (3) to the zero and solve the resulting algebraic system. Straightforward computation gives that:

‘- Upg Uy Y- Upp ?

U1o (52)
a
. 1 0 Uglyy . ; ]
W= |uguyg —| Uy +U7 + Ujg ¥ —Ugugp 2 —uguqg Y7 |
uglio | U1g
while (y,2) represents a positive intersection point of the following two isoclines:
f(y, z) = r1y3+ r2y2+r3y+r4yz +r5y22+ r6y22+ r7z+rgz2 -rg =0 (5b)
2 2 2 2
9(y,2) =12 +Spz+53y2 +S4y2° +s5y 2+ 55y  +s7y=0 (5¢)

Here f = UglggUyq + U8U121 >0
rp = (UgUgg +Uplyy +Uglgg Juglyg — (Ug +Ujg JUgUyy
—(u7 +ug)ugguyy — (U + 2ugg uglyg
f3 = Ugliglyg +Uglgglyg + UzlgUyg + Ugliyg Us3
—UplUglgg gz —Uglglgglyz + Uglgglgz + U8U123
My = u5u8u120 —Ugliglgp —UgljglUyp —UzUjglUyp —Ugligglyp + UplglyglUyp + Uglglyg Uy
—Uglgalgp +Ugljg gy — Uglyg Uy — Ugliglgg Usz — 2Ugliyp Uyg

s = UgUjglyy —UgUggUyy +UgliglggUyy + UgljgUyp + 2Uglyylsp
g = UgUjglUjp —UgljgUip +UjlgljgUsp + U8U122
r; = 2ugUppugg >0, rg = —u3u122 <0, r9 = u3u123 >0
§1 = Uglguqp >0, sy, =uguguygz >0,
S3 = Uglgljp +Uzlglyg +Uglylig —Uglgljp —Uplglyy + Ujliglyz
S4 = UgUgUig —Ujlglyp , S5 = Uglgliyp — Ujlglyy
Sg = Uylglyg — UpUglyy ,S7 = UpUglyg >0
Clearly as z — o the first isocline (5b) intersects the y — axis at a unique positive point, say y, > 0 , provided

that

rp >0 or r3 <0

(6a)
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However when z — o the second isocline (5¢) will intersect the y - axis at zero or a point y = y, , which is
positive provided that
UzUgp < Uplqg (6b)
Consequently, these two isoclines (5b) and (5c) have an intersection point in the interior of the positive quadrant
of yz — plane, namely (y,2), provided that the following conditions are satisfied.

Y2 < V1 (6¢)
of ]
—>0ad —>0 ‘
oy 0z ‘
or s (6d)
of |
—<0and —<O0 ‘
oy 0z )

0
a9 > 0 and
oy 0z |

or L (6e)
o9
—<0and —> O|
oy 0z J
Therefore the positive equilibrium point £, = (%, 9,2,w) exists uniquely in the interior of r{ if in addition to
above conditions (6a)-(6e) the following conditions are satisfied too.
Upg > Ugg J+Ugp 2 (6e)
UgRX > (Uy +Uuy) ¥ +ugy?z (6f)
In the following the local stability of each equilibrium points of system (3) is investigated. The Jacobian matrix
of system (3) at (x,y,z,w) isgiven by

J = (ajj)axa ()
where
agp = -2x+(l-uyg-ug)-y-(A+u)z-w, a9 = -X+Uyg, a3 = —(L+u)x+ug
ajg =—X, ap =Ug, axp =-(Ug+Uy)-UgZ—UgW, apy =—-Ugy, ap =-Ugy
azp =UjZ+ Uy, azy =UgzZz+Uy, azz =UX+Ugy—UgW—Ug, agg = —UgZ
41 = U0 W, g SUpW, 843 =UpW, Qg4 =Ugp X+ Uy Y +Up 2~ Ug3

Accordingly, the local stability conditions for each of the above equilibrium points are established in the
following theorems.

Theorem (2): The vanishing equilibrium point e, of system (3) is a saddle point in RY.

