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Abstract: In This Paper Some Fundamental Theorems , Definitions In Riemannian Geometry Manifolds In The
Space r" To Pervious Of Differentiable Manifolds Which Are Used In An Essential Way In Basic Concepts Of
Applications Riemannian Geometry Examples Of The Problem Of Differentially Projection Mapping
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I.  Introduction

A Riemannian Manifolds Is A Generalization Of Curves And Surfaces To Higher Dimension , It Is
Euclidean In g " In That Every Point Has A Neighbored, Called A Chart Homeomorphism To An Open Subset
Of r", The Coordinates On A Chart Allow One To Carry Out Computations As Though In A Euclidean Space
, So That Many Concepts From r", Such As Differentiability, Point Derivations , Tangents , Cotangents
Spaces , And Differential Forms Carry Over To A Manifold. In This We Given The Basic Definitions And
Properties Of A Smooth Manifold And Smooth Maps Between Manifolds , Initially The Only Way We Have To
Verify That A Space , We Describe A Set Of Sufficient Conditions Under Which A Quotient Topological Space
Becomes A Manifold Is Exhibit A Collection Of c = Compatible Charts Covering The Space Becomes A
Manifold , Giving Us A Second Way To Construct Manifolds , A Topological Manifolds c ~ Analytic
Manifolds , Stating With Topological Manifolds , Which Are Hausdorff Second Countable Is Locally Euclidean
Space , We Introduce The Concept Of Maximal c ~ Atlas , Which Makes A Topological Manifold Into A
Smooth Manifold , A Topological Manifold Is A Hausdorff , Second Countable Is Local Euclidean Of
Dimension n , If Every Point p In m Has A Neighborhoodu Such That There Is A
Homeomorphism ¢ From u Onto A Open Subset Of r", We Call The Pair A Coordinate Map Or Coordinate
System On u , We Said Chart (U ,¢) IsCentered At pcuU , o(p) =0, And We Define The Smooth Maps
f:M — N Where (m,N)Are Differential Manifolds We Will Say That + Is Smooth If There Are
Atlases (u _,h,) On M And (v,.g,)On N . In This Paper, The Notion Of A Differential Manifold Is
Necessary For The Methods Of Differential Calculus To Spaces More General Than De r ", A Differential
Structure On A Manifolds m Induces A Differential Structure On Every Open Subset Of m , In Particular
Writing The Entries Of An (n < k) Matrix In Succession ldentifies The Set Of All Matrices With r"*, An

n < k Matrix Of Rank « Can Be Viewed As A K-Frame That Is Set Of k Linearly Independent Vectors In
R", (v, .,k = n)ls Called The Steels Manifold ,The General Linear Group &L (n) By The Foregoing v,
Is Differential Structure On The Group n Of Orthogonal Matrices, We Define The Smooth Maps Function
f:M — N Where m , N Are Differential Manifolds We Will Say That £ Is Smooth If There Are Atlases
(U,.h,)ON M | (v.,g,)On N, Such That The Maps ( g, f h, *)Are Smooth Wherever They Are
Defined f Is A Homeomorphism If Is Smooth And A Smooth Invers . A Differentiable Structures Is
Topological Is A Manifold It An Open Covering u _, Where Each Set u , Is Homeomorphism, Via Some
Homeomorphism nh_ To An Open Subset Of Euclidean Space rR", Let m Be A Topological Space , A Chart
In M Consists Of An Open Subset u = m And A Homeomorphism nh Of u Onto An Open Subset Ofr ™,
A c'Atlas On m Is A Collection (u_,n, )Of Charts Such That Theu Coverm And n_,h ' The
Differentiable Vector Fields On A Differentiable Manifold m , Let x And vy Be A Differentiable Vector

Field On A Differentiable Manifolds M Then There Exists A Unique Vector Field Z Such That Such That ,
ForAll fep,zt =(xy —vyx ) IfThat pem AndLetx:u — m Be A Parameterization At Specs .
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Il. A Basic Notions On Differential Geometry
In This Section Is Review Of Basic Notions On Differential Geometry:

2.1 First Principles
Hausdrff Topological 2.1.1
A Topological Space m Is Called (Hausdorff) If For All x,y « m There Exist Open Sets Such That

xeu And yev Andu ~v =¢

Definition 2.1.2
A Topological Space m Is Second Countable If There Exists A Countable Basis For The Topology
Onwm .

Definition 2.1.3: Locally Euclidean Of Dimension (m )
A Topological Space m Is Locally Euclidean Of Dimension N If For Every Point x < m There Exists

On Open Set u e m And Open Set w = r" So That u And w Are (Homeomorphism).

Definition 2.1.3
A Topological Manifold Of Dimension N Is A Topological Space That Is Hausdorff, Second Countable
And Locally Euclidean Of Dimension N.

Definition 2.1.4
A Smooth Atlas a Of A Topological Space m Is Given By: (I) An Open Covering {u }_, Where

U, cM
Open And m =y, u,.(li) AFamily {g :u, - w,}_, Of Homeomorphism 4 Onto Open Subsets w, = R" SO
ThatIf u, ~u, = ¢ Then The Map 4,(U, ~U,)> ¢,(U, ~u,)Is (A Diffoemorphism)

Definition 2.1.5
If U, ~u,)=¢ Then The Diffoemorphism 4,u, ~U )- ¢,(U, ~u,) Is Known As The (Transition Map).

Definition 2.1.6

A Smooth Structure On A Hausdorff Topological Space Is An Equivalence Class Of Atlases, With
Two Atlases A And 8 Being Equivalent If For (u,.¢)eAAnd (v ¥ )eB With u AV, »¢ Then The
Transition ¢4,(U, ~v,)—» ¥,(U, nv,)Map Is A Diffoemorphism (As A Map Between Open Sets Of R " ).

Definition 2.1.7
A Smooth Manifold m Of Dimension N Is A Topological Manifold Of Dimension N Together With A
Smooth Structure

Definition 2.1.8

Let » And ~n Be Two Manifolds Of Dimension m,n Respectively A Map F:m — N Is Called
Smooth At p < m If There Exist Charts (U.¢).(v,¥)With peu cm And F(p)ev =« N WithrFu)<v And
The Composition w - F ¢ :pU) - w(v)Is A Smooth ( As Map Between Open Sets Of r" Is Called Smooth If
It Smooth AtEvery pe m .

Definition 2.1.9
A Map F:m — N Is Called A Diffeomorphism If It Is Smooth Objective And Inverse

F':N - ™M IsAlso Smooth.

Definition 2.1.10
A Map F Is Called An Embedding If  Is An Immersion And (Homeomorphism) Onto Its Image.

Definition 2.1.11
If F: M — N Is An Embedding Then F (m ) Is An Immersed (Sub Manifolds) Of N .

2.2 Tangent Space And Vector Fields
Let c”(m,Nn)Be Smooth Maps From m Andn, Let c~(m) Smooth Functions On wm Is Given A

Point p < m Denote, ¢~ (p) Is Functions Defined On Some Open Neighbourhood Of p And Smooth At o .
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Definition 2.2.1
(1) The Tangent Vector x To The Curve c:(-s,s)> M At t =0 Is The Map c(0):c”(c(0)) » R Given By

The Formula

d(foc)

) X(f):cw)(f):( } L tvfec (o)

(i) A Tangent Vector x At pem Is The Tangent Vector At t=o0Of Some Curve «:(-s,¢)—> m With
a«(0)= p Thisls x =a'(0):c”(p) > R .

Remark 2.2.2

A Tangent Vector At p Is Known As A Liner Function Defined On c“(p) Which Satisfies The
(Leibniz Property)
(2) X(fg)=X(f)g+1tX(g) ¥t geC (p)

2.3 Differential Geometrics
Given Fec”(M,N)ANd pem , xe(T,m)Choose A Curve a:(-s¢)—> M With «(0)=pAnd

«'(0) = X This Is Possible Due To The Theorem About Existence Of Solutions Of Liner First Order Odes ,
Then Consider The Map . :T M - 1, N Mapping x — F. (x)=(F -a)'(0), This Is Liner Map Between Two
Vector Spaces And It Is Independent Of The Choice Of « .

Definition 2.3.1
The Liner Map r, Defined Above Is Called The Derivative Or Differential Of At p While The

Image F. (x) Is Called The Push Forward x Atpem .

