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Abstract: In This Paper Some Fundamental Theorems , Definitions In Riemannian Geometry Manifolds In The 

Space n
R  To Pervious Of Differentiable Manifolds Which Are Used In An Essential Way In Basic Concepts Of 

Applications Riemannian Geometry Examples Of The Problem Of Differentially Projection Mapping 

Parameterization System By Strutting Rank k .. 
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I. Introduction 
A Riemannian Manifolds Is A Generalization Of Curves And Surfaces To Higher Dimension , It Is 

Euclidean In n
E In That Every Point Has A Neighbored, Called A Chart Homeomorphism To An Open Subset 

Of n
R , The Coordinates On A Chart Allow One To Carry Out Computations As Though In A Euclidean Space 

, So That Many Concepts From n
R , Such As Differentiability, Point Derivations , Tangents , Cotangents 

Spaces , And Differential Forms Carry Over To A Manifold. In This We Given The Basic Definitions And 

Properties Of A Smooth Manifold And Smooth Maps Between Manifolds , Initially The Only Way We Have To 

Verify That A Space , We Describe A Set Of Sufficient Conditions Under Which A Quotient Topological Space 

Becomes A Manifold Is Exhibit A Collection Of 
C Compatible Charts Covering The Space Becomes A 

Manifold , Giving Us A Second Way To Construct Manifolds , A Topological Manifolds 
C Analytic 

Manifolds , Stating With Topological Manifolds , Which Are Hausdorff Second Countable Is Locally Euclidean 

Space , We Introduce The Concept Of Maximal 
C Atlas , Which Makes A Topological Manifold Into A 

Smooth Manifold , A Topological Manifold Is A Hausdorff , Second Countable Is Local Euclidean Of 

Dimension n  , If Every Point p In M Has A Neighborhood U Such That There Is                  A 

Homeomorphism  From U Onto A Open Subset Of n
R , We Call The Pair A Coordinate Map Or Coordinate 

System On U , We Said Chart ),( U Is Centered At Up  , 0)( p , And We Define The Smooth Maps 

NMf : Where  NM , Are Differential Manifolds We Will Say That f Is Smooth If There Are 

Atlases ),(


hU On M And ),(


gV On N . In This Paper, The Notion Of A Differential Manifold Is 

Necessary For The Methods Of Differential Calculus To Spaces More General Than De n
R , A Differential 

Structure On A Manifolds M Induces A Differential Structure On Every Open Subset Of M , In Particular 

Writing The Entries Of An  kn  Matrix In Succession Identifies The Set Of All Matrices With kn
R

, , An 

kn  Matrix Of Rank k Can Be Viewed As A K-Frame That Is Set Of k Linearly Independent Vectors In 
n

R ,  nKV
kn


,

Is Called The Steels Manifold ,The General Linear Group  )( nGL By The Foregoing 
kn

V
,

 

Is Differential Structure On The Group n Of Orthogonal Matrices, We Define The Smooth Maps Function 

NMf : Where NM , Are Differential Manifolds We Will Say That f Is Smooth If There Are Atlases 

 


hU , On M ,  
BB

gV , On N , Such That The Maps  1


hfg

B
Are Smooth Wherever They Are 

Defined f Is A Homeomorphism If Is Smooth And A Smooth Invers .     A Differentiable Structures Is 

Topological Is A Manifold It An Open Covering 


U Where Each Set 


U Is Homeomorphism, Via Some 

Homeomorphism 


h To An Open Subset Of Euclidean Space n
R , Let M Be A Topological Space , A Chart 

In M Consists Of An Open Subset MU  And A Homeomorphism h Of U Onto An Open Subset Of m
R , 

A r
C Atlas On M Is A Collection  


hU , Of Charts Such That The


U Cover M And 1

,



hh

B
The 

Differentiable Vector Fields On A Differentiable Manifold M , Let X And Y Be A Differentiable Vector 

Field On A Differentiable Manifolds M Then There Exists A Unique Vector Field Z Such That Such That , 

For All  fYXXYZfDf )(,  If That Mp And Let MUx : Be A Parameterization At Specs .   
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II. A Basic Notions On Differential Geometry 
In This Section Is Review Of Basic Notions On Differential Geometry: 

 

2.1 First Principles  

Hausdrff Topological 2.1.1   

A Topological Space M Is Called (Hausdorff) If For All Myx , There Exist Open Sets Such That 

Ux  And Vy  And  VU  

Definition 2.1.2 

A Topological Space M Is Second Countable If There Exists A Countable Basis For The Topology 

On M . 

 

Definition 2.1.3: Locally Euclidean Of Dimension ( M )  

A Topological Space M Is Locally Euclidean Of Dimension N If For Every Point Mx  There Exists 

On Open Set MU  And Open Set n
Rw  So That U And W Are (Homeomorphism). 

 

Definition 2.1.3 

A Topological Manifold Of Dimension N Is A Topological Space That Is Hausdorff, Second Countable 

And Locally Euclidean Of Dimension N. 

 

Definition 2.1.4 

A Smooth Atlas A Of A Topological Space M Is Given By: (I) An Open Covering  
Ii

U


Where 

MU
i
  

Open And 
iIi

UM


 .(Ii) A Family   
Iiiii

WU


: Of Homeomorphism 
i

 Onto Open Subsets n

i
RW  So 

That If 
ji

UU Then The Map    
jijjii

UUUU   Is ( A Diffoemorphism ) 

 

Definition 2.1.5 

If   
ji

UU Then The Diffoemorphism    
jijjii

UUUU    Is Known As The (Transition Map). 

 

Definition 2.1.6 

A Smooth Structure On A Hausdorff Topological Space Is An Equivalence Class Of Atlases, With 

Two Atlases A And B Being Equivalent If For   AU
ii
, And   BV

jj
, With 

ji
VU Then The 

Transition    
jijjii

VUVU  Map Is A Diffoemorphism (As A Map Between Open Sets Of n
R ). 

Definition 2.1.7 

A Smooth Manifold M Of Dimension N Is A Topological Manifold Of Dimension N Together With A 

Smooth Structure  

 

Definition 2.1.8 

Let M And N Be Two Manifolds Of Dimension nm , Respectively A Map NMF : Is Called 

Smooth At Mp  If There Exist Charts    ,,, VU  With MUp  And NVpF )( With VUF )( And 

The Composition )()(:
1

VUF 


 Is A Smooth ( As Map Between Open Sets Of n
R Is Called Smooth If 

It Smooth At Every Mp  . 

 

Definition 2.1.9 

A Map NMF : Is Called A Diffeomorphism If It Is Smooth Objective And Inverse 

MNF 


:
1 Is Also Smooth. 

 

Definition 2.1.10 

A Map F Is Called An Embedding If F Is An Immersion And (Homeomorphism) Onto Its Image. 

 

Definition 2.1.11 

If NMF : Is An Embedding Then )(MF Is An Immersed (Sub Manifolds) Of N . 

 

2.2 Tangent Space And Vector Fields  

Let ),( NMC
 Be Smooth Maps From M And N , Let )( MC

 Smooth Functions On M Is Given A 

Point Mp  Denote, )( pC
 Is Functions Defined On Some Open Neighbourhood Of p And Smooth At p . 
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Definition 2.2.1 

(I) The Tangent Vector X To The Curve   Mc   ,: At 0t Is The Map RcCc 


))0((:)0( Given By 

The Formula  

(1)                                                )0(:
)(

)()0()(
0

cCf
dt

cfd
fcfX

t

















                                        

(Ii) A Tangent Vector X At Mp  Is The Tangent Vector At 0t Of Some Curve   M  ,: With 

p)0( This Is RpCX 


)(:)0( . 

 

Remark 2.2.2 

A Tangent Vector At p Is Known As A Liner Function Defined On )( pC
 Which Satisfies The 

(Leibniz Property) 

(2)                                             )(,,)()()( pCgfgXfgfXgfX


                . 

 

2.3 Differential Geometrics  

Given ),( NMCF


 And Mp  ,  MTX
p

 Choose A Curve M ),(:  With p)0( And 

X )0( This Is Possible Due To The Theorem About Existence Of Solutions Of Liner First Order Odes , 

Then Consider The Map NTMTF
pFpp )(*

:  Mapping )0()()(
/

*
FXFX

p
 , This Is Liner Map Between Two 

Vector Spaces And It Is Independent Of The Choice Of  . 

 

Definition 2.3.1 

The Liner Map 
p

F
*

Defined Above Is Called The Derivative Or Differential Of F At p While The 

Image )(
*

XF
p

Is Called The Push Forward X At Mp  . 

