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Abstract: The present work deals with proposed and analyzed an eco-epidemiological model consisting of 

prey-predator system with SVIS type of disease in prey species only. The boundedness of the solution is 

discussed. The local and global stability of the system is carried out. The local bifurcation conditions near the 

predator free equilibrium point are established. Finally the numerical simulation is used to complete our global 

analysis of the system. 
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I. Introduction 
The study of mathematical models that combine the prey-predator systems and the spread of infectious 

diseases are greatly important to many of the animal populations as well as fishing operations. These types of 

studies are now constructing a new field of study known as eco-epidemiology. In addition, infectious diseases 

became an important regulating factor for human and animal population sizes. In particular, for prey-predator 

ecosystems, infectious diseases coupled with prey-predator interaction to produce a complex combined effect as 

regulators of predator and prey sizes. There are many ecological studies of prey-predator systems with disease. 

This factor (Disease) therefore, was invited to the attention of veterinary medicine and the provision of vaccines 

for these diseases. In subsequent years, many authors studied the environmental models with infected prey and 

the papers that relate focusing on subject [1-7].  Also, the incidence rate of the disease, predation rate and the 

type of disease represent a major factors affecting the dynamics of eco-epidemiology systems. 

In 1986 Anderson and May were the first who merged the above two fields, ecological system and 

epidemiology system, they formulated a prey-predator model with infectious disease spread among prey by 

contact between them [8]. Haque [9] proposed a prey-predator model includes a Susceptible-Infected-

Susceptible (SIS) parasitic infection in the predator population with linear functional response and nonlinear 

disease incidence rate. Haque and Venturino [10] considered a prey-predator model with SI epidemic disease 

spread in predators involving linear functional response. Das [11] studied a prey-predator model with SI 

epidemic disease in predators included Holling type-II as a functional response. Venturino [12] proposed and 

analyzed prey-predator model with SIS disease in predators included linear functional response and linear 

disease incidence. Haque and Venturino [13] considered a prey-predator model with SI epidemic disease spread 

in predators included ratio-dependent functional response and linear disease’s incidence rate. Dahlia [14] 

studied a prey-predator model with SIS epidemic disease in prey. Ahmed and Israa [15] studied a prey-predator 

model with SIS epidemic disease in predator involving Holling type-II as a functional response. Hadeler and 

Freedman [16]; Venturino [17], have been devoted to observe the dynamics of such system when prey 

population is infected with some transmissible diseases. Temple [18]; and Van Dobben [19] observed that the 

predator take a disproportionately high number of parasite infected prey. In this paper we proposed and analyzed 

a mathematical model describing prey-predator model having SIS epidemic disease in the prey population 

involving vaccination and top predator species.   

 

II. Model formulation 

In this section an eco-epidemiological system consisting of prey-predator incorporating infections 

disease in prey species is proposed. In order to formulate the dynamics of such system the following hypotheses 

are considered. 

1. The existence of disease in prey - spacies divides the prey population into three classes, namely susceptible 

prey population that denotes by )(TS , vaccinated prey population that denoted by )(TV  and infected prey 

population denoted by )(TI . It is assumed that in the absence of predator the susceptible prey reproduces 

logistically with intrinsic growth rate 0r  and carrying capacity 0k , while the other classes of prey 

have the capability to compete for resources. Further the disease is not genetically inherited.  
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2. The susceptible prey becomes infected either by contact with infected prey at a rate 01 a  or due to an 

external resources at rate 02 a .  Further the infected prey returns back to be susceptible again at a recover 

rate 0 . 

3. Portion of susceptible population, say Sa 3 ; takes vaccine against the disease where 10 3  a  denotes to 

the vaccine rate. It is assumed that the vaccine may be failed with probability )1,0(  and the prey returns 

back to be susceptible with rate )1,0(1b . This is left Vb )1( 1  from prey individuals become infected 

either by contact with infected prey at a contact rate 02 b  or through an external resources at a rate 

03 b . 