Definition 2.3.2: Cotangent Space And Vector Bundles And Tensor Fields
Let m Be A Smooth N-Manifolds And p < m .We Define Cotangent Space At p Denoted By

T M To Be The Dual Space Of The Tangent Space At p:1 (M)={f:Tm » R |, f Smooth Element Of
7.m Are Called Cotangent Vectors Or Tangent Convectors At p .(I) For f:m — r Smooth The Composition
R =R IsCalled o A And Referred To The Differential Of ¢ .Not That af <71 'm So It Is A Cotangent
Vector At p (li) For A Chart (U.¢,x")Of m And p<u Then {a'} ', Is A Basis Of 7 'm In Fact{d'} Is The

TM T

n

Dual Basis Of 4( d—L
[ dx'

i=1

Definition 2.3.3
A Smooth Real Vector Bundle Of Rank k Denoted (e,m,z)Is A Smooth Manifold & Of Dimension

n+1 The
Total Space A Smooth Manifold m Of Dimension n The Manifold Dimension n+k And A Smooth
Subjective Map ~ :E — m (Projection Map) With The Following Properties: (I) There Exists An Open Cover

{v } _, Of M And Diffoemorphism ¥ it (v,) - v, xR (D) For Any Point
peM, ¥ (r'(p))={p}xR"=R"And We Get A Commutative Diagram ( In This Case ~r,:v, xR* >V, Is
Projection Onto The First Component .(lii) Whenever v, ~nv, = ¢ The Diffoemorphism.

(3) v, oW, "V, AV, )xR" > (V_ AV, )xR"

Takes The Form w_.w,*(p.a)=(p.A,,(p)(a) ).ac R* Where A , v, AV, - GL (k,R) Is Called Transition Maps.

Definition 2.3.4 : Bundle Maps And Isomorphism’s
Suppose (.M ,z)And (E,m,z)Are Two Vector Bundles A Smooth Map r :€ - € Is Called A

Smooth Bundle Map From (.M ,z) To(e.m.z). (I) There Exists A Smooth Map f :m — m Such That
The Following Diagram Commutes That = (F (q) )= f(z(q) )For All p « m (li) F Induces A Linear Map From

E,Toe,, ForAnypecm .
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Definition 2.3.5 : Projective Spaces
The n - Dimensional Real (Complex) Projective Space, Denoted By p_(R) or P, (C)) , IS Defined As

The Set Of 1-Dimensional Linear Subspace Of r ™* or c "), P (R) or P (C) IS A Topological Manifold.

Definition 2.3.6
For Any Positive Integern, The n-Torus Is The Product Space T"=(s'x..xs').lt Is A

n — Dimensional Topological Manifold. (The 2-Torus Is Usually Called Simply The Torus).
Definition2.3.7

The Boundary Of A Line Segment Is The Two End Points; The Boundary Of A Disc Is A Circle. In
General The Boundary Of A n - Manifold Is A Manifold Of Dimension (n -1) , We Denote The Boundary Of A
Manifold m Asam . The Boundary Of Boundary Is Always Empty, sm =4
Lemma 2.3.8

Every Topological Manifold Has A Countable Basis Of Compact Coordinate Balls. Every
Topological Manifold Is Locally Compact.

Definitions 2.3.9

Let m Be A Topological Space n -Manifold. If [, ¢), (v,»)] Are Two Charts Such Thatu ~v)=¢,
The Composite Map v oo *:[p (U ~nV)]> v (U ~V)] Is Called The Transition Map From » Toy .
Definition 2.3.10

An Atlas A Is Called A Smooth Atlas If Any Two Charts In A Are Smoothly Compatible With Each
Other. A Smooth Atlas A On A Topological Manifold M Is Maximal If It Is Not Contained In Any Strictly
Larger Smooth Atlas. (This Just Means That Any Chart That Is Smoothly Compatible With Every Chart In A Is
Already In A.
Definition 2.3.11

A Smooth Structure On A Topological Manifold m Is Maximal Smooth Atlas. (Smooth Structure Are
Also Called Differentiable Structure Or ¢~ Structure By Some Authors).
Definition 2.3.12

A Smooth Manifold Is A Pair (m , A), Where m Is A Topological Manifold And A Is Smooth Structure
Onwm . When The Smooth Structure Is Understood, We Omit Mention Of It And Just Say m Is A Smooth
Manifold.
Definition 2.3.13

Let m Be A Topological Manifold.
(1) Every Smooth Atlases For m Is Contained In A Unique Maximal Smooth Atlas. (Ii) Two Smooth Atlases
Form Determine The Same Maximal Smooth Atlas If And Only If Their Union Is Smooth Atlas.
Definition 2.3.14

Every Smooth Manifold Has A Countable Basis Of Pre-Compact Smooth Coordinate Balls. For
Example The General Linear Group The General Linear GroupcL (n,Rr) Is The Set Of Invertible nx n -Matrices
With Real Entries. It Is A Smooth n*-Dimensional Manifold Because It Is An Open Subset Of The n*-
Dimensional Vector Spacewm (n,R), Namely The Set Where The (Continuous) Determinant Function Is
Nonzero.
Definition 2.3.15

Letm Be A Smooth Manifold And Let p Be A Point Ofm . A Linear Map x :c”“(m)— r Is Called A
Derivation At p If It Satisfies:
(4) X (fg) = f(p)Xg +g(p)Xf
For All f,g<c”(m). The Set Of All Derivation Of c~(m) At p Is Vector Space Called The Tangent Space
Towm Atp, And Is Denoted By [T,m ]. An Element Of 7 wm Is Called A Tangent Vector At p .
Lemma 2.3.16

Letm Be A Smooth Manifold, And Suppose pem Andx 7 m . If ¢ Is A Const And Function,
Thenxi =o.Iff(p)=g(p)=0, Thenx(fp)=o0.

Definition2.3.17
If » Is A Smooth Curve (A Continuous Mapy:J -» m , Where 35 = r IS An Interval) In A Smooth

Manifold M | We Define The Tangent Vector To; At t < J To Be The Vectory'(t )= y(:TL ]e T,.,M , Where

)

%t I, Is The Standard Coordinate Basis Fort r . Other Common Notations For The Tangent Vector To” Are

{y‘(tn) , d—y(to)} And {d—y I, } . This Tangent Vector Acts On Functions By:
dt dt
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d d d(fo
() R N A IR P S I RIS 2R
CoTdt ) dt Codt )
Lemma 2.3.18
Letm Be A Smooth Manifold And p e m . Every x e (r,m)Is The Tangent Vector To Some Smooth
Curvelnwm .

Definition 2.3.19
A Lie Group Is A Smooth Manifold ¢ That Is Also A Group In The Algebraic Sense, With The
Property That The Multiplication Map m:(cxc)—>c And Inversion Mapm:(c »c), Given

Bym (g.h)y=gh, i(g)=g", Are Both Smooth. If ¢ Is A Smooth Manifold With Group Structure Such That
The Mapc xG - 6 Given By (g.h) > gh IS Smooth, Theng Is A Lie Group. Each Of The Following
Manifolds Is A Lie Group With Indicated Group Operation. The General Linear GroupcL (n,Rr) Is The Set Of
Invertible (nxn)Matrices With Real Entries. It Is A Group Under Matrix Multiplication, And It Is An Open
Sub-Manifold Of The Vector Space m (n, R) , Multiplication Is Smooth Because The Matrix Entries Of A Aids .