 

Definition 2.3.2:  Cotangent Space And Vector Bundles And Tensor Fields 

Let M Be A Smooth N-Manifolds And Mp  .We Define Cotangent Space At p Denoted By 

MT
p

* To Be The Dual Space Of The Tangent Space At  RMTfMTp
pp

 :)(:
* , f Smooth Element Of 

MT
p

* Are Called Cotangent Vectors Or Tangent Convectors At p .(I) For RMf : Smooth The Composition 

RRTMT
pfp


)(

* Is Called 
p

df And Referred To The Differential Of f .Not That MTdf
pp

*
 So It Is A Cotangent 

Vector At p (Ii) For A Chart  i
xU ,, Of M And Up  Then   n

i

i
dx

1
Is A Basis Of MT

p

* In Fact  i
dx  Is The 

Dual Basis Of 

n

i

i
dx

d

1










. 

Definition 2.3.3 

A Smooth Real Vector Bundle Of Rank k Denoted  ,, ME Is A Smooth Manifold E Of Dimension 

1n The 

Total Space A Smooth Manifold M Of Dimension n The Manifold Dimension kn  And A Smooth 

Subjective Map ME : (Projection Map) With The Following Properties: (I) There Exists An Open Cover 

 
I

V


Of M And Diffoemorphism k
RVV 




 )(:

1 .(Ii) For Any Point 

    kk
RRppMp 


)(,

1



And We Get A Commutative Diagram ( In This Case 


 VRV

k
:

1
Is 

Projection Onto The First Component .(Iii) Whenever 

 VV The Diffoemorphism. 

(3)                                                         kk
RVVRVV 




 :

1
                                        

Takes The Form     k
RaapApap 


,)()(,,

1


 Where ),(: RkGLVVA 


Is Called Transition Maps.  

 

Definition 2.3.4 :  Bundle Maps And Isomorphism’s  

Suppose  ,, ME And  
~

,
~

,
~

ME Are Two Vector Bundles A Smooth Map EEF
~

:  Is Called A 

Smooth Bundle Map From  ,, ME To  
~

,
~

,
~

ME . (I) There Exists A Smooth Map MMf
~

:  Such That 

The Following Diagram Commutes That    )()( qfqF   For All Mp  (Ii) F Induces A Linear Map From 

p
E To 

)(

~

pf
E For Any Mp  . 
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Definition 2.3.5 :  Projective Spaces 

The n Dimensional Real (Complex) Projective Space, Denoted By ))()( CPorRP
nn

, Is Defined As 

The Set Of         1-Dimensional Linear Subspace Of )
11  nn

CorR , )()( CPorRP
nn

Is A Topological Manifold.  

Definition 2.3.6  

For Any Positive Integer n , The n Torus Is The Product Space )...(
11

SST
n

 .It Is A 

n Dimensional Topological Manifold.   (The   2-Torus Is Usually Called Simply The Torus).  

Definition2.3.7  

The Boundary Of A Line Segment Is The Two End Points; The Boundary Of A Disc Is A Circle. In 

General The Boundary Of A n Manifold Is A Manifold Of Dimension )1( n , We Denote The Boundary Of A 

Manifold M As M . The Boundary Of Boundary Is Always Empty,   M  

Lemma 2.3.8  

Every Topological Manifold Has A Countable Basis Of Compact Coordinate Balls.  Every 

Topological Manifold Is Locally Compact.  

Definitions 2.3.9  

Let M Be A Topological Space n -Manifold. If  ),(),,(  VU Are Two Charts Such That    VU , 

The Composite Map    )()(:
1

VUVU 


   Is Called The Transition Map From  To .  

Definition 2.3.10  

An Atlas A Is Called A Smooth Atlas If Any Two Charts In A Are Smoothly Compatible With Each 

Other.  A Smooth Atlas A On A Topological Manifold M Is Maximal If It Is Not Contained In Any Strictly 

Larger Smooth Atlas. (This Just Means That Any Chart That Is Smoothly Compatible With Every Chart In A Is 

Already In A.  

Definition 2.3.11  

A Smooth Structure On A Topological Manifold M Is Maximal Smooth Atlas. (Smooth Structure Are 

Also Called Differentiable Structure Or 
C Structure By Some Authors).  

Definition 2.3.12 

A Smooth Manifold Is A Pair ,( M A), Where M Is A Topological Manifold And A Is Smooth Structure 

On M . When The Smooth Structure Is Understood, We Omit Mention Of It And Just Say M Is A Smooth 

Manifold.   

Definition 2.3.13    

Let M Be A Topological Manifold. 

 (I) Every Smooth Atlases For M Is Contained In A Unique Maximal Smooth Atlas. (Ii) Two Smooth Atlases 

For M Determine The Same Maximal Smooth Atlas If And Only If Their Union Is Smooth Atlas. 

Definition 2.3.14  

Every Smooth Manifold Has A Countable Basis Of Pre-Compact Smooth Coordinate Balls. For 

Example The General Linear Group The General Linear Group ),( RnGL Is The Set Of Invertible nn  -Matrices 

With Real Entries. It Is A Smooth 2
n -Dimensional Manifold Because It Is An Open Subset Of The 2

n - 

Dimensional Vector Space ),( RnM , Namely The Set Where The (Continuous) Determinant Function Is 

Nonzero.  

Definition 2.3.15  

Let M Be A Smooth Manifold And Let p Be A Point Of M . A Linear Map RMCX 


)(: Is Called A 

Derivation At p If It Satisfies: 

(4)                                                               XfpgXgpffgX )()()(   

For All )(, MCgf


 . The Set Of All Derivation Of )( MC
 At p Is Vector Space Called The Tangent Space 

To M At p , And Is Denoted By [ MT
p

]. An Element Of MT
p

Is Called A Tangent Vector At p .  

Lemma 2.3.16  

Let M Be A Smooth Manifold, And Suppose Mp  And MTX
p

 . If f  Is A Const   And Function, 

Then 0Xf . If 0)()(  pgpf , Then 0)( fpX .  

Definition2.3.17  

If   Is A Smooth Curve (A Continuous Map MJ : , Where RJ  Is An Interval) In A Smooth 

Manifold M , We Define The Tangent Vector To   At Jt 


To Be The Vector MT
dt

d
t

tt )(
|)(


 

 












, Where 


tdt

d | Is The Standard Coordinate Basis For RT
t


. Other Common Notations For The Tangent Vector To


 Are 









 
)(,)(


t

dt

d
t


 And














tt

dt

d
|


. This Tangent Vector Acts On Functions By: 
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(5)                                                 )(
)(

||)(







t
dt

fd
f

dt

d
f

dt

d
ft

tt

























 . 

Lemma 2.3.18   

Let M Be A Smooth Manifold And Mp  . Every  MTX
p

 Is The Tangent Vector To Some Smooth 

Curve In M .        

Definition 2.3.19  

A Lie Group Is A Smooth Manifold G That Is Also A Group In The Algebraic Sense, With The 

Property That The Multiplication Map   GGGm : And Inversion Map  GGm : , Given 

By 1
)(,),(


 ggihghgm , Are Both Smooth. If G Is A Smooth Manifold With Group Structure Such That 

The Map GGG  Given By 1
),(


 ghhg Is Smooth, Then G Is A Lie Group. Each Of The Following 

Manifolds Is A Lie Group With Indicated Group Operation. The General Linear Group ),( RnGL Is The Set Of 

Invertible  nn  Matrices With Real Entries. It Is A Group Under Matrix Multiplication, And It Is An Open 

Sub-Manifold Of The Vector Space ),( RnM , Multiplication Is Smooth Because The Matrix Entries Of A Aid B . 

Inversion Is Smooth Because Cramer’s Rule Expresses The Entries Of 
1

A As Rational Functions Of The Entries 

Of A .  The n Torus )...(
11

SST
n

 Is A n Dimensional A Belgian Group.      

Definition 2.3.20   Lie Brackets 

Let V And W Be Smooth Vector Fields On A Smooth Manifold M . Given A Smooth 

Function RMf : , We Can Apply V To f And Obtain Another Smooth Function Vf , And We Can Apply 

W To This Function, And Obtain Yet Another Smooth Function   )(VfWfVW  . The Operation  fVWf  , 

However, Does Not In General Satisfy The Product Rule And Thus Cannot Be A Vector Field, As The 

Following For Example Shows Let 















x
V  And 




















y
W On n

R , And Let yyxgxyxf  ),(,),( . Then Direct 

Computation Shows That 1)( gfWV , While   0 fWVggWVf , So WV Is Not A Derivation Of )(
2

RC
 . 