Proof: Clearly the Jacobian matrix of system (3) at e, can be written as

(1—u2—u3 Uy ug 0 W

; g ~(ug+u7) 0 U

07 _ o |
Uz uz Us

L 0 0 0 —uBJ

(8a)
Therefore, the characteristic equation of J , is given by

[~ ug - 1][13 + AR AyA+ A= 0
(8b)
here A =u, +ug+uy+ug+u; -1, Ay = (uy+u;)ug—(A-uy)uy —(1-uy, —ugluy; and Az = —ug(uy +u;)<0.
Now, according to the Routh-Hawirtiz Criterion all the eigenvalues of 3, have roots with negative real parts if
and only if A;j(i=13)>0 and A =AA, - A; >0. Since we have A; <0 always and the eigenvalue in the
w - direction, 2,, = -u;3 <0, hence g, isa saddle point.
|
Theorem (3): Assume that the predator free equilibrium point E; = (x,y,z,0) exists, then it is locally
asymptotically stable provided that
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max {[u4, ’5 ]}< x <5 _16Y (9a)
L 1+ us uq
e [—2X+(@-uy-ug)- )7‘—(U4+u7)1> s
L 1+uy Ug J
(9b)
i < R R VR
Uio
(9c)
(b +bgz)byg +bygby >0 (9d)

where b represent the Jacobian elements and are given in the proof.
Proof: Since the Jacobian matrix of system (3) at e, can be written as

J1 = (0§ )axq
(10a)
where by = —2Xx+(@-uy —ug)-y-(@+u)z, by, =-X+Uy, bz =-1+u;)X+uUg, by =-%x, by =ug,
byy =—(uy +u7)—ugz, by =-ugy, by =-ugy, by =ujz+u,, bgy =ugZ+uy, bz =u;x+ugy-ug,
bgg = —UgZ, by =byy =bsg =0 AN by, =ugx +uyy +up,z—ug . Then the characteristic equation of J,
can be written as

(13 +B1A% +Byd +Ba)(byy —4) =0

(10Db)
With By = —(by + by +ba3) By = D1y by —bip by +Dyybgg —bygbgy + by baz —bazbzy and
B3 = —b11bypbgg — D1y byzbgy —bigby bgy +by3hsy by + b1y bozbgy +byp by bgs So either

(bss - 2) = 0, which gives the eigenvalue in the w - direction by 4,, = by, ,0r 1%+ Bj2% +By2 + B3 = 0.
Now, straightforward computation shows that 4,, = b,, <0 under condition (9a); 8, > 0 and B, > 0 under the
conditions (9a), (9b) and (9c); while A =8B,B,-B5 >0 under the conditions (9a)-(9d). Consequently,
according to Routh-Hawirtiz criterion all the eigenvalues of 3, have negative real parts and hence g, is locally
asymptotically stable. n
In the following theorem, the basin of attraction of the predator free equilibrium point of system (3), is
established.

Theorem (4): Assume that the predator free equilibrium point g, is locally asymptotically stable, then it is a

globally asymptotically stable in the sub region o, R that satisfy the following sufficient conditions

X+ Uy < X

(11a)
y+ ooy
Ug
(11b)
722, (11c)
Ug
up+ug>1 (11d)
UpX+Ugy < Ug
(11e)
q122 <0ndz2 (11f)
q123 < 011933
(119)

q§3 < 04220433 (11h)
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where O = (X +X)=(@A-up —ug)+y+@+ug)z, Op = X—Ug —Uy, Qg =Uy + U7 +UgZ,
O13 = L+ U)X —Ug —UjZ — Uy, Qo3 = Ugy —UgZ —U7 aNd qgzg =us —u;x —ugy .
Proof: Consider the following function
1 _, 1 _, 1 2
Ll(x,y,z,w):;(x—x) +;(y—y) +;(z—z) + W

It is easy to see that Ll(x,y,z,w)ecl(Rf,R), in addition  L;(x,y.z.0)=0  while

Li(X,y,z,w) > 0,Y(X,y,z,W) e Rf and (x,y,z,w) = (x,y,z,0). Furthermore by taking the derivative with
respect to the time and simplifying the resulting terms, we get that

i, T _ o T

S M 0% g (- (Y - )+ 22y g2

it ) ]
RERY 2

- - - -2 1
L (x—x)z+q13(x—x)(z—z)+q%(z—z) J
[ - - - 21
,Lqi(y, N2+ ag (v - Nz- 1)+ Bz - z)zJ
2 2

~[x=x—ug xw —[ug(y - y)—ugy Jyw —[ug(z - 2) —upy Jaw —uggw
Clearly q;; and qg; are positive under conditions (11d) and (11e) respectively. Consequently by using the
above sufficient conditions (11a)-(11h), it is obtained that