Inversion Is Smooth Because Cramer’s Rule Expresses The Entries Of A~ As Rational Functions Of The Entries
Of oA, The "~ Torus 7" = (s*x..xs*) IS A n - Dimensional A Belgian Group.
Definition 2.3.20 Lie Brackets

Let v And w Be Smooth Vector Fields On A Smooth Manifoldm . Given A Smooth
Function f :m - r, We Can Apply v To  And Obtain Another Smooth Functionvi , And We Can Apply
w To This Function, And Obtain Yet Another Smooth Function (w v )f =w (v ) . The Operation  >wv f,
However, Does Not In General Satisfy The Product Rule And Thus Cannot Be A Vector Field, As The
Following For Example Shows Let v - fiw And w - {i

L ox ) oy
Computation Shows Thatvw (f g)=1, While(fvw g+gv w f)=0, Sovw Is Not A Derivation Ofc " (r?) .
We Can Also Apply The Same Two Vector Fields In The Opposite Order, Obtaining A (Usually Different)
Functionwv . Applying Both Of This Operators To ¢ And Subtraction, We Obtain An
Operatoriy ,wij:c”(M)—> c“ (M), Called The Lie Bracket of v Andw , Defined
Byv.wlf = (vw)f—(wv ). This Operation Is A Vector Field. The Smooth Of Vector Field Is Lie Bracket
Of Any Pair Of Smooth Vector Fields Is A Smooth Vector Field.
Lemma 2.3.21: Properties Of The Lie Bracket
The Lie Bracket Satisfies The Following Identities For All v,w,x e (m). Linearity: va,be R,
(6) [[av +bW ,X]=a [V, X]+b[W,X] ]
| [ X,av +bW J=a [X ,V]+b[X W] |

()] Ant Symmetryv,wi=- w,v].(li)Jacobi Identity v .[w,X 17+[W.,[X,V]]+[X,[V.W] ]=0.

]On R", And Let f (x,y) = x, g(x, y) = y . Then Direct

Fort,gec m):
(7 [FV,gWI1=fg[V.WI+[(fVg)W -(gW f) V]

2.4 Convector Fields

Let v Be A Finite — Dimensional Vector Space Over R And Let v * Denote Its Dual Space. Then v ~
Is The Space Whose Elements Are Linear Functions From v To R, We Shall Call Them Convectors. If 5 ev~
Then o:v — r For The Any vev , We Denote The Value Of  On v By &(v) Or By(v,s ). Addition And

Multiplication By Scalar In v’ Are Defined By The
EquatiOI"IS(O'1 +o‘2) (v) = 0'1(v)+ GZ(V) , (oaj' ) (V): a (o‘ (v) ) Where v ev o,a0 eV’ Andg eRr .

Proposition 2.4.1 : Convectors
Let v Be A Finite- Dimensional Vector Space. If (g, ..., E.) Is Any Basis For v ,Then The Convectors
(0., »") Defined By:
(8) o€y -5~ ) -
|0 if i# j

Form A Basis For v *,Called The Dual Basis To (g ) .Therefore, dim v * = dim v .
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Definition 2.4.2 Convectors On Manifolds
Ac " - Convector Field « Onwm ,r>0, Is A Function Which Assigns To Each s<m A Convector

o, eT,(m) InSuch A Manner That For Any Coordinate Neighborhood (u,4) With Coordinate Framese, ... E, ,
The Functions o(E,), i =1,...,n, Are Of Class ¢"On u . For Convenience, "Convector Field” Will Mean
¢ - Convector Field.

Remark 2.4.3
It Is Important To Note That Ac ' - Convector Field @ Defines A Mapo: (M)— c"(m ), Which Is Not Only

R — Linear But Even c"(m )- Linear, More Precisely, If f,gec'(m) Any x , vy Are Vector Fields On M |
Then & (f x +gY)=fo (X)+go (v) . For These Functions Are Equal At Eachpe m .
Definition 2.4.4: Tensors Vector Spaces

We Now Proceed To Define Tensors. Let k « n Given A Vector Space (v,,....,v,) One Can Define A
Vector Space (v, ® ... ® v, ) Called Their Tensor Product. The Element Of This Vector Space Are Called Tensors
With The Situation Where The Vector Space v,.....,v, Are All Equal To The Same Space. In Fact The Tensor
Space T'v We Define Below Corresponds To (v ®...ev’')In The General Notation. And We Define

v* = (v x...xVv ) Be The Cartesian Product Of k Copies Of v .A Map » From v * To A Vector Space u Is Called
Multiline If In Each Variable Separately I.E. (With The Other Variables Held Fixed) .
Definition 2.4.5

Let v* = (v x...xv)Be The Cartesian Product Of k Copies Of v . A Map » From v *To A Vector
Space u Is Called Multiline If It Is Linear In Each Variable Separately ( I.E. With The Other Variables Held
Fixed )
Definition 2.4.6

A (Covariant) K-Tensor On v Is A Multiline Map 7:v* > r. The Set Of K-Tensors On v Is
Denotedt *(v). In Particular, A 1-Tensor Is A Linear Form, t'(v)=v . It Is Convenient To Add The
Convention Thatt°v)=r . The Set 1*(v) Is Called Tensor Space, It Is A Vector Space Because Sums And
Scalar Products Of Multiline Maps Are Again Multiline.
2.5Alternating Tensors

Let v Be A Real Vector Space. In The Preceding Section The Tensor Spaces T*v Were Defined ,
Together With The Tensor Product (s.T)»>seT,T (v )xT'(v)—> T*"(v) There Is An Important Construction
Of Vector Spaces Which Resemble Tensor Powers Of v , But For Which There Is A More Refined Structure,
These Are The So-Called Exterior Powers v , Which Play An Important Role In Differential Geometry Because
The Theory Of Differential Forms Is Built On Them. They Are Also Of Importance In Algebraic Topology And
Many Other Fields. A Multiline Map ¢ :v*=v x...xv - u Where k >11s Said To Be Alternating If For All

— v, Are Inter-Changed That IS o(v,,...... Ve, V) = =0V, e Y Ve, v,) Since Every Permutation Of
Numbers 1......., k Can Be Decomposed Into Transpositions, It Follows That ¢(v_, ... v_ ) =san oV, ,..... v, ) For
All  Permutations o+e<s, Of The Numbers (.., k).For Example Let v -Rr®The WVector Product
(v,,v,) > v, xv, ev Is Alternating For (vxv)-v .And Let v =r The (nxn)Determinant Is Multiyear And
Alternating In Its Columns, Hence It Can Be Viewed As An Alternating Map (r")" » R.
Definition 2.5.1

An Alternating K-Form Is An Alternating K-Tensor v * - r The Space Of These Is Denoted A*(v) , It
Is A Linear Subspace Of 7*(v)
Theorem 2.5.2

Assume Dim [v ]= n With (e,.....e,) A Basis. Let (¢,..... ¢, )e v~ Denote The Dual Basis . The Elements

¢, ®..®¢, )JWhere 1=(,.. i) Is An Arbitrary Sequence Of K Numbers In {1,.., n} ,Form A Basis For 7).

Proof:
Lett, - (¢, ®...®¢, ). Notice That If 5 =(j,,... j)ls Another Sequence Of K Integers, And We

Denote By e, The Element (e e, Jev Then 1 (e)=6,, That Is T (e,)=11f 3-1And O Otherwise. If

jareee

Follows That They Tt , Are Linearly Independent, For If A Liner Combination T -= (z a,le Is Zero,
Thena, =7 (e,) = 0. It Follows From The Multilinearity That A K-Tensor Is Uniquely Determined By Its Values
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On All Elements In v*Of The Forme . For Any Given K-Tensor T We Have That The K-Tensor
=T (e,)T, Agrees With T On All e Hence =T (e,)T, And We Conclude That The 1, Spant*(v) .

2.6 The Wedge Product

In Analogy With The Tensor Product (s, T)—»seT Formt w)x1'(v) >1**(v), There Is A
Construction Of A Product A*(v)xA'(v)— A**Since Tensor Products Of Alternating Tensors Are Not
Alternating, It Does Not Suffice Just To Takes o T .
Definition 2.6.1

Let sea*(vw)Andtea'(vy. The Wedge Product (sAT)e A (v)Ils Defined By

(s AT)= At (s®T).Notice That In The Case k-0 ,Wherea*(v)-r, The Wedge Product Is Just Scalar

Multiplication.
Example 2.6.2
Let (7,.7,)e A'(v)=v " Then By Definition (7, nn,)=1/2(5,®n, -n, ® 5,) Since The Operator. Alt Is

Linear The Wedge Product Depends Linearly On The Factors S And T. It Is More Cumbersome To Verify The
Associative Rule For » . In Order To Do This We Need The Following.
Lemma 2.6.3