We Can Also Apply The Same Two Vector Fields In The Opposite Order, Obtaining A (Usually Different) 

Function fVW . Applying Both Of This Operators To f And Subtraction, We Obtain An 

Operator )()(:],[ MCMCWV


 , Called The Lie Bracket Of V And W , Defined 

By     fWVfWVfWV ],[ . This Operation Is A Vector Field. The Smooth Of Vector Field Is Lie Bracket 

Of Any Pair Of Smooth Vector Fields Is A Smooth Vector Field.  

Lemma 2.3.21:  Properties Of The Lie Bracket  

The Lie Bracket Satisfies The Following Identities For All  XWV ,,  )( M . Linearity: Rba  , ,  

(6)                                                     
















].,[],[],[

],[],[],[

WXbVXabWaVX

XWbXVaXbWaV
 

(I) Ant Symmetry ],[],[ VWWV  .(Ii)Jacobi Identity 0]],[,[]],[,[]],[,[  WVXVXWXWV . 

For )(, MCgf


 :  

(7)                                                     VfWgWgVfWVgfWgVf )()(],[],[    

 

2.4 Convector Fields 

Let V  Be A Finite – Dimensional Vector Space Over R And Let *
V  Denote Its Dual Space.   Then *

V  

Is The Space Whose Elements Are Linear Functions From V  To R, We Shall Call Them Convectors. If *
V  

Then RV :  For The Any Vv   , We Denote The Value Of   On v  By  v  Or By ,v . Addition And 

Multiplication By Scalar In *
V  Are Defined By The 

Equations               vvvvv     ,  
2121

. Where Vv   
 V ,,  And R . 

Proposition 2.4.1  : Convectors 

Let V  Be A Finite- Dimensional Vector Space. If ),...,(
1 n

EE Is Any Basis For V ,Then The Convectors 

),...,(
1 n

 Defined By: 

(8)                                                        











jiif

jiif
E

i

jj

i

0

1
)(   

Form A Basis For 
V ,Called The Dual Basis To )(

j
E .Therefore, VV dimdim 

 . 
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Definition 2.4.2 Convectors On Manifolds  


r

AC Convector Field   On M , 0r , Is A Function Which Assigns To Each M  A Convector 

 MT
Pp


  In Such A Manner That For Any Coordinate Neighborhood  ,U With Coordinate Frames

n
EE ,..,

1
, 

The Functions   ,,.....,1  , niE
i

  Are Of Class r
C On U . For Convenience, "Convector Field” Will Mean 




C Convector Field. 

Remark 2.4.3 

It Is Important To Note That A 
r

C Convector Field   Defines A Map    MC
r

M: , Which Is Not Only         

R – Linear But Even   MC
r  Linear, More Precisely, If  MCgf

r
,  Any X  , Y  Are Vector Fields On M , 

Then      YgXfYgXf    . For These Functions Are Equal At Each Mp  .   

Definition 2.4.4:  Tensors Vector Spaces  

We Now Proceed To Define Tensors. Let Nk  Given A Vector Space  
k

VV ,.....,
1

One Can Define A 

Vector Space  
k

VV  .....
1

Called Their Tensor Product. The Element Of This Vector Space Are Called Tensors 

With The Situation Where The Vector Space 
k

VV ,.....,
1

Are All Equal To The Same Space. In Fact The Tensor 

Space VT
k We Define Below Corresponds To  kVV

*

1

*
.....  In The General Notation. And We Define 

 VVV
k

 .... Be The Cartesian Product Of k Copies Of V .A Map  From k
V To A Vector Space U Is Called 

Multiline If In Each Variable Separately I.E. (With The Other Variables Held Fixed) . 

Definition 2.4.5 

Let  VVV
K

 ..... Be The Cartesian Product Of k Copies Of V . A Map  From k
V To A Vector 

Space U Is Called Multiline If It Is Linear In Each Variable Separately ( I.E. With The Other Variables Held 

Fixed ) 

Definition 2.4.6 

A (Covariant) K-Tensor On  V Is A Multiline Map RVT
k
: . The Set Of K-Tensors On V Is 

Denoted )(VT
k . In Particular, A 1-Tensor Is A Linear Form, *1

)( VVT  . It Is Convenient To Add The 

Convention That RVT )(
0 . The Set )(VT

k Is Called Tensor Space, It Is A Vector Space Because Sums And 

Scalar Products Of Multiline Maps Are Again Multiline. 

2.5Alternating Tensors 

Let V Be A Real Vector Space. In The Preceding Section The Tensor Spaces VT
k Were Defined , 

Together With The Tensor Product )()()(,),( VTVTVTTSTS
lklk 

 There Is An Important Construction 

Of Vector Spaces Which Resemble Tensor Powers Of V , But For Which There Is A More Refined Structure, 

These Are The So-Called Exterior Powers V , Which Play An Important Role In Differential Geometry Because 

The Theory Of Differential Forms Is Built On Them. They Are Also Of Importance In Algebraic Topology And 

Many Other Fields. A Multiline Map UVVV
k

 ....: Where 1k Is Said To Be Alternating If For All 

k
vv ,......,

1
Are Inter-Changed That Is ),....,,.....,,.....,(),....,,......,(

1 kijiki
vvvvvvv   Since Every Permutation Of 

Numbers k,......,1 Can Be Decomposed Into Transpositions, It Follows That ),.....,(sgn),....,(
11 kk

vvvv 


 For 

All Permutations 
k

S Of The Numbers  k,.....,1 .For Example Let 3
RV  The Vector Product 

Vvvvv 
2111

),( Is Alternating For   VVV  .And Let RV  The  nn  Determinant Is Multiyear And 

Alternating In Its Columns, Hence It Can Be Viewed As An Alternating Map RR
nn
)( . 

Definition 2.5.1 

An Alternating K-Form Is An Alternating K-Tensor RV
k
 The Space Of These Is Denoted )(VA

k , It 

Is A Linear Subspace Of )(VT
k  

Theorem 2.5.2 

Assume Dim   nV  With  
n

ee ,....,
1

A Basis. Let   *

1
,...., V

n
 Denote The Dual Basis . The Elements 

 
ki ,1

....   Where ),....,(
1 k

iiI  Is An Arbitrary Sequence Of K Numbers In  n,....,1 ,Form A Basis For )(VT
k . 

Proof: 

Let  
kii

T   ......
11

. Notice That If ),.....,(
1 k

jjJ  Is Another Sequence Of K Integers, And We 

Denote By 
j

e The Element   k

kjj
Vee ,....,

1
Then 

jIjI
eT )( That Is 1)( 

jI
eT If IJ  And 0 Otherwise. If 

Follows That They 
I

T Are Linearly Independent, For If A Liner Combination 







 

I
I

I
TaT Is Zero, 

Then 0)( 
jj

eTa . It Follows From The Multilinearity That A K-Tensor Is Uniquely Determined By Its Values 
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On All Elements In k
V Of The Form

j
e . For Any Given K-Tensor T We Have That The K-Tensor 

I
I

I
TeT )( Agrees With T On All 

j
e Hence 

I
I

I
TeT )( And We Conclude That The 

I
T Span )(VT

K . 

2.6 The Wedge Product  

In Analogy With The Tensor Product TSTS ),( Form )()()(
1

VTVTVT
klk 

 , There Is A 

Construction Of A Product 1
)()(




klk
AVAVA Since Tensor Products Of Alternating Tensors Are Not 

Alternating, It Does Not Suffice Just To Take TS  . 

Definition 2.6.1 

Let )(VAS
k

 And )(VAT
l

 . The Wedge Product   )(
1

VATS
k 

 Is Defined By 

  )( TSALtTS  .Notice That In The Case 0k ,Where RVA
k

)( , The Wedge Product Is Just Scalar 

Multiplication.  

Example 2.6.2 

Let   *1

21
)(, VVA  Then By Definition   )(2/1

122121
  Since The Operator. Alt Is 

Linear The Wedge Product Depends Linearly On The Factors S And T. It Is More Cumbersome To Verify The 

Associative Rule For  . In Order To Do This We Need The Following. 

Lemma 2.6.3 

Let )(,)( VASVAR
lk

 And )(VAT
m

 Then )()()( TSRAltTSRTSR   

 (9)                                            )()(()( TSRAltTSAltRAltTSR   

The Wedge Product Is Associative, We Can Write Any Product  
r

TT  .....
1

Of Tensor )(VAT
ik

i
 Without 

Specifying Brackets. In Fact It Follows By Induction From That   )......(.....
11 rr

TTAltTT  Regardless Of 

How Brackets Are Inserted In The Wedge Product In Particular, It Follows From 

   
jijikk

v
k

vv
,11

)(det
!