4. The predator which denoted by )(TP  consumes the prey according to Lotka-Volttera functional response 

with positive attack rates 44 , ba  and c  for susceptible, vaccinated and infected prey respectively, while 

3,2,1),1,0(  iei  are the conversion factors that denoting the number of newly born predators for each 

captured of susceptible, vaccinated and infected prey respectively. Finally, in the absence of the prey the 

predator decays exponentially with natural death rate 0d .  

5. According to the above hypotheses the dynamics of the above eco-epidemiological real system can be 

represented mathematically by the following set of nonlinear differential equations:- 

a. 
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6. with the initial conditions 0)0(,0)0(,0)0(  IVS  and 0)0( P . 

a. Note that system (1) contains 17 parameters in all, which make the analysis of the system difficult, so in 

order to reduce the number of parameters and specify which combination controls the system, the following 

non dimensional variables and parameters are used in system (1) to get the next dimensionless system. 
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7. The dimensionless form of system (1) becomes  

a. 
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8. here the initial conditions are given by 0)0(,0)0(,0)0(  zyx  and 0)0( w . 

9. Clearly, system (3) has 13 non dimensional parameters and that means the number of parameters in system 

(1) by 4. Moreover the interaction functions 4,3,2,1),,,,( iwzyxf i  are continuous and have continuous 

partial derivatives on the positive cone.  
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10.  0,0,0,0;),,,(
44

 wzyxRwzyxR  

11. Therefore these functions are Lipschitzion and hence system (3) has a unique solution, which is bounded 

and still in 
4
R  for all the positive time as shown in the following theorem. 

Theorem (1):  All solutions of system (3) that initial in 
4
R  are uniformly bounded. 

 

Proof: Since the prey species consisting of three compartments, namely susceptible, vaccinated and infected 

population respectively. Then the total prey population is given by zyxN  , which is growing logistically 

in the absent of predation. Therefore, it easy to verify that  
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Straightforward computation gives that 
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III. Existence And Stability Of Equilibrium Points 

It is easy to verify that the system (3) has at most three biologically feasible equilibrium points. The existence 

conditions of each of them along with their local stability analyses are discussed as follows 

The vanishing equilibrium point )0,0,0,0(0 E  always exists. 

The predator free equilibrium point )0,,,(1 zyxE  , where 
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while z  represents a positive root of the following fourth order polynomial equation 
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Clearly, 1E  exists uniquely in interior of 
3
R  of the xyz space, provided that the following conditions hold 
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The positive equilibrium point )ˆ,ˆ,ˆ,ˆ(2 wzyxE   of system (3) can be determined by equating the right hand side 

of system (3) to the zero and solve the resulting algebraic system. Straightforward computation gives that: 
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while )ˆ,ˆ( zy  represents a positive intersection point of the following two isoclines: 
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Clearly as 0z  the first isocline (5b) intersects the y axis at a unique positive point, say 01 y  , provided 

that  
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However when 0z  the second isocline (5c) will intersect the y axis at zero or a point 2yy  , which is 

positive provided that  

 112107 uuuu              (6b) 

Consequently, these two isoclines (5b) and (5c) have an intersection point in the interior of the positive quadrant 

of yz plane, namely )ˆ,ˆ( zy ,  provided that the following conditions are satisfied. 
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Therefore the positive equilibrium point )ˆ,ˆ,ˆ,ˆ(2 wzyxE   exists uniquely in the interior of 
4
R  if in addition to 

above conditions (6a)-(6e) the following conditions are satisfied too. 
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In the following the local stability of each equilibrium points of system (3) is investigated. The Jacobian matrix 

of system (3) at ),,,( wzyx  is given by 
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Accordingly, the local stability conditions for each of the above equilibrium points are established in the 

following theorems. 

Theorem (2): The vanishing equilibrium point 0E  of system (3) is a saddle point in 
4
R .                                                                                                                         

 

Proof: Clearly the Jacobian matrix of system (3) at 0E  can be written as 
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Therefore, the characteristic equation of 0J  is given by 
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Now, according to the Routh-Hawirtiz Criterion all the eigenvalues of 0J  have roots with negative real parts if 

and only if 0)3,1( iAi  and 0321  AAA .  Since we have 03 A  always and the eigenvalue in the 

w direction, 013  uw , hence 0E  is a saddle point.                                                     

■ 

Theorem (3): Assume that the predator free equilibrium point )0,,,(1 zyxE   exists, then it is locally 

asymptotically stable provided that 
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0)( 2113233322  bbbbb                                                                                                                    (9d) 

where ijb  represent the Jacobian elements and are given in the proof. 