Let ReA*(v), scA'V)ANd T A" (V) ThEN (RAS)AT =RA(SAT)=At(R®S®T)
9) RA(SAT)=Alt (ROAIt (S®T)=Alt (RO®S®T)
The Wedge Product Is Associative, We Can Write Any Product (1, » ... nT,)Of Tensor 1, e A*'(v) Without
Specifying Brackets. In Fact It Follows By Induction From That (1, A ... A T,)= Alt (T, ® ... ® T,) Regardless Of
How Brackets Are Inserted In The Wedge Product In Particular, It Follows From

v)ev And (y,....n,)ev” Are Viewed As 1-Forms, The

PRI

Basic Elements ¢, Are Written In This Fashion As ¢, = (¢, A... n ¢, )Where 1 =(,...i,) Is An Increasing
Sequence Form (1., n)This Will Be Our Notation For ¢, From Now On. The Wedge Product Is Not
Commutative. Instead, It Satisfies The Following Relation For Interchange Of Factors. In This Defined A
Tensor 4 Onv Is By Definition A Multiline v~ Denoting The Dual Space Tov , r Its Covariant Order And s Its
Contra Variant Order , Assume (r > 0)or (s = 0) Thusy Assigns To Each R-Tape Of Elements Ofv Ands Tupelo
Of Elements Of v A Real Number And If For Eachk ,(1<k)<(r+s)We Hold Every Variable Except
The ¢ Fixed The (k - th) Satisfies The Linearity Condition

(10) ¢ (vyvav, +a'v )=V, v )+ @ V], v,)
For All(«,«")e R Andv, v, ev Or v Respectively For A Fixedr,s We Let t'(v)Be The Collection Of All
Tensors Onv Of Covariant Orders And Contra Variant Orderr, We Know That As A Function
From(v x...xVv xv " x..xv ) To Order R They May Be Added And Multiplied By Scalars Elements r With This
Addition And Scalar Multiplication " v)Is A Vector Space So That |If(s,,4,)e £ (v) And
(¢,,a,)e R Then(a ¢, + a,4,) Defined In The Way Alluded To Above That Is By.

(11) (@, +a,8,) (V)= a4 (vv,)+a, ¢, (v,v,..)

Is Multiline And Therefore In ¢ (v) This ¢ (v) Has A Natural Vector Space Structure. In Properties Come

Naturally Interims Of The Metric Defined Those Spaces Are Known Interims Differential Geometry As
Riemannian Manifolds A Convector Tensor On A Vector v Is Simply A Real Valued ¢(v,,v,...., v.) Of Several

Vector Variables (v,,...,v,) Ofv The Multiline Number Of Variables Is Called The Order Of The Tensor , A
Tensor Field o Of Order r On Linear In Each On A Manifold m Is An Assignment To Each Point p e m Of
Tensor ¢, On The Vector Space T,m Which Satisfies A Suitable Regularity Condition c®,c* Or c*As p On
M .
Definition2.6.4

With The Natural Definitions Of Addition And Multiplication By Elements Of r The Set ¢ (v) Of All
Tensors Of Order r,s On v Forms A Vector Space Of Dimensionn"**.
Definition2.6.5

We Shall Say Thatge f'(v), v A Vector Space Is Symmetric If For Eachi<i, j<r ,We
#(v,.v, Vv, v ) Similarly — If - Interchanging  Thei-th And j -t Variablesi<i, j < r Changes  The
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Sign, -~ ¢(v,.v, s v, oo v, v, ) Then We Say 4 Is Skew Or Anti Symmetric Or Alternating Covariant Tensors Are
Often Called Exterior Forms, A Tensor Field Is Symmetric Respective Alternating If It Has This Property At
Each Point.
Theorem 2.6.8

The Product(f"(v)yx f°v))— (f"°(v))Just Defined Is Bilinear Associative If (w',.., w")Is

Abasislv™ = t'v) Then (W@ ®,..,ow'”)And 1<(,...i,)<nls A Basis Of i (v)Finally F :w >v Is

Linear, Then
Proof:
Each Statement Is Proved By Straightforward Computation To Say That Bilinear Means That « , 5 Are

Numbers (¢,,¢,)e £ (v) Andy e 1" (v) Then(ap, + p¢,)® v =a(s, ® v )+ B¢, ®w) Similarly For The Second
Variable This Is Checked By Evaluating Side Onr + s Vectors Ofv In Fact Basis Vectors Suffice Because Of
Linearity Associatively Is Similarly (¢ ® » )® ¢ = (v ® ¢), The Defined In Natural Way This Allows Us To
Drop The Parentheses To Both (w'®®,...,®w'”) From A Basis It Is Sufficient To Note That If (e,,....e,)IS

n

The Basis Of v Dual Tow'se..ew"yThen The Tensor Previously o™ Defined Is
Exactly w'®e....,ow'”) This Follows From The Two Definitions.

0 if (i,,..., i) %= Cirvernny i)
12 Ll o - e 2 E e
( ) Q (ej(l) ej(r)) {1 it (i, )= iy i

i(1) i(r) i(1) i(2) i(r) . (1) Li(r)
(13) (w'"®,.., ®w )[(ej(l) ..... e]m)]:(w (&)W (&)l W ):[éj(l),..,bw)

Which Show That Both Tensors Have The Same Values On Any Order Set Of r Basis Vectors And
Are Thus Equal Finally Givenr ™ :w - v If (w,,...,w, ) Then

+s

‘[ Fo®y)(w, .. W, )=p®w(F (W), F(w S))]I
(14) 3 o=e(F w), Frw))w (F(w)e Fi(w,.,)) ¢
‘L =(Fp)o (Fy)w, ow, ) Jl
Which Proves F"(p ® ) = (F p)® (F v ) And Completes Tensor Field.
Remark 2.6.9
The Rule For Differentiating The Wedge Product Of A P-Forme« , And Q-Form s Is
(2.8) dla, np,)=da,npB, +(-1"a, rdp,

Definition 2.6.10
Let f:m >N Be Ac”Map Of c~Manifolds, Then Eachc- Covariant Tensor Fieldy On

N Determines Ac - Covariant Tensor Field "y On M By The Formula
(F '), (X X p) = @p ) (F X v, F'x,,) The MaprF : ¢ (N)— t'(m)So Defined Is Linear And Takes
Symmetry Alternating Tensor To Symmetric Alternating Tensors.

Lemma 2.6.11

Leto = 0 Be An Alternating Covariant Tensor v Of Order N=Dim.v And Let(e,.....e, ) Be A Basis Of
v Then For Any Set Of Vectors (v,....v,)Withv, = s« 'e, We Have, o (v,,....v,) = det |o/].

Example 2.6.12
(I) Possible P-Forms « , In Two Dimensional Space Are.

([, = f(x,y) )
(15) 4|a1 = u(x,y)dx + v(x, y)dy l}
lLaz:qﬁ(x,y)dX/\dy Jl

The Exterior Derivative Of Line Element Givens The Two Dimensional Curl Times The
Aread [u (x,y)dx +v(x,y)dy ]=(o,v-0 u)d ady .

(li) The Three Space P-Forms « , Are.

(e, = T(x) 1
| |
(16) Jocl:vldx1+v2dx2+v3dx3 L
|a2:wldxz/\dx3+wzdx3/\dx1+w3dx1/\dx2|
laaz(p(x)dxl/\dxz/\dxa J

We See That
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da :(5 o .V )i.ﬁ: dx ' A dx "
(17) 1 ijk ik ijm

2
Ldaz =(o,w, +o,w, +0,w,)dx" A dx' A dx 3J
Where ¢ Is The Totally Anti-Symmetric Tensor In 3-Dimensions.The Isomorphism Vectors Tensor Field We
Saw In The Equation v = g(v.,) = g(.v) And v = g *(v ) = g *(.v) The Link Between The Vector And Dual
Vector Spaces Is Provided By 4 And ¢ *If A -8 Components a” - 8* Then a -8 Components &, - ¢, 8" S0
Where A =g, A"And B, = g, B" S0 Why Do We Bother One-Forms When Vector Are Sufficient The

Answer Is That Tensors May By Function Of Both One-Form And Vectors , There Is Also An Isomorphism A
Mongo Tensors Of Different Rank , We Have Just Argued That The Tensor Space Of Rank ( 1.0) Vectors And
(0.1) Are Isomorphic , In Fact All 2" Tensor Space Of Rank (m + n) With Fixed (m +n) Are Isomorphic, The

2

Metric Tensor Like Together These Spaces As Exempla Field By Equation 7, °
Use The Inverse Metric

(18) T, =9 (", T, " 9T, =99, T\

The Isomorphism Of Different Tensor Space Allows Us To Introduce A Notation That Unifies Them, We Could
Affect Such A Unification By Discarding Basis Vectors And One-Forms Only With Components, In General
Isomorphism Tensor Vector a Defined By.