1
),....,(.....   For All   Vvv

k
,....,

1
And   *

21
,...., V Are Viewed As 1-Forms, The 

Basic Elements 
I

 Are Written In This Fashion As  
kiIiI

  ..... Where ),....,(
1 k

iiI  Is An Increasing 

Sequence Form  n,....,1 This Will Be Our Notation For 
I

 From Now On. The Wedge Product Is Not 

Commutative. Instead, It Satisfies The Following Relation For Interchange Of Factors. In This  Defined A 

Tensor  On V Is By Definition A Multiline *
V Denoting The Dual Space To V , r Its Covariant Order And s Its 

Contra Variant Order , Assume    00  sorr  Thus  Assigns To Each R-Tape Of Elements OfV And s Tupelo 

Of Elements Of *
V A Real Number And If For Each k ,    srk 1 We Hold Every Variable Except 

The  Fixed The  thk  Satisfies The Linearity Condition  

(10)                                                            ).....,,(...,,..,,....,
111 kkkk

vvvvvvv     

For All   R , And Vvv
kk
, Or V Respectively For A Fixed sr , We Let )(Vf

r

s
Be The Collection Of All 

Tensors On V Of Covariant Order s And Contra Variant Order r , We Know That As A Function 

From  VVVV  .......
* To Order R They May Be Added And Multiplied By Scalars Elements R With This 

Addition And Scalar Multiplication )(Vf
r

s
Is A Vector Space So That If   )(,

21
Vf

r

s
 And 

  R
21

, Then  
2211

  Defined In The Way Alluded To Above That Is By. 

(11)                                             
       ,...,,...,,....,

21222111212211
vvvvvv  

 

Is Multiline And Therefore In )(Vf
r

s
This )(Vf

r

s
Has A Natural Vector Space Structure. In Properties Come 

Naturally Interims Of The Metric Defined Those Spaces Are Known Interims Differential Geometry As 

Riemannian Manifolds A Convector Tensor On A Vector V Is Simply A Real Valued ),....,,(
21 r

vvv Of Several 

Vector Variables ),....,(
1 r

vv OfV The Multiline Number Of Variables Is Called The Order Of The Tensor , A 

Tensor Field  Of Order r On Linear In Each On A Manifold M Is An Assignment To Each Point Mp  Of 

Tensor 
p

 On The Vector Space MT
p

Which Satisfies A Suitable Regularity Condition 
CC ,

0 Or r
C As P On 

M . 

Definition2.6.4 

With The Natural Definitions Of Addition And Multiplication By Elements Of R The Set )(Vf
r

s
Of All 

Tensors Of Order sr , On V Forms A Vector Space Of Dimension sr
n

 . 

Definition2.6.5 

We Shall Say That )(Vf
r

s
 , V A Vector Space Is Symmetric If For Each rji  ,1 ,We 

 
rij

vvvvv ,...,,...,,...,,
21

 Similarly If Interchanging The thi  And thj  Variables rji  ,1 Changes The 
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Sign,  
rij

vvvvv ,...,,...,,...,,
21

 Then We Say  Is Skew Or Anti Symmetric Or Alternating Covariant Tensors Are 

Often Called Exterior Forms, A Tensor Field Is Symmetric Respective Alternating If It Has This Property At 

Each Point. 

Theorem 2.6.8 

The Product    )()()( VfVfVf
srsr 

 Just Defined Is Bilinear Associative If  n
ww ....,,

1 Is 

Abasis1 )(
1*

VfV  Then  )()1(
,....,

rii
ww  And   nii

r
 ,....,1

1
Is A Basis Of )(Vf

r Finally VWF :
* Is 

Linear, Then 

Proof: 

Each Statement Is Proved By Straightforward Computation To Say That Bilinear Means That  , Are 

Numbers   )(,
21

Vf
r

 And )(Vf
r

 Then       
2121

 Similarly For The Second 

Variable This Is Checked By Evaluating Side On sr  Vectors OfV In Fact Basis Vectors Suffice Because Of 

Linearity Associatively Is Similarly      , The Defined In Natural Way This Allows Us To 

Drop The Parentheses To Both ),....,(
)()1( rii

ww  From A Basis It Is Sufficient To Note That If  
n

ee ,....,
1

Is 

The Basis Of V Dual To )....(
1 n

ww  Then The Tensor Previously ),...,1( rii
 Defined Is 

Exactly ),....,(
)()1( rii

ww  This Follows From The Two Definitions. 

(12)                                            












)11

11

)()1(

), . . . ,1(

,.....,(),...,(1

),....,(),...,(0
,.....,

rr

rr

rjj

rii

jjiiif

jjiiif
ee   

(13)                                  )(

)(

)1(

)1(

)(

)2(

)2(

)1(

)1(

)()1(

)()1(
,..,),..,()(),...,(),...,(

ri

rj

i

j

ri

j

i

j

i

rjj

rii
weweweeww   

Which Show That Both Tensors Have The Same Values On Any Order Set Of r Basis Vectors And 

Are Thus Equal Finally Given VWF :
* If  

sr
ww


,....,

1
Then 

(14)                                              

     

   

     
































sr

srr

srsr

wwFF

wFwFwFwF

wFwFwwF

,....,

)(),....,()(),......,(

)(),......,(,....,

1

**

*

1

**

1

*

*

1

*

1

*







  

Which Proves )()()(
***
 FFF  And Completes Tensor Field. 

Remark 2.6.9 

 The Rule For Differentiating The Wedge Product Of A P-Form
p

 And Q-Form
q

 Is 

(2.8)                                                               
qp

p

qpqp
ddd   )1(  

Definition 2.6.10 

Let NMf : Be A 
C Map Of 

C Manifolds, Then Each 
C Covariant Tensor Field  On 

N Determines A 
C Covariant Tensor Field 

*
F On M By The Formula 

),......,(),....,()(
*

1

*

)(1

*

prppFrPpp
XFXFXXF   The Map )()(:

*
MfNfF

rr
 So Defined Is Linear And Takes 

Symmetry Alternating Tensor To Symmetric Alternating Tensors. 

Lemma 2.6.11  

Let 0 Be An Alternating Covariant Tensor V Of Order N=Dim. V And Let  
n

ee ,....,
1

Be A Basis Of 

V Then For Any Set Of Vectors  
n

vv ,...,
1

With 
j

j

ii
ev  We Have, j

in
vv det)....,,(

1
 . 

Example 2.6.12 

(I)  Possible P-Forms 
p

 In Two Dimensional Space Are. 

(15)                                                                          






















dydxyx

dyyxvdxyxu

yxf

),(

),(),(

),(

2

1

0







 

The Exterior Derivative Of Line Element Givens The Two Dimensional Curl Times The 

Area     dydxuvdyyxvdxyxud
yx

 ),(),( . 

(Ii)  The Three Space P-Forms 
p

 Are. 

(16)                                                   





































321

3

21

3

13

2

32

12

3

3

2

2

1

11

0

)(

)(

dxdxdxx

dxdxwdxdxwdxdxw

dxvdxvdxv

xf









            

We See That 
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(17)                                              
 

  



















311

3322112

1

1

2

1

dxdxdxwwwd

dxdxvd
m

mjikjkji




 

Where 
kji

 Is The Totally Anti-Symmetric Tensor In 3-Dimensions.The Isomorphism Vectors Tensor Field We 

Saw In The Equation ),(),(
~

VgVgV


 And )
~

,(),
~

(
11

VgVgV 



The Link Between The Vector And Dual 

Vector Spaces Is Provided By g And 1
g If BA


 Components 

BA   Then BA
~~

 Components 


BgB  So 

Where 


AgA  And 


BgB  So Why Do We Bother One-Forms When Vector Are Sufficient The 

Answer Is That Tensors May By Function Of Both One-Form And Vectors , There Is Also An Isomorphism A 

Mongo Tensors Of Different Rank , We Have Just Argued That The Tensor Space Of Rank ( 1.0) Vectors And 

(0.1) Are Isomorphic , In Fact All  nm 
2 Tensor Space Of Rank )( nm   With Fixed )( nm  Are Isomorphic, The 

Metric Tensor Like Together These Spaces As Exempla Field By Equation ),(
k

k
eTegT








 We Could Now 

Use The Inverse Metric  

(18)                                                           ),(
1 k

k
eTegT











p

kp

k

k

k
TggTg







  

The Isomorphism Of Different Tensor Space Allows Us To Introduce A Notation That Unifies Them, We Could 

Affect Such A Unification By Discarding Basis Vectors And One-Forms Only With Components, In General 

Isomorphism Tensor Vector A Defined By. 