2 2
a. T B P B B
—l<—|,/qi(x—x>+,/qi(y—y)| —|,/qi(x—x)+,/qi<z—z)\
dt L 2 2 J |_ 2 2 _|
2
r B B
RGP D] —ugw
LV 2 2 |
L

Thus, —L is negative definite and hence L, is Lyapunov function with respect to g; in the sub region o, . So
dt

E, is a globally asymptotically stable. =
The next theorem deals with the stability of the positive equilibrium point using the Lyapunov function.
Theorem (5): Assume that the positive equilibrium point g, = (%, 9,2,w) exists then it is a asymptotically

stable in the sub region o, < R? that satisfy the following sufficient conditions

Up, +ug>1
(123)
UpX +Ugy <UgW+ug
(12b)
Ugg X +Uqq Y +Ugp Z <Ujgg (12C)
2 4
Pp < g P11 P22
(12d)
2 4
Pig < P P33 (12¢)
4
P124 < g P11 Pas (12f)
2 4
Py < g P22 P33
(129)
2 4
Poy < g P22 Pag
(12h)
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, 4
Py < ; P33 Pag
(12k)
where Py = X+ X—(Q-up —ug)+ ¥+ Z(A+Uy)+W, pyy =Uy+Ugy +Ug?Z+ugW,
Pgg = UgW +Ug —UX—UgY, Pgg =Upg ~UggX —Ugy —Upp 2, Ppp = X—Uy —Ug,
P1g = X(L+Ug) —Ups —UyZ—Up, Pyg = X—UgW, Pyz =Ugy —UgZ—U7,
Pog =Ugy —Up W, and pgy =ugz —up, W
Proof: Consider the following function
1 2 1 2 1 L2 1 .2
Ly(x,y,z,w) = —(x=X)"+ —=(y-¥) +—(z2-2)" + —(w-W)
2 2 2 2
Clearly L, : Rf - R and it is a continuously differentiable function, in addition, L,(%,9y,2,W) =0 while
Lo(X,Y,2,W) > 0,V (X,y,2,W)e Rf and (x,y,z,w) = (%X,y,%,w) . Further by taking the derivative with respect to
the time and simplifying the resulting terms, we get that
ay ey Py 2

= -0 ¢ pyp (- (Y - D)+ 2 (y - )
at 3 ]

[ 1

,Lpll (x—x) + Pz (x=X)(z-2)+ —— Pas (z—z”)zJ
[ P11 o) 2 . - P4g 212
_L_(X_X) +p14(x—x)(w—w)+—(w—w)J

3 3

[ 1
ft%(yfy) b Py (Y- )z - 1)L (Z,i)zJ
(Pzz P a4 N 21
—LT(y—y) + Pog (Y= Y)W — W)+ (w—w) J
’—psg a2 . N P4q 21
—LT(Z—Z) + Pgg (2 - 2)(Ww—-W)+ (W—W)J

It is easy to verify that, p;;.,ps; and p,, are positive provided that conditions (12a)-(12c) are satisfied
respectively. Consequently, due to conditions (12d)-(12k), we have

dL, r P11 P22 . i [ P11 P33 —‘2
—= = LT (X =R (Y =) | o (=) + (z-12)|
dt |_ 3 3 L 3 J

w

3
2 2
r 7?2 7
- pz(y—y)+,/p4“ wow)| -y [Py |
|_ 3 3 _| |_ 3 3 _|

dL, . . - . . . . .
Therefore, —2- is negative definite and hence L, is a Lyapunov function with respect to €, in the sub region
dt

Q,.S0 E, isaasymptotically stable.
n
Note that the function L, is approaching to infinity as any of its components do the same and its positive

definite on R?, however its derivative is negative definite on the sub region o, due to the given sufficient
conditions. Therefore E, is a globally asymptotically stable within , .