(19)
And A = A,&* Is Invariant Under A Change Of Basis Because ¢* Transforms Like A Basis One-Form.

2.7: Tensor Fields
The Introduced Definitions Allows One To Introduce The Tensor Algebra a, (T ,m) Of Tensor Spaces

=g(e,.T*:¢,) We Could Now

A=Ae"=Ag"e =A’¢e,

2

Obtained By Tensor Products Of Space r And (r ,m) , (1°,m). Using Tensor Defined On Each Point

p e M One May Define Tensor Fields.
Definition 2.7.1

Let m Be A N-Dimensional Manifold. A Differentiable Tensor Field T Is An Assignment
p — t, Where Tensors ¢, « A, (T m ) Are Of The Same Kind And Have Differentiable Components With

Respect To All  The Canonical Bases Of a_(r ,m)Given By Product Of Bases

{aaK | }k =1,.,ncT M And d‘k=(..,n) T ;M Induced By All Of Local Coordinate System M .In
X P

Particular A Differentiable Vector Field And A Differentiable 1-Form ( Equivalently Called
Coveter Field ) Are Assignments Of Tangent Vectors And 1-Forms Respectively As Stated Above.
For Tensor Fields The Same Terminology Referred To Tensor Is Used .For Instance, A Tensor Field + Which Is

Represented In Local Coordinates By t:(p)il ®(d ') | Is Said To Of Order (1,1) .It Is Clear That To
oX P

Assign On A Differentiable Manifold m A Differentiable Tensor Field T ( Of Any Kind And Order ) It
Necessary And  Sufficient To  Assign A  Set Of Differentiable  Functions
(X" x™ ) > T k(x5 x™ ). In Every Local Coordinate Patch (Of The Whole Differentiable
Structure m Or, More Simply, Of An Atlas Of m ) Such That They Satisfy The Usual Rule Of Transformation
Of Comports Of Tensors Of Tensors If (x'....x")And (y'....,y")Are The Coordinates Of The Same Point
p e M In Two Different Local Charts.

J (2] ®( 6. w

o o
20 i1,...,im P
20) T [ (o)

(1) 1t Is Obvious That The Differentiability Requirement Of The Comports Of A Tensor Field Can Be Choked
Using The Bases Induced By A Single Atlas Of Local Charts. It Is Not Necessary To Consider All The Charts
Of The Differentiable Structure Of The Manifold.

(1) If x Is A Differentiable Vector Field On A Differentiable Manifold, m Defines A Derivation At Each

~ ®(ax ") [ @@ (ax )|

Generally Every Differentiable Vector Field x Defines A Linear Mapping From b (m)To b (M) Given By
f - x (f) For Everywhere x(f)ep(m)ls Defined As x(f)(P)=x (f) For Everypem .(lii) For (Contra

Variant) Vector Field X On A Differentiable Manifold m , A Requirement Equivalent To The Differentiability
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Is The Following The Function x (f):p —» x (), (Where We Use x , As A Derivation) Is Differentiable For All

Of f<b). Indeed It x Is A Differentiable Contra Variant Vector Field And If 1 < b(m), One Has That
X (£):P - x ,(f) Is A Differentiable Function Too As Having A Coordinate Representation.

(21) [X(f) 0¢71]:¢(U)6(X1 ..... X )—) Xi(x1 ...... X X

In Every Local Coordinate Chart u,¢) And All The Involved Function Being Differentiable.
Conversely p - x (f)Defines A Function Inp), x(f)For Every fe<p(m)The Components Of
p— x,(f)In Every Local Chart u,¢) Must Be Differentiable. This Is Because In A Neighborhood Ofqcu ,
x'(q) = x (f).Where The Function ® < b(m) Vanishes Outside u And Is Defined Asr— x'(r), n(r)In
u Where x'Is The Its Component Of 4 (The Coordinatex') And n A Hat Function Centered On ¢ With
Support In u . Similarly The Differentiability Of A Covariant Vector Field W Is Equivalent To The
Differentiability Of Each Function p - <>< p.wp> For All Differentiable Vector Fields x .(Iv) If f <pbm)The

Differential Of f Inp, df  Is The 1-Form Defined By df =i (a<') | In Local Coordinates Aboutp . The
ox ?

Definition Does Not Depend On The Chosen Coordinates .As A Consequence, The Pointpewm ,
p - o , Defines A Covariant Differentiable Vector Field Denoted By ¢ And Called The Differential Of ¢ . (V)
The Set Of Contra Variant Differentiable Vector Fields On Any Differentiable Manifold m Defines A Vector
Space With Field Given By r Is Replaced By p(m ), The Obtained Algebraic Structure Is Not A Vector Space
Because p(m)Is A Commutative Ring With Multiplicative And Addictive Unit Elements But Fails To Be A
Field. However The Incoming Algebraic Structure Given By A Vector Space With The Field Replaced By A
Commutative Ring With Multiplicative And Addictive Unit Elements Is Well Known And It Is Called Module.
A Sub Manifolds Of Others Of r" For Instance s*Is Sub Manifolds Of r° It Can Be Obtained As The
Image Of Map Intor’Or As The Level Set Of Function With Domain r* We Shall Examine Both Methods
Below First To Develop The Basic Concepts Of The Theory Of Riemannian Sub Manifolds And Then To Use
These Concepts To Derive A Equantitive Interpretation Of Curvature Tensor , Some Basic Definitions And
Terminology Concerning Sub Manifolds, We Define A Tensor Field Called The Second Fundamental Form
Which Measures The Way A Sub Manifold Curves With The Ambient Manifold , For Example x Be A Sub
Manifold Of v Of z:e > x And ¢:E, » v Be Two Vector Brindled And Assume Thate Is Compressible ,

Letf:E - v Andg:E, » v Be Two Tubular Neighborhoods Of x Iny Then There Exists Ac**.

2.8 : Differentiable Manifolds And Tangent Space
In This Section Is Defined Tangent Space To Level Surface; Be A Curve Is In

R", 7t > (1), 7)., »"(©)) A Curve Can Be Described As Vector Valued Function Converse A Vector

dt dt

Smooth Curves That Is Curves With All Continuous Higher Derivatives Cons The Level
Surface f (x',x*..., x")= ¢ Of A Differentiable Function t Where x' To i -t Coordinate The Gradient Vector Of

Valued Function Given Curve , The Tangent Line At The Point d—y(t) = [st ﬂth We Many « Bout
dt

f At Pointp = (x'(P), x’(P),.... x"(P))Is vf =(a—f1 ....... i] Is Given A Vector u-=(u',..u") The Direction
\ ox ox )

of of
U +..+
ox

Derivative b, f =vf.u = f
{ ox

1

uJ The Point P On Level Surface f (x*,x*...,x") The Tangent Is

af" (P) [ (x"=x") J(p)=0. For The Geometric Views The
0

X

Given By Equation 6—1(P) [ =x) [Py + .+
oX

Tangent Space Shout Consist Of All Tangent To Smooth Curves The Pointp , Assume That Is Curve Through
t=t,Is The Level Surface f(x*x*...x")=c That Isf('(t),»*(t).... »"(t))= ¢ By Taking Derivatives On

Both(o—fl(P)(y'(tu)]+ +[a—f"(P)y"(t))} =0 And So The Tangent Line Of , Is Really Normal Orthogonal To
ox

\ Ox

Where ; Runs Over All Possible Curves On The Level Surface Through The Point p .The Surface m Be
Ac~ Manifold Of Dimensionn Withk >1The Most Intuitive To Define Tangent Vectors Is To Use Curves ,
pem Be Any Point On ™ And Lety:]-z,¢[> m Be AC’ Curve Passing Through p That Is
With y(m ) = p Unfortunately 1t m Is Not Embedded In Anyr" The Derivative ,'(m ) Does Not Make Sense
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,However For Any Chart (u,»)At p The Map (¢ - ») At Ac* Curve Inr" And Tangent Vectorv=(p -v) (m) Is Will
Defined The Trouble Is That Different Curves The Same v Given A Smooth Mapping f : n - m We Can Define
How Tangent Vectors Int n Are Mapped To Tangent Vectors Int m With(u,e)Choose
Chartsq = f(p)Forp e n And v,y )Forqe m We Define The Tangent Map Or Flash-Forward Of  As A
Given Tangent Vector x  =[y]eT N And d f.:T M, f.([y]=[f-»]). A Tangent Vector At A Point p In A
Manifold m Is A Derivation Atp , Just As For r"The Tangent At Point p Form A Vector Space
7,(M) Called The Tangent Space Of m At P, We Also Write 1 (m) A Differential Of Map f:n —» m Be