 (19)                                                            












eAegAeAA





                     

And 


eAA  Is Invariant Under A Change Of Basis Because 

e


Transforms Like A Basis One-Form. 

2.7: Tensor Fields  

The Introduced Definitions Allows One To Introduce The Tensor Algebra )( MTA
pR

Of Tensor Spaces 

Obtained By Tensor Products Of Space R  And )( MT
p

 , )(
*

MT p . Using Tensor Defined On Each Point 

Mp  One May Define Tensor Fields. 

Definition 2.7.1 

Let M Be A N-Dimensional Manifold. A Differentiable Tensor Field T Is An Assignment 

p
tp  Where Tensors )( MTAt

pRp
 Are Of The Same Kind And Have Differentiable Components With 

Respect To All The Canonical Bases Of )( MTA
pR

Given By Product Of Bases 

MTnk
x

ppK













,...,1 And   MTnkdx

p

k

p

*
,...,1  Induced By All Of Local Coordinate System M .In 

Particular A Differentiable Vector Field And A Differentiable 1-Form                      ( Equivalently Called 

Coveter Field ) Are Assignments Of Tangent Vectors And 1-Forms Respectively As Stated Above. 

For Tensor Fields The Same Terminology Referred To Tensor Is Used .For Instance, A Tensor Field t Which Is 

Represented In Local Coordinates By  
p

j

p

i

i

j
dx

x
pt 




)( Is Said To Of Order (1,1) .It Is Clear That To 

Assign On A Differentiable Manifold M A Differentiable Tensor Field T ( Of Any Kind And Order ) It 

Necessary  And Sufficient To Assign A Set Of Differentiable Functions . 

   n

kjj

miin
xxTxx ,....,,....,

1

,. . . ,1

,. . . . ,11
 . In Every Local Coordinate Patch (Of The Whole Differentiable 

Structure M Or, More Simply, Of An Atlas Of M ) Such That They Satisfy The Usual Rule Of Transformation 

Of Comports Of Tensors Of Tensors If  n
xx ,....,

1 And  n
yy ,....,

1 Are The Coordinates Of The Same Point 

Mp  In Two Different Local Charts. 

(20)                                
p

kj

p

j

p

mi

p

i
kjj

mii
dxdx

xx
T 
































.......

1

1
, . . . . ,1

, . . . ,1  

(I) It Is Obvious That The Differentiability Requirement Of The Comports Of A Tensor Field Can Be Choked 

Using The Bases Induced By A Single Atlas Of Local Charts. It Is Not Necessary To Consider All The Charts 

Of The Differentiable Structure Of The Manifold. 

(Ii) If X Is A Differentiable Vector Field On A Differentiable Manifold, M Defines A Derivation At Each 

Point  MDfifMp  : , 
p

i

i

p

x
pXfX




 )()( Where  n

xx ,....,
1 Are Coordinates Defined About p . More 

Generally Every Differentiable Vector Field X Defines A Linear Mapping From )( MD To )( MD Given By 

)( fXf  For Everywhere )()( MDfX  Is Defined As )()()( fXPfX
p

 For Every Mp  .(Iii) For (Contra 

Variant) Vector Field X On A Differentiable Manifold M , A Requirement Equivalent To The Differentiability 
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Is The Following The Function )(:)( fXPfX
p

 , (Where We Use 
p

X As A Derivation) Is Differentiable For All 

Of )( MDf  . Indeed It X Is A Differentiable Contra Variant Vector Field And If )( MDf  , One Has That 

)(:)( fXPfX
p

 Is A Differentiable Function Too As Having A Coordinate Representation. 

(21)                                        
), . . . ,(

111

1
,....,,...,)(:)(

n
xxi

nin

x

f
xxXxxUfX







  

In Every Local Coordinate Chart ),( U And All The Involved Function Being Differentiable. 

Conversely )( fXp
p

 Defines A Function In )(MD , )( fX For Every )( MDf  The Components Of 

)( fXp
p

 In Every Local Chart ),( U Must Be Differentiable. This Is Because In A Neighborhood Of Uq  , 

 )1(
)( fXqX

i
 .Where The Function )(

)1(
MDf  Vanishes Outside U And Is Defined As )( rxr

i
 , )( rh In 

U Where i
x Is The Its Component Of  (The Coordinate i

x ) And h A Hat Function Centered On q With 

Support In U . Similarly The Differentiability Of A Covariant Vector Field w Is Equivalent To The 

Differentiability Of Each Function 
pp

wXp . For All Differentiable Vector Fields X .(Iv) If )( MDf  The 

Differential Of f In p , 
p

df Is The 1-Form Defined By  
p

i

p

ip
dx

x

f
df




 In Local Coordinates About p . The 

Definition Does Not Depend On The Chosen Coordinates .As A Consequence, The Point Mp  , 

p
dfp  Defines A Covariant Differentiable Vector Field Denoted By df And Called The Differential Of f . (V) 

The Set Of Contra Variant Differentiable Vector Fields On Any Differentiable Manifold M Defines A Vector 

Space With Field Given By R Is Replaced By )(MD , The Obtained Algebraic Structure Is Not A Vector Space 

Because )(MD Is A Commutative Ring With Multiplicative And Addictive Unit Elements But Fails To Be A 

Field. However The Incoming Algebraic Structure Given By A Vector Space With The Field Replaced By A 

Commutative Ring With Multiplicative And Addictive Unit Elements Is Well Known And It Is Called Module.  

 A Sub Manifolds Of Others Of n
R For Instance 2

S Is Sub Manifolds Of 3
R It Can Be Obtained As The 

Image Of Map Into 3
R Or As The Level Set Of Function With Domain 3

R We Shall Examine Both Methods 

Below First To Develop The Basic Concepts Of The Theory Of Riemannian Sub Manifolds And Then To Use 

These Concepts To Derive A Equantitive Interpretation Of Curvature Tensor , Some Basic Definitions And 

Terminology Concerning Sub Manifolds, We Define A Tensor Field Called The Second Fundamental Form 

Which Measures The Way A Sub Manifold Curves With The Ambient Manifold , For Example X Be A Sub 

Manifold Of Y Of XE : And YEg 
1

: Be Two Vector Brindled And Assume That E Is Compressible , 

Let YEf : And YEg 
1

: Be Two Tubular Neighborhoods Of X In Y Then There Exists A 1p
C .       

2.8 :  Differentiable Manifolds And Tangent Space   

In This Section Is Defined Tangent Space To Level Surface  Be A Curve Is In 

 )(),....,(),(:,
21

ttttR
nn

  A Curve Can Be Described As Vector Valued Function Converse A Vector 

Valued Function Given Curve , The Tangent Line At The Point 















00

1

....,)( t
dt

d
t

dt

d
t

dt

d
n


We Many k Bout 

Smooth Curves That Is Curves With All Continuous Higher Derivatives Cons The Level 

Surface   cxxxf
n

,...,,
21 Of A Differentiable Function f Where i

x To thi  Coordinate The Gradient Vector Of 

f At Point  )(),....,(),(
21

PxPxPxP
n

 Is 



















n
x

f

x

f
f ,.....,

1
Is Given A Vector ),...,(

1 n
uuu  The Direction 

Derivative 




















n

nu
u

x

f
u

x

f
uffD ...

