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ABSTRACT 
In this paper we obtained closed form expressions for crack shape and stress-intensity factors for 

single crack. These are very important parameters for fracture designing of structures. The problem is 

first reduced to dual series equations . The dual series equations is reduced to Fredholm-integral 

equation of second kind and obtained by along  with  other  known functions, in terms of geometrical 

parameters. 
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I. INTRODUCTION 
The crack opening in buckled isotropic plate has been discussed by with different boundary conditions. 

In this paper we are solving the problem of an interior Griffith-crack y=0, 0 ≤ x< 𝑏  in a rectangle of length 2a 

and width 2𝛿 Geometrical symmetry and material symmetry are assumed. The surface of crack are stress-free.  

 

   The boundary conditions of the problem are, at 𝑥 = ±𝑎 

 

            (1.1) 
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And at y = 𝛿                     
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         At y = 0 
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    and the mixed boundary condition 
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               The boundary conditions (1.1) - (1.5) are those given by (1.1)-( 1.6) respectively. The symmetry of 

problem reduces the mixed boundary conditions (1.6)-( 1.9) for 

                      (1.10) 

                       (1.11) 

             And 

                         (1.12) 

                        (1.13) 

          The In-plane displacement v
0
 (x,0)will open the crack while out of plane i.e. transverse displacement will 

make the axis of crack as curved axis. we checked throughout that, see Burniston . 

                        (1.14) 

      which means that the crack really opens out and crack faces do not meet  each other than at the crack-tips. In 

next section we shall reduce the physical problem to two decoupled series equations. The physical quantities 

will be given in-terms of above series equations . 

 

II.  REDUCTION TO SERIES EQUATIONS 
We take v

0
 (x , y) with f1(x) = 0 and then putting 

Y = 0, 

             
 

                  

             

Thus the boundary conditions given 
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                 Gives 

 

 

 
      Now using (2.1) in above equation we get, 
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                                   (2.3) 

 

 

                 

                                 (2.4) 

 

                
               P 1(x) is a known function. 

           (2.5)              

           (2.6) 

Where P11(x) involves unknown. This will lead to  Fredholm integral equation of second kind. 

              The condition           

                              
          Gives             

 

                                                                                                                                                                                                (2.7) 

 

 

  

 

We get  

                 

                                       (2.8)   

            The  

above series relations  are called dual series relations involving tri geometric series. The solutions of these series 

equations will be given in next article. 
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III. RESULT 

 

 It is also observed that there is no singularity  in bending  moment and transverse displacement is also 

smooth (for crack shape and stress-intensity factors for single crack) . 
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