Ac~ Map Between Two Manifolds At Each Point p < N The Map r Induce A Linear Map Of Tangent Space
Called Its Differential At p, F.:T N T, NAs Follows It x <7 n Then Is The Tangent Vector In

T. .M Defined (F.(x ))f=x (foeF)er ., fec”mMm) . The Tangent Vectors Given Anyc " -Manifoldw Of

F(p)

F(p)

Dimensionn With For Anyp e m ,Tangent Vector Tom Atp Is Any Equivalence Class Of c*-Curves
Through p Onm Modulo The Equivalence Relation Defined In The Set Of All Tangent Vectors At p Is Denoted
Byt m We Will Show That Is A Vector Space Of Dimensionn Of m .The Tangent Space 1 m Is Defined As

The Vector Space Spanned By The Tangents At p To All Curves Passing Through Point p In The Manifold
M, And The Cotangentt 'm Of A Manifold At p < m Is Defined As The Dual Vector Space To The Tangent

a

Space T m , We Take The Basis Vectors E, _( ) For 7. m And We Write The Basis Vectors 1'm As The

Lox )
Differential Line Elements ' = o' Thus The Inner Product Is Given By (o /ox,ax') = 5.
2.8. : Definition
Let m,And m,Be Differentiable Manifolds A Mapping ¢:(m, - m,)Is A Differentiable If It Is
Differentiable , Objective And Its Inverse , * Is Diffoemorphism If It Is Differentiable » Is Said To Be A Local
Diffoemorphism At p < m If There Exist Neighborhoods u Of p And v Of »(p) Such That ¢:(U - v)Is A

Diffoemorphism , The Notion Of Diffeomorphism Is The Natural Idea Of Equivalence Between Differentiable
Manifolds , Its An Immediate Consequence Of The Chain Rule That If 4:(m, > m,)Is A Diffoemorphism
Then dg:(r,m) - (1,,Mm,) . Is An Isomorphism For All »:(m, » m,)In Particular , The Dimensions Of
M, And v, Are Equal A Local Converse To This Fact Is The Following d¢ :7,m, - 7, ™, Is An Isomorphism
Then o Is A Local Diffoemorphism At p From An Immediate Application Of Inverse Function In r", For
Example Be Given A Manifold Structure Again a Mapping f7:m — N In This Case The Manifolds
N Andm Are Said To Be Homeomorphism , Using Charts (u .») And (v.»)For n And m Respectively We

Can Give A Coordinate Expression f :m - N
Definition 2.8.2
Let (M *)And (m,")Be Differentiable Manifolds And Let »:(m, - m,)Be Differentiable Mapping

For Every p < m,And For Eachv e (T m,) Choose A Differentiable Curve « :(-s,s) > M, With a(m) = p And
a'(0)=vTake (aop)=pThe Mapping de :T (p)m,By Given By dpw)=p'(m)ls Line Of
a Andy:(m ') (v,")Be A Differentiable Mapping And At pe<wm,Be Suchde:(T,m,)- (T,m,)Is An
Isomorphism Then » Is A Local Homeomorphism

Theorem 2.8.3
Let ¢ Be Lie Group Of Matrices And Suppose That Log Defines A Coordinate Chart The Near The
Identity Element Of ¢ , Identify The Tangent Space g = (1,6)At The Identity Element With A Linear Subspace

Of Matrices , Via The Log And Then A Lie Algebra With[s, ,8,]= 8,8, - B,B, The Space g Is Called The Lie

Algebra Of ¢ .
Proof:
It Suffices To Show That For Every Two Matricese B, e g The[s,,B,]Is Also An Element

Ofg As[s,,B,]ls Clearly Anti Commutative And The (Jacobs Identity) Holds
Foram=(8t),, (B,1),, (-Bt),, (-B,t),, . Define For[t]< s With Sufficiently Small: A Patha(r) Inc Such
That A(0) = 1 Using For Each Factor The Local Formula

(22) (Bt),, =1 +Bt +1/2B** +O(t") A(t)=1+[B,,B,] t> +O(t),t > 0
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Hencee(t) = log A(t) = [B,,B,]t* + 0(t*) EXpre() = a@) Hold For Any Sufficiently That Lie
Bracket[s,, B,]e ¢ On Algebra Is An Infinitesimal Version Of The Commutation(g,,g,)(s;*.g,")In The
Corresponding (Lie Group).

Theorem 2.8.4
The Tangent Bundle (m )Has A Canonical Differentiable Structure Making It Into A Smooth 2N-

Dimensional Manifold, Where N=Dim. The Charts Identify Anyu cu T m)c (v ) For An Coordinate

Neighborhoodu < m , With(u xr") That Is Hausdorff And Second Countable Is Called (The Manifold Of
Tangent Vectors)
Definition 2.8.5

A Smooth Vectors Fields On Manifoldsm Is Map x :m —» v Such That :(I) x(p)eT,m For
Everyc (li) In Every Chart x Is Expressed As a, (a/6x,) With Coefficients a, (x) Smooth Functions Of The Local

Coordinates x, .

I1l.  Differentiable Manifolds Chart
In This Section, The Basically An M-Dimensional Topological Manifold Is A Topological Space M
Which Is Locally Homeomorphism To r ™, Definition Is A Topological Space M Is Called An M-Dimensional
(Topological Manifold) If The Following Conditions Hold: (I) m Is A Hausdorff Space.(li) For Any

p e M There Exists A Neighborhood u Of P Which Is Homeomorphism To An Open Subsetvy < rR™ .
(lii) m Has A Countable Basis Of Open Sets Coordinate Charts (u ,») Axiom (li) Is Equivalent To Saying
That p « m Has A Open Neighborhood u <« P Homeomorphism To Open Disc b ™ In r™ , Axiom (lii) Says
That M  Can Covered By Countable Many Of Such Neighborhoods , The Coordinate Chart
(U, o) Whereu Are Coordinate Neighborhoods Or Charts And » Are Coordinate . A Homeomorphisms ,
Transitions Between Different Choices Of Coordinates Are Called Transitions Maps »,, = ¢, - ¢, , Which Are
Again Homeomorphisms By Definition , We Usually Write p = ¢ *(x),¢ : (U — v )<= R" As Coordinates
Foru , And p=9o"(x).¢ ": (v > U )<= M As Coordinates For u , The Coordinate Charts (u ,¢) Are
Coordinate Neighborhoods, Or Charts , And ¢ Are Coordinate Homeomorphisms , Transitions Between
Different Choices Of Coordinates Are Called Transitions Maps ¢, = ¢, - », Which Are Again
Homeomorphisms By Definition , We Usually x =9 (p).»:U - Vv <= R"As A Parameterization u A
Collection A = {(»,,U )}, , Of Coordinate Chart With m = o u, Is Called Atlas For m .The Transition
Maps «,, A Topological Space m Is Called ( Hausdorff ) If For Any Pair p,q « m , There Exist Open
Neighborhoods p <u And q <cu’Such Thatu ~u ' = ¢ For A Topological Space M With Topology
r e U Can Be Written As Union Of Sets In g , A Basis Is Called A Countable Basis g Is A Countable Set .
Definition 3.1.1

A Topological Space ™M Is Called An M-Dimensional Topological Manifold With Boundary
oM < m If The Following Conditions.
() M Is Hausdorff Space.(li) For Any Point p e m There Exists A Neighborhoodu Of p Which Is
Homeomorphism To An Open Subsetv < 1 ™ .(lii) m Has A Countable Basis Of Open Sets, Can Be
Rephrased As Follows Any Point p e u Is Contained In Neighborhoodu To D™ ~ H ™ The Set m Is A
Locally Homeomorphism Tor™ Or H ™ The Boundary om < m Is Subset Of m  Which Consists Of
Points p .