1

1
, The Point P On Level Surface  n

xxxf ,...,,
21  The Tangent Is 

Given By Equation     0)()()(....)()()(
11

1










PxxP

x

f
PxxP

x

f nn

n
. For The Geometric Views The 

Tangent Space Shout Consist Of All Tangent To Smooth Curves The Point P , Assume That Is Curve Through 

0
tt  Is The Level Surface   cxxxf

n
,...,,

21 That Is   ctttf
n

)(),....,(),(
21

 By Taking Derivatives On 

Both   0))()(....)((
01






























tP

x

f
tP

x

f n

n
 And So The Tangent Line Of  Is Really Normal Orthogonal To 

f

 Where  Runs Over All Possible Curves On The Level Surface Through The Point P .The Surface M Be 

A 
C Manifold Of Dimension n With 1k The Most Intuitive To Define Tangent Vectors Is To Use Curves , 

Mp  Be Any Point On M And Let   M  ,: Be A
1

C Curve Passing Through p That Is 

With pM )( Unfortunately It M Is Not Embedded In Any N
R The Derivative )(M  Does Not Make Sense 
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,However For Any Chart  ,U At p The Map    At A 1
C Curve In n

R And Tangent Vector   )(
/

Mvv  Is Will 

Defined The Trouble Is That Different Curves The Same v Given A Smooth Mapping MNf : We Can Define 

How Tangent Vectors In NT
p

Are Mapped To Tangent Vectors In MT
q

With  ,U Choose 

Charts )( pfq  For Np  And  ,V For Mq  We Define The Tangent Map Or Flash-Forward Of f As A 

Given Tangent Vector   NTX
pp

  And      ffMTfd
p


**

,: . A Tangent Vector At A Point p In A 

Manifold M Is A Derivation At p   , Just As For n
R The Tangent At Point p Form A Vector Space 

)( MT
p

Called The Tangent Space Of M At p , We Also Write )( MT
p

A Differential Of Map MNf : Be 

A 
C Map Between Two Manifolds At Each Point Np  The Map F Induce A Linear Map Of Tangent Space 

Called Its Differential At p , NTNTF
pFp )(*

:  As Follows It NTX
pp

 Then Is The Tangent Vector In 

MT
pF )(

Defined     )(,)(
*

MCfRFfXfXF
pp


   . The Tangent Vectors Given Any 

C -Manifold M Of 

Dimension n With For Any Mp  ,Tangent Vector To M At p Is Any Equivalence Class Of 1
C -Curves 

Through p On M Modulo The Equivalence Relation Defined In The Set Of All Tangent Vectors At p Is Denoted 

By MT
p

We Will Show That Is A Vector Space Of Dimension n Of M .The Tangent Space MT
p

Is Defined As 

The Vector Space Spanned By The Tangents At p To All Curves Passing Through Point p In The Manifold 

M , And The Cotangent MT
p

* Of A Manifold At Mp   Is Defined As The Dual Vector Space To The Tangent 

Space MT
p

, We Take The Basis Vectors 















ii

x
E For MT

p
And We Write The Basis Vectors MT

p

* As The 

Differential Line Elements ii
dxe  Thus The Inner Product Is Given By j

i

i
dxx  ,/ .   

2.8. :  Definition  

Let 
1

M And 
2

M Be Differentiable Manifolds A Mapping  
21

: MM  Is A Differentiable If It Is 

Differentiable , Objective And Its Inverse 1
 Is Diffoemorphism If It Is Differentiable   Is Said To Be A Local 

Diffoemorphism At  Mp  If There Exist Neighborhoods U Of p And V Of )( p Such That  VU : Is A 

Diffoemorphism , The Notion Of Diffeomorphism Is The Natural Idea Of Equivalence Between Differentiable 

Manifolds , Its An Immediate Consequence Of The Chain Rule That If  
21

: MM  Is A Diffoemorphism 

Then    
2)(1

: MTMTd
pp 

    . Is An Isomorphism For All  
21

: MM  In Particular , The Dimensions Of 

1
M And 

2
M Are Equal A Local Converse To This Fact Is The Following 

2)(1
: MTMTd

pp 
  Is An Isomorphism 

Then  Is A Local Diffoemorphism At p From An Immediate Application Of Inverse Function In n
R , For 

Example Be Given A Manifold Structure Again A Mapping NMf 


:
1 In This Case The Manifolds 

N And M Are Said To Be Homeomorphism , Using Charts ),( U And ),( V For N And M Respectively We 

Can Give A Coordinate Expression NMf :
~

   

Definition 2.8.2  

Let  1

1


M And  1

2


M Be Differentiable Manifolds And Let  

21
: MM  Be Differentiable Mapping 

For Every 
1

Mp  And For Each  
1

MTv
p

 Choose A Differentiable Curve 
1

),(: M  With pM )( And 

v )0( Take     The Mapping 
2

)(: MpTd
p 

 By Given By )()( Mvd   Is Line Of 

 And    1

2

1

1
:


 MM Be A Differentiable Mapping And At 

1
Mp  Be Such    

21
: MTMTd

p 
  Is An 

Isomorphism Then  Is A Local Homeomorphism  

 

Theorem 2.8.3 

Let G Be Lie Group Of Matrices And Suppose That Log Defines A Coordinate Chart The Near The 

Identity Element Of G , Identify The Tangent Space  GTg
1

 At The Identity Element With A Linear Subspace 

Of Matrices , Via The Log And Then A Lie Algebra With  
122121

, BBBBBB  The Space g Is Called The Lie 

Algebra Of G .   

Proof:  

It Suffices To Show That For Every Two Matrices gBB 
21

, The  
21

, BB Is Also An Element 

Of g As  
21

, BB Is Clearly Anti Commutative And The (Jacobs Identity) Holds 

For
exp2exp1exp2exp1

)()()()()( tBtBtBtBtA    . Define For   t With Sufficiently Small  A Path )(TA In G Such 

That IOA )( Using For Each Factor The Local Formula 

(22)                         )(2/1)(
222

exp
tOtBBtIBt    0,)(,)(

2

21
 ttOtBBItA                              
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Hence   )(,)(log)(
22

21
tOtBBtAtB  Expr )()( tAtB  Hold For Any Sufficiently That Lie 

Bracket   gBB 
21

, On Algebra Is An Infinitesimal Version Of The Commutation    1

2

1

111
,,


gggg In The 

Corresponding (Lie Group). 

Theorem 2.8.4  

The Tangent Bundle  TM Has A Canonical Differentiable Structure Making It Into A Smooth 2N-

Dimensional Manifold, Where N=Dim. The Charts Identify Any )()( TMMTUU
pp

 For An Coordinate 

Neighborhood MU  , With  n
RU  That Is Hausdorff And Second Countable Is Called (The Manifold Of 

Tangent Vectors) 

Definition 2.8.5 

A Smooth Vectors Fields On Manifolds M Is Map TMMX : Such That :(I) MTPX
p

)( For 

Every G (Ii) In Every Chart X Is Expressed As )/(
ii

xa  With Coefficients )( xa
i

Smooth Functions Of The Local 

Coordinates
i

x .  

 

III. Differentiable Manifolds Chart 
 In This Section, The Basically An M-Dimensional Topological Manifold Is A Topological Space M 

Which Is Locally Homeomorphism To m
R , Definition Is A Topological Space M Is Called An M-Dimensional 

(Topological Manifold) If The Following Conditions Hold: (I) M Is A Hausdorff Space.(Ii) For Any 

Mp  There Exists A Neighborhood U Of P Which Is Homeomorphism To An Open Subset m
RV  .  

(Iii) M Has A Countable Basis Of Open Sets Coordinate Charts ),( U   Axiom (Ii) Is Equivalent To Saying 

That Mp  Has A Open Neighborhood PU  Homeomorphism To Open Disc m
D In m

R , Axiom (Iii) Says 

That M  Can Covered By Countable Many Of Such Neighborhoods , The Coordinate Chart 

),( U Where U Are Coordinate Neighborhoods Or Charts And  Are Coordinate . A Homeomorphisms , 

Transitions Between Different Choices Of Coordinates Are Called Transitions Maps 
ijji

  , Which Are 

Again Homeomorphisms By Definition , We Usually Write   n
RVUxp 


:,)(

1
 As Coordinates 

For U , And   MUVxp 


:,)(
11

 As Coordinates For U , The Coordinate Charts ),( U Are 

Coordinate Neighborhoods, Or Charts , And  Are Coordinate Homeomorphisms , Transitions Between 

Different Choices Of Coordinates Are Called Transitions Maps 
ijji

  Which Are Again 

Homeomorphisms By Definition , We Usually n
RVUpx  :,)(  As A Parameterization U A 

Collection  
Iiii

UA


 ),( Of Coordinate Chart With 
ii

UM   Is Called Atlas For M .The Transition 

Maps 
ji

  A Topological Space M  Is Called ( Hausdorff ) If For Any Pair Mqp ,  , There Exist Open 

Neighborhoods Up  And Uq  Such That  UU For A Topological Space M With Topology 

U Can Be Written As Union Of Sets In   , A Basis Is Called A Countable Basis  Is A Countable Set . 

Definition 3.1.1 

 A Topological Space M Is Called An M-Dimensional Topological Manifold With Boundary 

MM  If The Following Conditions. 

(I) M Is Hausdorff Space.(Ii) For Any Point Mp  There Exists A Neighborhood U Of p Which Is 

Homeomorphism To An Open Subset m
HV  .(Iii) M  Has A Countable Basis Of Open Sets, Can Be 

Rephrased As Follows Any Point Up  Is Contained In Neighborhood U To mm
HD  The Set M  Is A 

Locally Homeomorphism To m
R  Or m

H The Boundary MM  Is Subset Of M  Which Consists Of 

Points p . 