IV.  The local bifurcation analysis
In this section, the effect of parameter values on the dynamical behavior of system (3) near the
equilibrium points is studied. It is well known that the existence of non-hyperbolic equilibrium point of the
system is a necessary but not sufficient condition for bifurcation to occur. Therefore in the following the

DOI: 10.9790/5728-122190101 www.iosrjournals.org 97 | Page



The Dynamics Of A Prey-Predator Model Incorporating SVIS-Type Of Disease In Prey

parameter that makes the equilibrium point of system (3) as a non-hyperbolic equilibrium point is considered as
a candidate bifurcation parameter for the system.
Now consider the Jacobian matrix of system (3) given by equation (7). It is easy to verify that
straightforward computation gives that:
(— 2vy(vy + vy + (L+ug)vg + v4))
-2
DZF(X).(V,V):i V2 (UsYs * UgVa) I
2vg(UVy +UgVy —UgVy)
L 2v4(ugg vy +Ug vy +Ugp V3) J
(13)
where X =(x,y,z,w)" and V =(v; v, .,v3,v4) . Further, D®F (x).(v,v.v)=o0, hence pitchfork bifurcation
can’t occur.
Now, since the Jacobian matrix of system (3) near the vanishing equilibrium point e, can’t has zero real part
eigenvalue. Therefore, there is no possibility to have bifurcation at e, . Moreover in the following theorem the

local bifurcation conditions near the other equilibrium point are established.

Theorem (6): Suppose that the conditions (9a) and (9b) together with the following conditions are satisfied
(bygbpy = b1y bz )ag # (byg by —byyboy ) (14)
bipay +bjz3az #—by

(15)

Then for the parameter value ujz =uyo X +ugy v+ ug, z System (3) at the equilibrium g, has a transcritical

bifurcation, but not saddle-nod bifurcation.

bygboy — by bog )arg + (byg by — byyb
where azz(lS 21 — bpy1bog )ag + (b by —bygbyy)

(byy by —byp by )

_ (13 D3y —byp bgy )(Dyg Do —Dyg by ) — (byg by — byp 0oy )(Byg b3y — Dyg b3y )

e (b1 oy —byp by )(byg b3z — bygbsy ) — (byybgy —byp by )(byg bz —byzbyy)
Proof: According to the Jacobian matrix at g, that given by Eq.(10a), system (3) has zero eigenvalue (say
A1 =0)at Uy = Uy , SO the Jacobian matrix 3 (E,) with uj; =uj; becomes:
31* = J1('51~U:3 ): (b;})4x4
where b; =bjj; Vi, j=12,34 except b, ,» Which is becomes zero.
Now, let K = (k;,k,.ks.k,)" be the eigenvector corresponding to the eigenvalue A1 = 0 of the matrix i .

Thus (Jl* ~ w1 K = 0, which gives
Ky=arky ky=ayky kg=agk, and 0 %k, eR

_(bpay —bgag —by)

where o,
b

«T
Let L =(.1,.15.1,)" be the eigenvector associated with the eigenvalue A1y = 0 of the matrix J; . Then
T
[Jl* - AlWIjL =0, which gives that 1, be any nonzero real number while 1, =1, =13=0.

Now, consider
T

] =(0,0,0,-w)

oF of, of, ofy of,

= Fuy, (X~U13)‘[

Ouyg Ouqz Ouqz Ouyg  Oujgg

S0, Fy,, (E1.u53 )= (0,0,0,0)" , and hence L7 Fug, (£4.u55 )= 0, thus according to Sotomayor's theorem saddle-

node bifurcation can’t occur, while the first condition of transcritical bifurcation is satisfied. Also, we have

T *
L [DFle3 (El,u13 )K ]: —kgly %0
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Further more according to Eq. (13) we get
L’ [D ’F (El, urs J(k K )]: (2ugay + 2y ay + 2upyag)k iy
Straightforward computation, using the conditions (14)-(15), shows that L' [D ’F (El,uf3 )(K K )]¢ 0. Hence,

system (3) has transcritical bifurcation at €, with the parameter u,, = uI3 and the proof is complete.
|

V. Numerical Simulation
In this section, the global dynamics of system (3) is studied numerically. The objectives of this study
are confirming our obtained analytical results and detected the set of control parameters that affect the dynamics
of the system. Consequently, system (3) is solved numerically for different sets of initial conditions and for
different sets of parameters. It is observed that, for the following set of hypothetical parameters the system (3)
has a globally asymptotically stable positive equilibrium point as shown in following figure.

u; =05,up; =0.1 JUg = 0.25 ,uy =0.05 JUg = 0.1 JUg = 0.1,u; =0.05, (16)
ug = 0.4 ,ug =0.4 ,u;g =0.3,uyy =0.1,u;p =0.2,u93 =0.1