Definition 3.1.2

A Function f:x — vy Between Two Topological Spaces Is Said To Be Continuous If For Every
Open Set u Of v The Pre-Image f *(u) IsOpenin x .
Definition 3.1.3

Let x And vy Be Topological Spaces We Say That x And vy Are Homeomorphism If There Exist
Continuous Function Such That f.g=id And g-o f =id, We Write x =v And Say That f And
g Are Homeomorphisms Between x And vy , By The Definition A Function f :x — v Is A
Homeomorphisms If And Only If .(I) ¢ Is A Objective .(li) ¢ Is Continuous (lii) f * Is Also Continuous.
3.2 Differentiable Manifolds

A Differentiable Manifolds Is Necessary For Extending The Methods Of Differential Calculus To
Spaces More General rR" A Subset s = R* Is Regular Surface If For Every Point p < s The A Neighborhood
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v Of P Is r®*And Mapping x:uc R* >V ~s Open Setu < rR? Such That. (I) x Is Differentiable
Homomorphism. (li) The Differentiable (dax), :(rR*> — r*), The Mapping x Is Called A Aparametnzation Of
s At e The Important Consequence Of Differentiable Of Regular Surface Is The Fact That The Transition

Also Example Below If x :u_, - s*And x,:U, > s*Are x (U )~ x,(U,)=w=g¢ , The

Maps x " o T(w)—> RPAND x"ox, = x,'(w) > R

Are leferentlable Structure On A Set m Induces A Natural Topology On m It Suffices To A = m To Be An
Open SetIn m If And Only If x*(A~ x_( _)» IsAnOpen SetInr" For All « ItIs Easy To Verify That
m And The Empty Set Are Open Sets That A Union Of Open Sets Is Again Set And That The Finite
Intersection Of Open Sets Remains An Open Set. Manifold Is Necessary For The Methods Of Differential
Calculus To Spaces More General Than De r", A Differential Structure On A Manifolds m Induces A
Differential Structure On Every Open Subset Of M | In Particular Writing The Entries Of An (n x k ) Matrix In
Succession Identifies The Set Of All Matrices With r"*, An nx k Matrix Of Rank k Can Be Viewed As A
K-Frame That Is Set Of « Linearly Independent VectorsIn r", v ,K < n Is Called The Steels Manifold ,The
General Linear Group &L (n)By The Foregoing v,, Is Differential Structure On The Group " Of
Orthogonal Matrices, We Define The Smooth Maps Function f:m — N Where m , N Are Differential
Manifolds We Will Say That f Is Smooth If There Are Atlases (u_,nh_)On m , (v,.g,)On N, Such

That The Maps (g, f h, *) Are Smooth Wherever They Are Defined ¢ Is A Homeomorphism If Is Smooth
And A Smooth Inverse. A Differentiable Structures Is Topological Is A Manifold It An Open Covering
u, Where Each Set u _ Is Homeomorphism, Via Some Homeomorphism n_ To An Open Subset Of
Euclidean Space r", Let m Be A Topological Space , A Chart In m Consists Of An Open Subset
U = M And A Homeomorphism n Of u Onto An Open Subset Of r™, A c " Atlas On m Is A Collection
(u, ,n,)OfCharts Such That Theu , Cover m And (n,,n_*) The Differentiable .

Definition 3.2.1
Let m Be A Metric Space We Now Define What Is Meant By The Statement That m Is An N-
Dimensional ¢~ Manifold. (I) A Chart On m Is A Pair (u,) With u An Open Subset Of m And » A

Homeomorphism A (1-1) Onto, Continuous Function With Continuous Inverse From u To An Open Subset
Of r", Think Of » As Assigning Coordinates To Each Point Of u . (li) Two Charts (u,e) And

(V .y ) Are Said To Be Compatible If The Transition Functions.

(23) {(l/joq))li(p(u AV)Yc R" > (U mV)CR"}

(¢ow)71:w(u AV)cR" > (U nV)c= R"
Are c~ That Is All Partial Derivatives Of All Orders Of (» - *)And (e -y *)Exist And Are
Continuous.(lif) An Atlas For m Is AFamily A ={ (U,,¢,):ie 1} OfChartsOn m Such That{u, } _, Is

An Open Cover Of M And Such That Every Pair Of Charts In A Are Compatible. The Index Set 1 Is
Completely Arbitrary. It Could Consist Of Just A Single Index. It Could Consist Of Uncountable Many Indices.

An Atlas A Is Called Maximal If Every Chart (u,¢) On m That Is Compatible With Every Chat Of a .

Example 3.2.2 : Surfaces An N-Dimensional

Any Smooth N-Dimensional r"* Is An N-Dimensional Manifold. Roughly Speaking A Subset Of
R™™ A An N-Dimensional Surface If , Locally m Of The m + n Coordinates Of Points On The
Surface Are Determined By The Other n Coordinates In A ¢ ~ Way , For Example , The Unit Circle s*Is A

One Dimensional Surface In r?. Near (0.1) A Point (x,y) < R2IsOns*If And Only If y = +/1- x> And
Near (-1.0), (x,y)IsOn s*If And Only If y = —+/1— x* . The Precise Definition Is That m Is An N-

Dimensional Surface In r™™If m Is A Subset Of R™"With The Property That For Each
z,..)em There Are A Neighborhood u ,Of :zInr™™, And n Integers.

1<J,<j,<..<j,, c”Function f (x ... x,) yke{1,..,n+m}s{j,.., j }Such That The
Point x = (x,,...., x,,.)eu,. That Is We May Express The Part Of ™ That Is Near :z As
X, = fll(le, Xy meens xm), X, = flz(xll, X reeees Xjn) y X = o (le, Xy meens xm). Where There For Some
c ~ Function £,,..., £, . We Many Use x ., x,....., x,. As Coordinates For R*In ™M ~ u, .Of Course An

jn
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Atlas Is With ¢, (x) = (x,,.....
ze M , There Are A Neighborhood u,Of zIn r™", And mc~ Functions g, :u, > r With The
Vector { v , (z)| 1<k <m }Linearly Independent Such That The Point x <u  Is In m If And Only If

x,) Equivalently, m Is An  N-Dimensional Surface In r"™™ If For Each

g,.(x) =0 For All 1<k < m .To Get From The Implicit Equations For M Given By The g, To The Explicit
Equations For m Given By The £ _One Need Only Invoke ( Possible After Renumbering Of x ) . A

Topological Space m Is Called An M-Dimensional Topological Manifold With Boundary om < m If The
Following Conditions.(lI) M Is Hausdorff Space .(li) For Any Point p « m There Exists A Neighborhoodu Of
p Which Is Homeomorphism To An Open Subset v = w ™ (lii) M Has A Countable Basis Of Open Sets, Can
Be Rephrased As Follows Any Point p « u Is Contained In Neighborhoodu To D™ ~ H ™ The Set M Is A
Locally Homeomorphism To r™ Or = ™ The Boundary am < m Is Subset Of M Which Consists Of Points
p .
Definition 3.2.3

Let x Be A Set A Topology u For x Is Collection Of x Satisfying :(I) 4 And x Areln u .(li)
The Intersection Of Two Members Of u Is In u .(lii) The Union Of Any Number Of Members u IsInu .
The Set x With u Is Called A Topological Space The Membersu < u Are Called The Open Sets. Let
x Be A Topological Space A Subset N = x With x « n Is Called A Neighborhood Of x If There Is An
Open Set u With xeu < N, For Example If x A Metric Space Then The Closed Ball b, (x) And The
Open Ball b, (x) Are Neighborhoods Of x A Subset ¢ Is Said To Closed If x \c Is Open

Definition 3.2.4
A Function f:x — v Between Two Topological Spaces Is Said To Be Continuous If For Every

Open Set u Of ¥ The Pre-Image f *(u) IsOpenlin x .
Definition 3.2.5

Let x And vy Be Topological Spaces We Say That x And v Are Homeomorphisms If There Exist
Continuous Function f :(x — Y),g:(v — x)Such That (fog)=id And (g f)=id, We Write
x =y And Say That ¢ And g Are Homeomorphisms Between x And vy , By The Definition A
Function f :(x — v ) Is A Homeomorphisms If And Only If (1) ¢ Is A Objective (li)  Is Continuous
(hii) £ * Is Also Continuous.