Definition 3.1.2 

 A Function YXf : Between Two Topological Spaces Is Said To Be Continuous If For Every 

Open Set U Of Y The Pre-Image )(
1

Uf
 Is Open In X . 

Definition 3.1.3 

Let X And Y Be Topological Spaces We Say That X And Y Are Homeomorphism If There Exist 

Continuous Function  Such That 
y

idgf  And 
X

idfg  We Write YX  And Say That f And 

g Are Homeomorphisms Between X And Y , By The Definition A Function YXf : Is A 

Homeomorphisms If And Only If .(I) f  Is A Objective .(Ii) f Is Continuous   (Iii) 1
f Is Also Continuous.   

3.2 Differentiable Manifolds  

A Differentiable Manifolds Is Necessary For Extending The Methods Of Differential Calculus To 

Spaces More General n
R A Subset 3

RS  Is Regular Surface If For Every Point Sp  The A Neighborhood 
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V Of P Is 3
R And Mapping SVRux 

2
: Open Set 2

RU  Such That. (I) x Is Differentiable 

Homomorphism. (Ii) The Differentiable  32
:)( RRdx

q
 , The Mapping x Is Called  A Aparametnzation Of 

S At P The Important Consequence Of Differentiable Of Regular Surface Is The Fact That The Transition 

Also Example Below If 1
: SUx 


And 1

: SUx 


Are 


 wUxUx )()(  , The 

Maps 211
)(: Rwxxx 




 And Rwxxx 


)(

11


   .                                                                                                                        

Are Differentiable Structure On A Set M Induces A Natural Topology On M It Suffices To MA  To Be An 

Open Set In M If And Only If  ))((
1


UxAx 

 Is An Open Set In n
R For All  It Is Easy To Verify That 

M And The Empty Set Are Open Sets That A Union Of Open Sets Is Again Set And That The Finite 

Intersection Of Open Sets Remains An Open Set. Manifold Is Necessary For The Methods Of Differential 

Calculus To Spaces More General Than De n
R , A Differential Structure On A Manifolds M Induces A 

Differential Structure On Every Open Subset Of M , In Particular Writing The Entries Of An  kn  Matrix In 

Succession Identifies The Set Of All Matrices With kn
R

, , An kn  Matrix Of Rank k Can Be Viewed As A 

K-Frame That Is Set Of k Linearly Independent Vectors In n
R , nKV

kn


,
Is Called The Steels Manifold ,The 

General Linear Group  )( nGL By The Foregoing 
kn

V
,

 Is Differential Structure On The Group n Of 

Orthogonal Matrices, We Define The Smooth Maps Function NMf : Where NM , Are Differential 

Manifolds We Will Say That f Is Smooth If There Are Atlases  


hU , On M ,  
BB

gV , On N , Such 

That The Maps  1


hfg

B
Are Smooth Wherever They Are Defined f Is A Homeomorphism If Is Smooth 

And A Smooth Inverse.  A Differentiable Structures Is Topological Is A Manifold It An Open Covering 


U Where Each Set 


U Is Homeomorphism, Via Some Homeomorphism 


h To An Open Subset Of 

Euclidean Space n
R , Let M Be A Topological Space , A Chart In M Consists Of An Open Subset 

MU  And A Homeomorphism h Of U Onto An Open Subset Of m
R , A r

C Atlas On M Is A Collection 

 


hU , Of Charts Such That The


U Cover M And  1
,




hh

B
The Differentiable . 

Definition 3.2.1 

 Let M Be A Metric Space We Now Define What Is Meant By The Statement That M Is An N-

Dimensional 
C Manifold. (I) A Chart On M Is A Pair ),( U With U An Open Subset Of M And  A 

Homeomorphism A    (1-1) Onto, Continuous Function With Continuous Inverse From U To An Open Subset 

Of n
R , Think Of  As Assigning Coordinates To Each Point Of U . (Ii)  Two Charts ),( U And 

),( V Are Said To Be Compatible If The Transition Functions.  

(23)                                            
 

  





















nn

nn

RVURVU

RVURVU

)()(:

)()(:

1

1








 

Are 
C That Is All Partial Derivatives Of All Orders Of  1

  And  1
  Exist And Are 

Continuous.(Iii)  An Atlas For M Is A Family  IiUA
ii

 :),(   Of Charts On M Such That  
Iii

U


 Is 

An Open Cover Of M And Such That Every Pair Of Charts In A Are Compatible. The Index Set I Is 

Completely Arbitrary. It Could Consist Of Just A Single Index. It Could Consist Of Uncountable Many Indices. 

An Atlas A Is Called Maximal If Every Chart ),( U On M That Is Compatible With Every Chat Of A . 

Example 3.2.2 :  Surfaces An N-Dimensional  

Any Smooth N-Dimensional 1n
R Is An N-Dimensional Manifold. Roughly Speaking A Subset Of 

mn
R

 A An                 N-Dimensional Surface If , Locally m Of The nm  Coordinates Of Points On The 

Surface Are Determined By The Other n Coordinates In A 
C Way , For Example , The Unit Circle 1

S Is A 

One Dimensional Surface In 2
R . Near (0.1) A Point 2

),( Ryx  Is On 1
S If And Only If 2

1 xy  And 

Near    (-1.0) , ),( yx Is On 1
S If And Only If 2

1 xy   . The Precise Definition Is That M Is An N-

Dimensional Surface In mn
R

 If M Is A Subset Of 
mn

R


With The Property That For Each 

Mzzz
mn




),...,(
1

There Are A Neighborhood 
z

U Of z In mn
R

 , And n  Integers. 

mn
jjJ


 ...1

21


C Function ),...,(

1 jnjk
xxf  ,    

n
jjmnk ,...,/,...,1

1
 Such That The 

Point
zmn

Uxxx 


),....,(
1

. That Is We May Express The Part Of M That Is Near z As 

 
jnjjii

xxxfx ,....,,
2111

 ,  
jnjjii

xxxfx ,....,,
2122

   ,  
jnjjimim

xxxfx ,....,,
21

 . Where There For Some 


C Function

m
ff ,...,

1
. We Many Use

jnjj
xxx ,....,,

21
 As Coordinates For 2

R In  
z

UM  .Of Course An 
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Atlas Is With ),...,()(
1 jnjz

xxx  Equivalently, M Is An   N-Dimensional Surface In mn
R

 If For Each 

Mz  , There Are A Neighborhood  
z

U Of z In mn
R

 , And 
Cm Functions RUg

zk
:  With The 

Vector  mkz
gz

 1,)( Linearly Independent Such That The Point 
z

Ux  Is In M If And Only If  

0)( xg
k

For All mk 1 .To Get From The Implicit Equations For M Given By The 
k

g To The Explicit 

Equations For M Given By The 
k

f One Need Only Invoke ( Possible After Renumbering Of x ) . A 

Topological Space M Is Called An M-Dimensional Topological Manifold With Boundary MM  If The 

Following Conditions.(I) M Is Hausdorff Space .(Ii) For Any Point Mp  There Exists A Neighborhood U Of 

p Which Is Homeomorphism To An Open Subset m
HV  (Iii) M Has A Countable Basis Of Open Sets, Can 

Be Rephrased As Follows Any Point Up  Is Contained In Neighborhood U To mm
HD  The Set M Is A 

Locally Homeomorphism To m
R  Or m

H The Boundary MM  Is Subset Of  M Which Consists Of Points 

p . 

Definition 3.2.3  

Let X Be A Set A Topology U For X Is Collection Of X Satisfying :(I)  And X Are In U .(Ii) 

The Intersection Of Two Members Of U Is In U .(Iii) The Union Of Any Number Of Members U Is In U . 

The Set X  With U Is Called A Topological Space The Members uU   Are Called The Open Sets. Let 

X Be A Topological Space A Subset XN  With Nx  Is Called  A Neighborhood Of x If There Is An 

Open Set U With NUx  , For Example If X A Metric Space Then The Closed Ball )( xD


And The 

Open Ball )( xD


Are Neighborhoods Of x A Subset C Is Said To Closed If CX \ Is Open  

Definition 3.2.4 

A Function YXf : Between Two Topological Spaces Is Said To Be Continuous If For Every 

Open Set U Of Y The Pre-Image )(
1

Uf
 Is Open In X . 

Definition 3.2.5 

Let X And Y Be Topological Spaces We Say That X And Y Are Homeomorphisms If There Exist 

Continuous Function    XYgYXf  :,: Such That  
y

idgf  And  
X

idfg  We Write 

YX  And Say That f And g Are Homeomorphisms Between X And Y , By The Definition A 

Function  YXf : Is A Homeomorphisms If And Only If     (I) f  Is A Objective (Ii) f Is Continuous 

(Iii) 1
f Is Also Continuous. 