Proof: Since the Jacobian matrix of system (3) at 1E  can be written as 
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Now, straightforward computation shows that 044  bw  under condition (9a); 01 B  and 03 B  under the 

conditions (9a), (9b) and (9c); while 0321  BBB  under the conditions (9a)-(9d). Consequently, 

according to Routh-Hawirtiz criterion all the eigenvalues of 1J  have negative real parts and hence 1E  is locally 

asymptotically stable.                                                                                                                                               ■ 

In the following theorem, the basin of attraction of the predator free equilibrium point of system (3), is 

established. 

 

Theorem (4): Assume that the predator free equilibrium point 1E  is locally asymptotically stable, then it is a 

globally asymptotically stable in the sub region 
4
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where zuyuuxxq )1()1()( 13211  , 4312 uuxq  , zuuuq 67422  , 

215113 )1( uzuuxuq  , 76623 uzuyuq   and yuxuuq 61533  . 

Proof: Consider the following function 
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Clearly 11q  and 33q  are positive under conditions (11d) and (11e) respectively. Consequently by using the 
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Thus, 
dt

dL 1  is negative definite and hence 1L  is Lyapunov function with respect to 1E  in the sub region 1 . So 

1E  is a globally asymptotically stable.                     ■ 

The next theorem deals with the stability of the positive equilibrium point using the Lyapunov function. 

 

Theorem (5): Assume that the positive equilibrium point )ˆ,ˆ,ˆ,ˆ(2 wzyxE   exists then it is a asymptotically 

stable in the sub region 
4

2  R  that satisfy the following sufficient conditions 
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It is easy to verify that, 3311 , pp  and 44p  are positive provided that conditions (12a)-(12c) are satisfied 

respectively. Consequently, due to conditions (12d)-(12k), we have  
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Therefore, 
dt

dL 2  is negative definite and hence 2L  is a Lyapunov function with respect to 2E  in the sub region 

2 . So 2E  is a asymptotically stable.                                                          

■ 

Note that the function 2L  is approaching to infinity as any of its components do the same and its positive 

definite on 
3
R , however its derivative is negative definite on the sub region 2  due to the given sufficient 

conditions. Therefore 2E  is a globally asymptotically stable within 2 . 

  

IV. The local bifurcation analysis 
In this section, the effect of parameter values on the dynamical behavior of system (3) near the 

equilibrium points is studied. It is well known that the existence of non-hyperbolic equilibrium point of the 

system is a necessary but not sufficient condition for bifurcation to occur. Therefore in the following the 
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parameter that makes the equilibrium point of system (3) as a non-hyperbolic equilibrium point is considered as 

a candidate bifurcation parameter for the system.  

Now consider the Jacobian matrix of system (3) given by equation (7). It is easy to verify that 

straightforward computation gives that: 
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vvvvVandwzyxX ),,,(),,,( 4321 . Further, 0),,).((
3

VVVXFD , hence pitchfork bifurcation 

can’t occur. 

 Now, since the Jacobian matrix of system (3) near the vanishing equilibrium point 0E  can’t has zero real part 

eigenvalue. Therefore, there is no possibility to have bifurcation at 0E . Moreover in the following theorem the 

local bifurcation conditions near the other equilibrium point are established. 
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Proof: According to the Jacobian matrix at 1E  that given by Eq.(10a), system (3) has zero eigenvalue (say 
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So,    Tu uEF 0,0,0,0,
*
13113

 , and hence   0,
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uEFL u
T , thus according to Sotomayor's theorem saddle-

node bifurcation can’t occur, while the first condition of transcritical bifurcation is satisfied. Also, we have  
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Further more according to Eq. (13) we get 
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Straightforward computation, using the conditions (14)-(15), shows that     0,,
*
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2
KKuEFDL

T
. Hence, 

system (3) has transcritical bifurcation at 1E  with the parameter 
*

1313 uu   and the proof is complete.             