3 .3 Differentiable Manifolds

A Differentiable Manifolds Is Necessary For Extending The Methods Of Differential Calculus To
Spaces More General rR" A Subset s = RrR* Is Regular Surface If For Every Point p « s The A Neighborhood
v Of pIs R®*ANnd Mapping x:ucR*—>vVv ~s Open Setu < r*Such That: (I) x Is Differentiable
Homomorphism (li) The Differentiable (ox),:R* — R*, The Mapping * Is Called Aparametnzation Of
s At p The Important Consequence Of Differentiable Of Regular Surface Is The Fact That The Transition
Also Example Below If x_ :u_ — s*And x,:u, — s*Are x_ (U _ )~ x,(U ,)=w = ¢ The Mappings

(x;1 ° X, ):x’l(w)~> R? ,(x;1 ° xﬂ): x;l(w) — R

A Differentiable Manifold Is Locally Homeomorphism To r" The Fundamental Theorem On Existence,
Uniqueness And Dependence On Initial Conditions Of Ordinary Differential Equations Which Is A Local
Theorem Extends Naturally To Differentiable Manifolds. For Familiar With Differential Equations Can Assume

The Statement Below Which Is All That We Need For Example x Be A Differentiable On A Differentiable
Manifold M And pe ™M Then There Exist A Neighborhood pem And U, <=M An

Inter (- s,s) .6 =0, And A Differentiable Mapping ¢:(-s.5)xuU — M Such That Curve
t — o (t,q) And » (0,q)=q Acurve a:(—5,8) > M Which Satisfies The Conditions
a (t)= X (a (1)) And « (0) = q Is Called A Trajectory Of The Field x That Passes Throughq Fort=o0 . A
Differentiable Manifold Of Dimension ~ Is A Set m And A Family Of Injective Mapping x, =« R" - m Of
Open Sets u, « R"Into m Such That: (I) u_x,(u_ )= ™M (li) For Any «, s With x_(u,)~ x, () (lii)
The Family (u_,x_) Is Maximal Relative To Conditions (1I),(li) The Pair (u_, x_) Or The Mapping x, With
p e x, (u,) Is Called A Parameterization , Or System Of Coordinates Of M ,u_x, (u,) = m The Coordinate
Charts (u , o) Where u Are Coordinate Neighborhoods Or Charts , And » Are Coordinate Homeomorphisms
Transitions Are Between Different Choices Of Coordinates Are Called Transitions Maps ¢, , (¢, > o, ") .
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Which Are Anise Homeomorphisms By Definition, We Usually Write x = (p).o :U — v < R" Collection
u And p=9 *(x),» ':v »> U = M For Coordinate Charts With Is m = o u, Called An Atlas For m Of
Topological Manifolds. A Topological Manifold m For Which The Transition Maps ¢, , = (¢, - »,) For All
Pairs»,. ¢, In The Atlas Are Homeomorphisms Is Called A Differentiable , Or Smooth Manifold , The

Transition Maps Are Mapping Between Open Subset Of R™ , Homeomorphisms Between Open Subsets Of
R" Are c ~ Maps Whose Inverses Are Also €~ Maps , For Two Chartsu , And u . The Transitions Mapping

(24) (0,,))=(o, 20, H:le (U, AU D> [p, U, AU )]

Since (- ") And (¢’ - » ) Are Homeomorphisms It Easily Follows That Which Show That Our Notion Of
Rank Is Well Defined (3 "), =3(w'ow ), 3 f'(p'o9p ) , If A Map Has Constant Rank For All
p e N We Simply Write rk (f), These Are Called Constant Rank Mapping. The Product Two Manifolds
M,Andm ,Be  Twoc*-Manifolds Of  Dimensionn, And n, Respectively =~ The  Topological
Space M, x m , Are Arbitral Unions Of Sets Of The Form u ~xv Whereu Is Open Inm , Andv Is Open

Inm ,, Can Be Given The Structure © * Manifolds Of Dimension n,,n, By Defining Charts As Follows For
Any  Chartsm  On v, M, We Declare That(U, =V, ., ¢, xy,)Is Chart
Onm, xM,Wheregp, <y U, xv, - R™"™ s Defined So Thaty, xv (p.q)= (e, (p) . v, (a))For

All(p.q)eu,xv, . A Given AC " N-Atlas, A On M For Any Other Chart (U ,»)We Say That (U ,¢) IS
Compatible With The Atlas A If Every Map (, - » ") And (¢ - », ") ISc * Wheneveru ~u, = o The Two
Atlases A And A Is Compatible If Every Chart Of One Is Compatible With Other Atlas A Sub Manifolds Of

Others Of R" For Instance s 2 Is Sub Manifolds Of r* It Can Be Obtained As The Image Of Map Into r* Or
As The Level Set Of Function With Domain r * We Shall Examine Both Methods Below First To Develop The
Basic Concepts Of The Theory Of Riemannian Sub Manifolds And Then To Use These Concepts To Derive A
Equantitive Interpretation Of Curvature Tensor , Some Basic Definitions And Terminology Concerning Sub
Manifolds, We Define A Tensor Field Called The Second Fundamental Form Which Measures The Way A Sub
Manifold Curves With The Ambient Manifold , For Example x Be A Sub Manifold Of v Of » :e — x And
g : E, - vy Be Two Vector Brindled And Assume That e Is Compressible, Let f :E - v Andg:E, — v Be
Two Tubular Neighborhoods Of x Invy Then There Exists .

Theorem 3.3.1

Let m,ne N And Let u = R"" Be An Open Set, Let g :u - rR" Be c”* With g(x,,y,) =0 For Some

x, e R" .y, e R"With(x,,y,) cu . Assume That ge (29 (y y yy. .o Then There Exist Open
oy shasm

Sets v « R"™™ And w < R"With (x,,y,)eVv Such That , For Eachxew There Is A Unique
(x ,y)eVv With g(x ,y )=o0 If The Y Above Is Denoted f(x,)=y,And g (x, f(x) )= o0 For All
x ew The N-Sphere s"Is The N-Dimensional Surface r"* Given Implicitly By Equation
(X X, = (X7 + + x2.)= 0 In A Neighborhood Of , For Example The Northern Hemisphere s" Is

Given Explicitly By The Equation x,., = 4/x/ +....+ x2 If You Think Of The Set Of All 3 x 3 Real Matrices
AsR® ( Because A 3 x 3 Matrix Has 9 Matrix Elements ) Then
.S0O(3)={3x3real matrics R,R'R=1,det R =1}
Example 3.3.2

The TorusT * Is The Two Dimensional Surface T7* = {(x, y,2)e R, ({/x" + y? —1)" + 2% = 1/4}
InrR?In Cylindrical Coordinates x=rcos @ , y =rsin ¢,z=0 The Equation Of The Torus
IS(r —1)* + z* =1/4 Fix Any o ,say o, . Recall That The Set Of All Points In r" That Have o = ¢, Is An

Open Book, It Is A Hall-Plane That Starts At The z Axis. The Intersection Of The Tours With That Half Plane
Is Circle Of Radius 1/2 Centered On r-=1,z=0 AS ¢ Runs Formoto2~, The Point

r=1+1/2cs ¢ And o =o¢,Runs Over That Circle. If We Now Run ¢ From oto2~ The
Point (x,y,z)=((@+1/2cos ¢)cos 6,(1+1/2sin o) Runs Over The Whole Torus. So We May Build
Coordinate Patches For 1 * Using ¢ And » With Ranges (0,2~) Or (- =, ») As Coordinates)
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Definition 3.3.3
() A Function + From A Manifold m To Manifold ~ (It Is Traditional To Omit The Atlas From

The Notation) Is Said To Be c = At m < M |f There Exists A Chart { U ,»}For M And Chart { v,y } For
N Such That meu ,f(m)ev And (w o fop *)Is c”Atp(m). (i) Tow Manifold m And ~ Are
Diffeomorphic If There Exists A Function f:m — N That Is (1-1) And Onto With ~ And ¢ On

c “ Everywhere. Then You Should Think Of m And ~ As The Same Manifold With m And  (m) Being
Two Names For Same Point, For Eachm e m

IV.  Conclusion
The Basic Notions On Applications Geometry Riemannian Knowledge Of Calculus Manifolds,
Including The Geometric Formulation Of The Notion Of The Differential And The Inverse Function Theorem.
The Differential Geometry Of Surfaces With The Basic Definition Of Differentiable Manifolds, Starting With
Properties Of Covering Spaces And Of The Fundamental Group And Its Relation To Covering Spaces.
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