3 .3 Differentiable Manifolds  

A Differentiable Manifolds Is Necessary For Extending The Methods Of Differential Calculus To 

Spaces More General n
R A Subset 3

RS  Is Regular Surface If For Every Point Sp  The A Neighborhood 

V Of P Is 3
R And Mapping SVRux 

2
: Open Set 2

RU  Such That: (I) x Is Differentiable 

Homomorphism (Ii) The Differentiable 32
:)( RRdx

q
 , The Mapping x Is Called  Aparametnzation Of 

S At P The Important Consequence Of Differentiable Of Regular Surface Is The Fact That The Transition 

Also Example Below If 1
: SUx 


And 1

: SUx 


Are 


 wUxUx )()( The Mappings   

                                         211
)(: Rwxxx 




 ,   Rwxxx 


)(

11


                                                        

A Differentiable Manifold Is Locally Homeomorphism To n
R The Fundamental Theorem On Existence, 

Uniqueness And Dependence On Initial Conditions Of Ordinary Differential Equations Which Is A Local 

Theorem Extends Naturally To Differentiable Manifolds. For Familiar With Differential Equations Can Assume 

The Statement Below Which Is All That We Need For Example X  Be A Differentiable  On A Differentiable 

Manifold  M And Mp  Then There Exist A Neighborhood Mp And MU
p
 An 

Inter ,0,),(   And    A Differentiable Mapping MU  ),(:  Such That Curve 

),( qtt  And qq ),0( Acurve M ),(:  Which Satisfies The Conditions 

))(()(
1

tXt  
 And q)0( Is Called A Trajectory Of The Field X That Passes Through q For 0t . A 

Differentiable Manifold Of Dimension N Is A Set M And A Family Of Injective Mapping MRx
n



Of 

Open Sets n
Ru 


Into M Such That: (I) Muxu )(


(Ii) For Any  , With )()(


uxux  (Iii) 

The Family ),(


xu Is Maximal Relative To Conditions (I),(Ii) The Pair ),(


xu Or The Mapping


x With 

)(


uxp  Is Called A Parameterization , Or System Of Coordinates Of M , Muxu )(


The Coordinate 

Charts ),( U Where U Are Coordinate Neighborhoods Or Charts , And  Are Coordinate Homeomorphisms 

Transitions Are Between Different Choices Of Coordinates Are Called Transitions Maps  1

,
:



ijji
  . 
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Which Are Anise Homeomorphisms By Definition, We Usually Write n
RVUpx  :,)(  Collection 

U And MUVxp 


:,)(
11

 For Coordinate Charts With Is 
i

UM  Called An Atlas For M Of 

Topological Manifolds. A Topological Manifold M For Which The Transition Maps )(
, ijji

  For All 

Pairs
ji

 , In The Atlas Are Homeomorphisms Is Called A Differentiable , Or Smooth Manifold , The 

Transition Maps Are  Mapping Between Open Subset Of 
m

R , Homeomorphisms Between Open Subsets Of 

m
R Are 

C Maps Whose Inverses Are Also


C Maps , For Two Charts
i

U And 
j

U The Transitions Mapping 

(24)                                                  )()(:)(
1

, jijjiiijji
UUUU 



   

Since  1
   And  1

   Are Homeomorphisms It Easily Follows That Which Show That Our Notion Of 

Rank Is Well Defined      
111 

   fJJfJ
yx

j , If A Map Has Constant Rank For All 

Np  We Simply Write )( frk , These Are Called Constant Rank Mapping. The Product Two Manifolds 

1
M And

2
M Be Two k

C -Manifolds Of Dimension
1

n And
2

n Respectively The Topological 

Space
21

MM  Are Arbitral Unions Of Sets Of The Form VU  Where U Is Open In
1

M And V Is Open 

In
2

M , Can Be Given The Structure
k

C Manifolds Of Dimension
21

, nn By Defining Charts As Follows For 

Any Charts
1

M On   
jj

V , , 
2

M We Declare That  
jiji

VU   , Is Chart 

On
21

MM  Where )(
21:

nn

jiji
RVU


 Is Defined So That    )(,)(, qpqp

jiji
  For 

All  
ji

VUqp ,  . A Given A
k

C N-Atlas, A On M For Any Other Chart  ,U We Say That  ,U Is 

Compatible With The Atlas A If Every Map  1
 

i
And  1

i
  Is k

C Whenever 0
i

UU The Two 

Atlases A And A
~

Is Compatible If Every Chart Of One Is Compatible With Other Atlas A Sub Manifolds Of 

Others Of 
n

R For Instance 2
S Is Sub Manifolds Of 3

R It Can Be Obtained As The Image Of Map Into 3
R Or 

As The Level Set Of Function With Domain 3
R We Shall Examine Both Methods Below First To Develop The 

Basic Concepts Of The Theory Of Riemannian Sub Manifolds And Then To Use These Concepts To Derive A 

Equantitive Interpretation Of Curvature Tensor , Some Basic Definitions And Terminology Concerning Sub 

Manifolds, We Define A Tensor Field Called The Second Fundamental Form Which Measures The Way A Sub 

Manifold Curves With The Ambient Manifold , For Example X Be A Sub Manifold Of Y Of XE : And 

YEg 
1

: Be Two Vector Brindled And Assume That E Is Compressible , Let YEf : And YEg 
1

: Be 

Two Tubular Neighborhoods Of X In Y Then There Exists . 

Theorem 3.3.1   

Let Nnm , And Let mn
RU


 Be An Open Set, Let m

RUg : Be 
C With 0),(

00
yxg For Some 

mn
RyRx 

00
, With Uyx ),(

00
. Assume That 0)],([det

,100






 mji

j

i
yx

y

g  Then There Exist Open 

Sets mn
RV


 And n

RW  With Vyx ),(
00

Such That , For Each Wx  There Is A Unique 

Vyx ),( With 0),( yxg If The Y Above Is Denoted  
00

yxf  And    0, xfxg For All 

Wx  The N-Sphere n
S Is The N-Dimensional Surface 1n

R Given Implicitly By Equation 

  0.....),....,(
2

1

2

111


 nn
xxxxg In A Neighborhood Of  , For Example The Northern Hemisphere n

S Is 

Given Explicitly By The Equation  
22

11
....

nn
xxx 


If You Think Of The Set Of All 33  Real Matrices 

As 9
R   ( Because A 33  Matrix Has 9 Matrix Elements ) Then 

.  1det,1,33)3(  RRRRmatricesrealOS
t  

Example 3.3.2   

The Torus 2
T Is The Two Dimensional Surface  4/1)1(,),,(

222232
 zyxRzyxT  

In 3
R In Cylindrical Coordinates 0,sin,cos  zryrx  The Equation Of The Torus 

Is 4/1)1(
22
 zr Fix Any

0
,  say  . Recall That The Set Of All Points In n

R That Have 
0

  Is An 

Open Book, It Is A Hall-Plane That Starts At The z Axis. The Intersection Of The Tours With That Half Plane 

Is Circle Of Radius 1/2 Centered On 0,1  zr  As   Runs Form 20 to , The Point 

cos2/11 r And 
0

  Runs Over That Circle. If We Now Run  From 20 to The 

Point )sin2/11(,cos)cos2/11((),,(  zyx Runs Over The Whole Torus. So We May Build 

Coordinate Patches For 2
T Using  And   With Ranges )2,0(  Or ),(  As Coordinates) 
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Definition 3.3.3 

(I) A Function f  From A Manifold M To Manifold N  (It Is Traditional To Omit The Atlas From 

The Notation) Is Said To Be 
C At Mm  If There Exists A Chart  ,U For M And Chart  ,V For 

N Such That vmfUm  )(, And  1
  f Is 

C At )(m . (Ii) Tow Manifold M And N Are 

Diffeomorphic If There Exists A Function NMf : That Is (1-1) And Onto With N And 1
f On 


C Everywhere. Then You Should Think Of M And N As The Same Manifold With m And )(mf Being 

Two Names For Same Point, For Each Mm  . 

 

IV. Conclusion 
The Basic Notions On Applications Geometry Riemannian Knowledge Of Calculus Manifolds, 

Including The Geometric Formulation Of The Notion Of The Differential And The Inverse Function Theorem. 

The Differential Geometry Of Surfaces With The Basic Definition Of Differentiable Manifolds, Starting With 

Properties Of Covering Spaces And Of The Fundamental Group And Its Relation To Covering Spaces. 
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