(b)
1.5 @ 1.5 i

started at 0.9
started at 0.1
started at1.5

started at 0.7
started at 1.5
started at 0.1

Susceptible population
Vaccinated population

_ . .
0 5000 10000 5000 10000

Time Time
(©) (d)
1 . 1 :
\ started at 0.5 A started at 0.3
‘\ started at 0.1, \ started at 0.9
\ started at 0.9 \ started at 0.1
\
\
s\ \‘
< \ c \
2 o \
= s \\
E] E] \
2 2 \
g g 05 \
2 g
= a
. 0 .
5000 10000 0 5000 10000
Time Time

Fig. 1: Time series of trajectories of system (3) for the data (16) started at different initial points. (a) The
trajectories of susceptible prey as a function of time. (b) The trajectories of vaccinated prey as a function of

time. (c) The trajectories of infected prey as a function of time. (d) The trajectories of predator as a function of
time.

Obviously, Fig. (1) shows the existence of a globally asymptotically stable positive equilibrium point
E, = (0.14, 0.16, 0.2, 0.23) for system (3) and this is clear due to convergent from three different initial data.

Note that since the parameters u;,u,,---u; describe the relationships among the compartments of the prey

species (x,y and z) and the parameters ug,ugy,--- uy, describe the relationships between the predator on one

side and one of the prey’s compartments on the other side. Therefore varying these parameters don’t have

qualitative effects on the dynamics of system (3) rather than that they have quantitative effects on the value of
positive equilibrium point.
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However, for the data given by equation (16) with varying the parameter u,, in the range u;; > 0.2, then the
trajectory of system (3), starting from different sets of initial data, is approaching asymptotically to the predator

free equilibrium point as shown in the typical figures represented by Fig. (2) and Fig. (3).

Susceptible population

1

0.5

(a)

started at 0.9
started at 0.4
started at 0.1

Vaccinated population

(b)

1

started at 0.7|
started at 0.1]
started at 0.4]

I
5000 10000

.
0 5000 10000 0
Time Time
(©) (d)
1 T 1 T

started at 0.5 started at 0.3|

started at 0.9 started at 0.7|

started at 0.2 started at 0.9
c c |
S s
& s «
= =
2 2
g g o5t
g g |
g E O
- a

\
i
\
0 . 0 - .
0 5000 10000 0 5000 10000
Time Time

Fig. 2: The trajectory of system (3), for the data (16) with u,5 = 0.3 started at different initial points, approaches
to g, = (0.162 ,0.256 ,0.581 ,0) . (@) The trajectories of susceptible prey as a function of time. (b) The

trajectories of vaccinated prey as a function of time. (c) The trajectories of infected prey as a function of time.
(d) The trajectories of predator as a function of time.

(@) (b)
0.9 : : 0.9 : :
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— —y
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w —)
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g | g
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03f \__
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Fig. 3: Time series of the solution of system (3) for the data (16) with different values of u,, . (a) Globally
asymptotically stable positive equilibrium point for u;; =0.1. (b) Globally asymptotically stable predator free
equilibrium point g, for uyj3 =0.25 .

According to these two figures, it’s clear that the solution of system (3) approaches asymptotically to the
predator free equilibrium point.

VI Conclusions and discussion
In this paper an eco-epidemiological model consisting of prey-predator system having svis — type of
disease in prey is proposed and analyzed analytically as well as numerically. It is observed that the system has at
most three nonnegative equilibrium point. The local and global stability of these equilibrium points are
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discussed and it is observed that the vanishing equilibrium point is a saddle point while the predator free
equilibrium point and the positive equilibrium point are asymptotically stable under certain conditions. The local
bifurcation of the equilibrium points £, and g, is discussed analytically according to Sotomayor's theorem

while that of the positive point is discussed numerically. Furthermore numerical simulation is used to verify our
obtained results and specify the set of parameters that control the dynamics of the system. Finally according to
the numerical outcomes, it is observed that the system (3) for the data given by (16) has a globally
asymptotically stable positive equilibrium point. However increasing the predator death rate above a specific
value causes extinction in predator species and the solution approaches asymptotically to the predator free
equilibrium point. Consequently the system undergoes a bifurcation around the positive point by varying the
predator death rate and the solution of the system change its stability from the positive equilibrium point to the
predator free equilibrium point. Finally all the other parameters have quantitative change but note qualitative
change on the stability of the positive equilibrium point.
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