■ 

 

V.  Numerical Simulation 
In this section, the global dynamics of system (3) is studied numerically. The objectives of this study 

are confirming our obtained analytical results and detected the set of control parameters that affect the dynamics 

of the system. Consequently, system (3) is solved numerically for different sets of initial conditions and for 

different sets of parameters. It is observed that, for the following set of hypothetical parameters the system (3) 

has a globally asymptotically stable positive equilibrium point as shown in following figure. 
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Fig. 1:  Time series of trajectories of system (3) for the data (16) started at different initial points. (a) The 

trajectories of susceptible prey as a function of time. (b) The trajectories of vaccinated prey as a function of 

time. (c) The trajectories of infected prey as a function of time. (d) The trajectories of predator as a function of 

time. 

Obviously, Fig. (1) shows the existence of a globally asymptotically stable positive equilibrium point 

0.23)0.2,0.16,(0.14,2 E  for system (3) and this is clear due to convergent from three different initial data.  

Note that since the parameters 721 ,, uuu   describe the relationships among the compartments of the prey 

species ( zyx  and , ) and the parameters 1298 ,, uuu   describe the relationships between the predator on one 

side and one of the prey’s compartments on the other side. Therefore varying these parameters don’t have 

qualitative effects on the dynamics of system (3) rather than that they have quantitative effects on the value of 

positive equilibrium point. 



The Dynamics Of A Prey-Predator Model Incorporating SVIS-Type Of Disease In Prey 

DOI: 10.9790/5728-122190101                                    www.iosrjournals.org                                          100 | Page 

However, for the data given by equation (16) with varying the parameter 13u  in the range 2.013 u , then the 

trajectory of system (3), starting from different sets of initial data, is approaching asymptotically to the predator 

free equilibrium point as shown in the typical figures represented by Fig. (2) and Fig. (3).  
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Fig. 2: The trajectory of system (3), for the data (16) with 3.013 u  started at different initial points, approaches 

to )0,581.0,256.0,162.0(1 E . (a) The trajectories of susceptible prey as a function of time. (b) The 

trajectories of vaccinated prey as a function of time. (c) The trajectories of infected prey as a function of time. 

(d) The trajectories of predator as a function of time. 
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Fig. 3:  Time series of the solution of system (3) for the data (16) with different values of 13u . (a) Globally 

asymptotically stable positive equilibrium point for 1.013 u . (b) Globally asymptotically stable predator free 

equilibrium point 1E  for 25.013 u .  

 

According to these two figures, it’s clear that the solution of system (3) approaches asymptotically to the 

predator free equilibrium point. 

 

VI.  Conclusions and discussion 
In this paper an eco-epidemiological model consisting of prey-predator system having SVIS type of 

disease in prey is proposed and analyzed analytically as well as numerically. It is observed that the system has at 

most three nonnegative equilibrium point. The local and global stability of these equilibrium points are 
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discussed and it is observed that the vanishing equilibrium point is a saddle point while the predator free 

equilibrium point and the positive equilibrium point are asymptotically stable under certain conditions. The local 

bifurcation of the equilibrium points 0E  and 1E  is discussed analytically according to Sotomayor's theorem 

while that of the positive point is discussed numerically. Furthermore numerical simulation is used to verify our 

obtained results and specify the set of parameters that control the dynamics of the system. Finally according to 

the numerical outcomes, it is observed that the system (3) for the data given by (16) has a globally 

asymptotically stable positive equilibrium point. However increasing the predator death rate above a specific 

value causes extinction in predator species and the solution approaches asymptotically to the predator free 

equilibrium point. Consequently the system undergoes a bifurcation around the positive point by varying the 

predator death rate and the solution of the system change its stability from the positive equilibrium point to the 

predator free equilibrium point. Finally all the other parameters have quantitative change but note qualitative 

change on the stability of the positive equilibrium point. 
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